
GRAND Status – Nijmegen
Front end, board design and firmware

Apr 20191







GP300 Nijmegen board design – short overview

ZYNC ZU7EG SOC-FPGA
Application processor:
- Dual core Cortex A53, 1.5Ghz
Real-Time processor:
- Dual core Cortex R5, 600MHz
ADC
- AD9694 16 bit, 500MSPS
Low jitter clk
- Si5340, 90 fs rms jitter
20+ supplies

Highly configurable, on-line readout, low noise (for ADC and clock chip)

2 DDR4 interfaces
-1 GB, 32b interface connected to PS
-512 GB 16b interface connected to PL
10/100 Gb/s ethernet interface



GP300 Nijmegen board design - setbacks

Setbacks:
-Factory produced the board with preliminary files. (green PCB)
-Three supllies showed destructive oscilation after enabling output.
- Selected FPGA (XCZU5) was not available. An upgrade, the XCZU7, is used in stead.
-200+ components were not placed during production.
-Short between a ground via and a 1V8 power line in an internal layer of the board.



GP300 Nijmegen board design – current status

- All supllies are working and can be configured by software.
- Board is produced based on correct files and delivered to Nijmegen. (blue PCB)

Coming weeks:
- Configure and test the clocks, JTAG, I2C and SPI.
- Continue with firmware design and start implementation.



7 Apr 2019

Status filter design

- Filter design is finished

- Fine-tuning done with real components

Next step:

- Create test board and measure filter performance



8 Apr 2019

Status firmware and software

Firmware

Until the prototype is fully operational all 
firmware is developed for the Xilinx reference 
board.

- High speed ADC readout (JESD204B 
interface) is finished but needs a Linux kernel 
to be up and running to be able to test 
functionality. Kernel image is build but hangs 
during boot. Needs debugging.

- Firmware for DDR4 memory test (PL-side) is 
build. Needs modified clock chip setup.

- Firmware for triggering and data packaging 
is available but must be copied and modified 
from the previous Auger digitizer. Needs to 
be started.

Processor system / Software

Basic Linux kernel can be build and 
loaded in Xilinx ref board.

To do:

- include ADC readout in kernel

- interface to memories

- migration software Auger digitizer

- readout sensors (pressure, humidity and 
temperature)



FPGA – Programmable logic (PL)

9
Apr 2019

ADC ADC readout

Config:
JTAG, SPI, I2C

Processor System (PS)

Ring buffer A

Ring buffer B

Housekeeping

PL – PS interface

Slow control
– Power
– Sensor

PL – DDR4

Data packaging

GPS

Clocks

DDR interface

PS – DDR4

DMA

GTH
TCVR

TX/RX

Firmware setup

Trigger logic



Start / Stop address Partition name Size [Bytes, hex] Size [Bytes, decimal]

0x0
0x1e00000

boot 0x1e00000 31457280

0x1e00000 31457280
0x1e40000 31719424

bootenv 0x40000 262144

0x1e40000 31719424
0x4240000 69468160

kernel 0x2400000 37748736

0x4240000
0x452F24F8

jffs2 0x2FAF0800x2EF24F80x2EF0000
50000000 (50MB)49227000 (49MB)49217536

0x7130000 1186856960x7140000 spare 0x10000 65536

Total used 119.468.160 (955745280 bits)

Total available128 mebibytes[MiB] = 1 073 741 824 bits = 2x 512Mb
0x7735940 125MB (1Gbit)

Flash memory size must be multiples of 65636 bytes → 0x10000





Thank you for your attention



Is dit de rx_sync 
a/b/c/d/? Ja dit 
gaat naar de 
sync pin. Maar 
hier hebben we 
er twee voor 
nodig.



Backup slides





<&axi_ad9694_jesd>

500MHz

link 0

AD9694 500MSPS
14bit Quad ADC

JESD 204b.1 0.5 Gbps

link 1
core C

core A

core B

core D

jesd204b
high speed 

serializer

jesd204b
high speed 

serializer

adc0_ad9694:
ad9694@0

“adi,ad9694”

Xilinx SoC
xczu7cg-fbvb900-1-e

Si5340 
i2c interface

out@3 adc_ref_clk
out@2 mgtrefclk0

<&si5340 0 3>

SERDOUTAB0 +/- lane 0

SERDOUTCD0 +/- lane 2

SERDOUTAB1 +/- lane 1

SERDOUTCD1 +/- lane 3

adc_sysref
n.c. axi_ad9694_adxcvr: 

axi-adxcvr-rx@84a50000
“adi,axi-adxcvr-1.0”

conv               adc_gt_clk
rx_out_clk

axi_ad9694_jesd: 
axi-jesd204-rx@84aa0000 

"adi,axi-jesd204-rx-1.0"

s_axi_clk                 device_clk
lane_clk      jesd_adc_lane_clk  

<&axi_ad9694_adxcvr 0>
<&axi_ad9694_adxcvr 1>

adc_clk
jesd_adc_clk

fclk0
“xlnx,fclk”

<&clk 71>

rx_dma: 
rx-dmac@9c400000
"adi,axi-dmac-1.00.a"

<&clk 71>

Per LINK! – full BW mode
Two 14-bit converters at 500 MSPS
No decimation
quick configuration = 
0x48 from text | 0x49 from table 27 datasheet)
N  ́ = 16 bits, N = 16 bits
L = 2, M = 2, and F = 2 
CS = 0 to 2, K = 32
Output serial line rate = 10 Gbps per lane

1000MHz

SYNCINB+-AB What to do with +-CD!!!

GTX

<&si5340 0 2>

Linux device tree

mailto:out@3
mailto:out@2


17
Jul 2020



Clock config
– Linux device tree

18
Jul 2020



19
Jul 2020



20
Jul 2020



21
Jul 2020



22
Jul 2020



NOT IMPLEMENTED

23
Jul 2020



24
Jul 2020



2 links

25
Jul 2020



26
Jul 2020



27 Apr 2019

Status filter design



"From small debugging steps to a GRAND result"

What happened
 Combine Xilinx design with Analog Devices design
 boot from QSPI / flash partion table
 Modifiy board files Xilinx
 Search best firmware base to start from
 Change firmware Analog Devices hdl repo
 Yocto design flow
 Modify device tree where are they and how to change them. Overlays/includes are a great help and a great 

pain. Easy to get the device tree but difficult to modify and use them
 Boot linux
 Add missing device drivers, mainly clock
 Debug axi busses, ADC setting and JESD204 lane setting
 Combine everything in git.
 Clean up and remove unused functionality
 25-3 first boot without adc and clock driver but with qspi and AD device tree. (started ticket)
 6-5 first answer Analog Devices
 30-6 NFS boot and send mail to CIC>EMEA@analog.com (helpdesk)
 7-7 follow up from Analog Devices
 13-7 first signals in IIO scope
 23-7 4 ramp signals in IIO scope

Tips, lessons learned
 Select you Analog devices HDL project based on available device drivers.
 Learn git
 Invest time in development environment especially when booting from QSPI memory. Test it and forget 

it.Switch to NFS boot as soon as possible. Quite some time spent on gettign the boot arguments correct for 
NFS boot

 Email Analog Devices to ask for priority on ticket.
 Learn how to do apply a patch (in GIT and add this patch in Yocto, with a patch you can also add source code.

Open items
 Using QEMU seems to work out of the box but ran into difficulties with the QSPI boot. Could potentially save a 

lot of time with testing device drivers and boot
 Petalinux-build mrproper modifiying the device tree and perform:
$ petalinux-build -c device-tree -x cleansstate
$ petalinux-build -c device-tree
Build the device tree but does not result in a bootable image for the QSPI boot.

mailto:EMEA@analog.com


GRAND – Giant Radio Array for Neutrino Detection

Initiative of Olivier Martineau (scientist: LPNHE)
Group in Nijmegen working on GRAND

Department: High Energy Physics
– Sijbrand de Jong

GRAND:
– Charles Timmermans (scientist: Nikhef)
– Dániel Szálas-Motesiczky (engineer: RU)
– Floris Hahn (PCB designer: Techno Center, RU)

– René Habraken (engineer: RU)
   r.habraken@science.ru.nl



AERA
– Electronics Auger Engineering Radio Area

“SMALL” before “GRAND” ???
→ Not really!

Installment in May 2013 in
Argentina
100 antennas
6 km2 



Merge Analog Devices with Xilinx ref design

Xilinx ZCU102 
reference board

Analog Devices
ad9694-500ebz 
reference board

Both companies provide schematics, BoM, board layout



GRAND prototype V1

Key features DAQ
Trigger logic and control
FPGA+CPU
ZynqMP: XCZU7CG-1FBVB900E

4 channels 
14 bit, 500MSPS ADC
30 – 200 MHz
GPS position and timing
Long range WiFi data transfer 

Start development towards a more integrated, 
reliable and cheap DAQ while using less 
power. 



DDR4 memory



Device tree

“Building with Petalinux” from Analog Devices works “out of the box” for 
standards ADC development boards and a number of FPGA boards.

(https://wiki.analog.com/resources/tools-software/linux-build/generic/petalinux)

– The Device Tree Compiler (dtc) is an easy tool to get the details of what is 
actually built

→ dtc -I dtb images/linux/system.dtb -O dts -o 
../devicetree/recompiledDTBs/xxx.dts

– But, where is all this information coming from?
→ user layer from meta-adi-xilinx, meta-adi-core, .../project-spec/meta-

user/recipes-bsp/device-tree/files/xxx.dts

– And, if you know where it comes from how to modify this to your own needs?
→ Added custom device tree to the files directory and reference it directly in 
/meta-adi/meta-adi-xilinx/recipes-bsp/device-tree/device-tree.bbappend

zynqm
p-zu7cg-rev1-ad9694.dts

zy
nqmp-zc

u102-re
v1

.0.dts

zynqmp-zcu102-re
vB.dts

zynqmp-zcu102 revA
zynqmp.dtsi

device tree
repo

branch

?

https://wiki.analog.com/resources/tools-software/linux-build/generic/petalinux


QSPI &qspi {
status = "okay";
is-dual = <1>;
has-io-mode = <1>;
/delete-node/ flash@0;

flash@0 {
compatible = "micron,m25p80", "spi-flash", "n25q512a"; /* dual 512Mb, 1Gb total */
< – – – snip – – – >

•partition@boot {
label = "boot";
reg = <0x0 0x1e00000>;

};
partition@bootenv {

label = "bootenv";
reg = <0x1e00000 0x40000>;

};
partition@kernel {

label = "kernel";
reg = <0x1e40000 0x2400000>;

};
partition@jffs2 {

label = "jffs2";
reg = <0x4240000 0x2EE0000>;

};
partition@spare {

label = "spare";
reg = <0x7120000 0x20000>;

};

Boot from QSPI
– Make sure there is a backup solution available.

– Match the size of the “partitions” to the MTD erase size = 
131072 (128K) and set this also in Petalinux

– Uncheck “Use small 4096 B erase sectors” in the kernel 
config (petalinux-config -c kernel)



Boot Linux

Set boot arguments in U-boot:
jffs2 boot: 
setenv bootargs "console=ttyPS0,115200 earlyprintk 

clk_ignore_unused root=mtd:jffs2 rw rootfstype=jffs2"

nfs boot:
setenv bootargs "earlyprintk console=ttyPS0,115200 

clk_ignore_unused root=/dev/nfs 
nfsroot=192.168.10.1:/srv/nfs,vers=3,nolock,tcp 
ip=192.168.10.2:192.168.10.1 rw nfsrootdebug"

– serial interface → never connect the default serial 
output to the 2nd uart interface on the ZynqMP. 



Hardware HDL

Take time to find the best match for the HDL project (PL-firmware), device tree and Linux device drivers 
(PS-software). The best match depends on the ADC, FPGA, peripherals, clocks and power supplies 
on the board.

HDL projects: 
→ https://github.com/analogdevicesinc/hdl/tree/master/projects

Sometimes the ADC occurs in several ADC hdl projects. It can be beneficial to use a more recent project 
and accept a mismatch with the used ADC to be able to profit from new (or more flexible) software or 
firmware.

Start the puzzle here to match the FPGA software version with the HDL release from Analog Devices. 
Take care, year numbers do not match with FPGA software release! (e.g. release hdl_2019_r1 should 
be used with Quartus 18.1 or Vivado 2018.3)
→ https://wiki.analog.com/resources/fpga/docs/releases

https://github.com/analogdevicesinc/hdl/tree/master/projects
https://wiki.analog.com/resources/fpga/docs/releases


Debug axi busses, hdl, ADC setting and JESD204 lane parameters

Call in help from Analog Devices via EngineerZone forum:
→ https://ez.analog.com/

A lot of information can be subtracted from:
grep "" /sys/bus/platform/devices/*.axi-jesd*/status* 
grep "" /sys/bus/platform/devices/*.axi-jesd*/lane*

But before the ADC shows up as an IIO device (iio_info):
– take care of clocking (in the device tree)
– make sure the clock can be reconfigured with a “clk_set_rate” from a device driver.
– enable debug messages in device driver add:

#define DEBUG
Before the first include and then rebuild your kernel (with the default log level in the 

kernel config to print debug messages)

https://ez.analog.com/


First data



First data



Results



Results



Results GPS



Results

- Testing of first prototype was 
finished before summer holiday.

- Ready to produce 100 stations 
using the next iteration of the 
prototype.

- Next year 100 stations will be 
installed in remote area in China. 
Hopefully, 200 more will follow 
soon after installment 

Then there is a lot of work to do to go 
to 1000, 10.000 and 100.000.



Lessons learned

 It takes a lot of time to debug the boot from QSPI memory. Mainly building and programming the flash.
 Select the Analog Devices HDL project based on available knowledge in you(r team) and on the daq 

board.
 Learn git, how to make a patch in git and how to apply this patch in Yocto / Petalinux. To be able to add 

new code you sometimes need a patch… 
 Invest time in the development environment especially when booting from QSPI memory. Switch to 

NFS boot as soon as possible. 
 During boot do not reconfigure the clock (chip) that provides the ps_ref_clk. (Thanks Pieter and Ralf :-))
 A clock is not a static signal with a fixed frequency. During boot the device driver of Analog Devices 

tries several clock settings to be able to set up the JESD204 interface correctly.

 You learn a lot from making your “own” high speed data acquisition board.





FPGA   (PL)                

ADC
ADC 

readout

Processor System 
(PS)

JTAG  
UART
SPI 
I2C

Ring buffer A

Ring buffer B

Housekeeping

PL – PS 
interface

Slow control
– Power
– Sensor

PL – DDR4

Data packagingGPS

Clocks

DDR interface

PS – DDR4

DMA

GTH
TCVR

TX/RX

Firmware setup

Trigger logic

Config via SPI by PS

Config via I2C by PS

Config via uart by PS

or by PL

Config via I2C by PS

ETH

Config trigger 
settings

Osc
PL_0



FPGA
(PL)

Processor System 
(PS)

AXI HPM0 LPD 
32b

(master)

DMA
controller

PS – DDR4

DMA

Firmware setup test: 
DMA and data througput

ETH

HOST

ETH

Write to file

AXI HP0 FPD 
128b

(slave)

AXI HP1 FPD 
128b

(slave)

PL – PS 
interfaces

JESD204 Lane setting
(slave)

Eye-Scan interface
(master)

Not implemented

ARM A53

Check data 
integrityData

Generator

rx_out_clk                                             fifo_wr_clk        
               

fifo_wr

fifo_wr_en

fifo_wr_sync

fifo_wr_overflow

fifo_wr_xfer_req



FPGA
(PL)

Processor System 
(PS)

AXI HPM0 LPD 
32b

(master)

DMA
test path

PS – DDR4

DMA

Firmware setup test:
config trigger logic

ETH

HOST

ETH

Write to file

AXI HP1 FPD 
128b

(slave)

PL – PS 
interfaces

JESD204 Lane setting
(slave)

ARM A53
processor

Check data 
integrity

Dual Port
RAM

Register interface
(slave)

Trigger 
logic setting

(master)

Set trigger 
registers

S_AXI_WDATA
S_AXI_WVALID

S_AXI_WREADY

S_AXI_RDATA

S_AXI_RVALID
S_AXI_RREADY

Similar 
Master – Slave 

interface



Clock config
– Linux device tree



<&axi_ad9694_jesd>

500MHz

link 0

AD9694 500MSPS
14bit Quad ADC

JESD 204b.1 0.5 Gbps

link 1
core C

core A

core B

core D

jesd204b
high speed 

serializer

jesd204b
high speed 

serializer

adc0_ad9694:
ad9694@0

“adi,ad9694”

Xilinx SoC
xczu7cg-fbvb900-1-e

Si5340 
i2c interface

out@3 adc_ref_clk
out@2 mgtrefclk0

<&si5340 0 3>

SERDOUTAB0 +/- lane 0

SERDOUTCD0 +/- lane 2

SERDOUTAB1 +/- lane 1

SERDOUTCD1 +/- lane 3

adc_sysref
n.c. axi_ad9694_adxcvr: 

axi-adxcvr-rx@84a50000
“adi,axi-adxcvr-1.0”

conv               adc_gt_clk
rx_out_clk

axi_ad9694_jesd: 
axi-jesd204-rx@84aa0000 

"adi,axi-jesd204-rx-1.0"

s_axi_clk                 device_clk
lane_clk      jesd_adc_lane_clk  

<&axi_ad9694_adxcvr 0>
<&axi_ad9694_adxcvr 1>

adc_clk
jesd_adc_clk

fclk0
“xlnx,fclk”

<&clk 71>

rx_dma: 
rx-dmac@9c400000
"adi,axi-dmac-1.00.a"

<&clk 71>

Per LINK! – full BW mode
Two 14-bit converters at 500 MSPS
No decimation
quick configuration = 
0x48 from text | 0x49 from table 27 datasheet)
N  ́ = 16 bits, N = 16 bits
L = 2, M = 2, and F = 2 
CS = 0 to 2, K = 32
Output serial line rate = 10 Gbps per lane

1000MHz

SYNCINB+-AB What to do with +-CD!!!

GTX

<&si5340 0 2>

Linux device tree

mailto:out@3
mailto:out@2

	Dia 1
	Dia 2
	Dia 3
	Dia 4
	Dia 5
	Dia 6
	Dia 7
	Dia 8
	Dia 9
	Dia 10
	Dia 11
	Dia 12
	Dia 13
	Dia 14
	Dia 15
	Dia 16
	Dia 17
	Dia 18
	Dia 19
	Dia 20
	Dia 21
	Dia 22
	Dia 23
	Dia 24
	Dia 25
	Dia 26
	Dia 27
	Dia 28
	Dia 29
	Dia 30
	Dia 31
	Dia 32
	Dia 33
	Dia 34
	Dia 35
	Dia 36
	Dia 37
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42
	Dia 43
	Dia 44
	Dia 45
	Dia 46
	Dia 47
	Dia 48
	Dia 49
	Dia 50
	Dia 51

