
A Tutorial to the Clean Object I/O

Library - version 1.0.1

Draft version

Peter Achten

September 8, 1998

Contents

1 Preface 7

2 Introduction 9

2.1 What are interactive objects . 9

2.2 How to manage running interactive objects 12

2.2.1 Opening of interactive objects 12

2.2.2 Modi�cation of interactive objects 13

2.2.3 Closing of interactive objects 14

2.3 How to start an interactive program 14

2.4 My �rst Clean object I/O program 15

3 Global structure of the object I/O library 17

3.1 Abstract devices . 17

3.1.1 Menus . 18

3.1.2 Windows . 18

3.1.3 Timers . 19

3.1.4 Receivers . 19

3.2 Interactive processes . 19

3.3 Drawing . 20

3.4 General . 20

4 Object identi�cation 23

5 Font and text handling 25

6 Drawing 29

6.1 Examples . 31

6.1.1 Drawing text . 31

6.1.2 Pen size and position . 32

6.1.3 Drawing lines . 32

6.1.4 Drawing ovals . 33

6.1.5 Drawing curves . 33

6.1.6 Drawing rectangles . 35

2

CONTENTS 3

6.1.7 Drawing boxes . 36

6.1.8 Drawing polygons . 37

6.1.9 Drawing bitmaps . 38

6.1.10 Drawing in xor mode . 39

6.1.11 Drawing in Hilite mode . 40

6.1.12 Drawing in Clipping mode . 41

7 Clipboard handling 43

7.1 Example: a clipboard editor . 44

8 Windows and dialogues 49

8.1 Basic terminology . 49

8.1.1 Anatomy of windows and dialogues 49

8.1.2 Stacking order . 51

8.1.3 Active window or dialogue . 51

8.2 Window and dialogue attributes . 51

8.3 Handling the document layer . 53

8.3.1 Indirect rendering . 53

8.3.2 Direct rendering . 55

8.3.3 Pragmatics . 55

8.4 Handling the control layer . 55

8.5 Handling the window and dialogue frame 56

8.5.1 Opening a window or dialogue frame 56

8.5.2 Changing a window and dialogue frame 56

8.6 Handling keyboard and mouse input 57

8.6.1 Keyboard input . 57

8.6.2 Mouse input . 58

9 Control handling 61

9.1 The standard controls . 61

9.1.1 The shared control attributes 62

9.1.2 The RadioControl . 62

9.1.3 The CheckControl . 63

9.1.4 The PopUpControl . 64

9.1.5 The SliderControl . 65

9.1.6 The TextControl . 67

9.1.7 The EditControl . 67

9.1.8 The ButtonControl . 68

9.1.9 The CustomButtonControl 69

9.1.10 The CustomControl . 70

9.1.11 The CompoundControl . 71

4 CONTENTS

9.2 Control glue . 72

9.2.1 :+: . 73

9.2.2 ListLS and NilLS . 73

9.2.3 AddLS and NewLS . 73

9.2.4 Example: a counter control 74

9.3 Control layout . 75

9.3.1 Layout at �xed position . 77

9.3.2 Layout at view frame boundary 77

9.3.3 Layout in lines . 77

9.3.4 Layout o�sets . 78

9.3.5 Layout relative to the previous control 79

9.4 Resizing controls . 79

9.5 Examples . 81

9.5.1 Keyspotting . 81

9.5.2 Mousespotting . 83

10 Menus 87

10.1 Menus and menu elements . 87

10.1.1 The menu attributes . 87

10.1.2 The Menu . 88

10.1.3 The MenuItem . 89

10.1.4 The MenuSeparator . 89

10.1.5 The RadioMenu . 90

10.1.6 The SubMenu . 91

10.2 Menu glue . 92

10.2.1 :+: . 92

10.2.2 ListLS and NilLS . 92

10.2.3 AddLS and NewLS . 92

10.3 The Windows menu . 93

10.4 Menu conventions . 93

10.4.1 Subsetting the available commands 93

10.4.2 Command conventions . 94

11 Timers 97

11.1 Examples . 98

11.1.1 Expanding circles . 98

11.1.2 Internal clock . 101

12 Receivers 105

12.1 Receiver de�nitions . 105

12.2 Receiver creation . 106

CONTENTS 5

12.3 Message passing . 106

12.3.1 Uni-directional message passing 107

12.3.2 Bi-directional message passing 107

12.4 Examples . 108

12.4.1 Talk windows . 108

12.4.2 Resetting the counter . 111

12.4.3 Reading the counter . 114

13 Interactive processes 117

13.1 De�ning interactive processes . 117

13.2 Interactive process creation . 119

13.2.1 Creating single processes . 119

13.2.2 Creating multiple processes 121

13.2.3 Process relations . 122

13.3 Examples . 122

13.3.1 Talk revisited . 122

13.3.2 Clock revisited . 125

A I/O library 133

A.1 StdBitmap . 133

A.2 StdClipboard . 134

A.3 StdControl . 135

A.4 StdControlClass . 139

A.5 StdControlDef . 140

A.6 StdControlReceiver . 142

A.7 StdFileSelect . 143

A.8 StdFont . 144

A.9 StdFontDef . 145

A.10 StdId . 146

A.11 StdIO . 147

A.12 StdIOCommon . 148

A.13 StdMaybe . 153

A.14 StdMenu . 154

A.15 StdMenuDef . 157

A.16 StdMenuElement . 158

A.17 StdMenuElementClass . 160

A.18 StdMenuReceiver . 161

A.19 StdPicture . 162

A.20 StdPictureDef . 167

A.21 StdProcess . 168

A.22 StdProcessDef . 170

6 CONTENTS

A.23 StdPSt . 171

A.24 StdReceiver . 173

A.25 StdReceiverDef . 176

A.26 StdSystem . 177

A.27 StdTime . 178

A.28 StdTimer . 179

A.29 StdTimerDef . 180

A.30 StdTimerElementclass . 181

A.31 StdTimerReceiver . 182

A.32 StdWindow . 183

A.33 StdWindowDef . 188

Chapter 1

Preface

The functional programming language Clean has an extensive library to build graph-
ical user interface applications, the object I/O library. In this tutorial the basic
concepts of the object I/O library are explained by means of examples. In this
report all Clean code will be printed in type writer style. All examples are also
available as Clean sources in the corresponding `Tutorial Examples' folder.

This tutorial is not a technical reference manual. It is assumed that the reader is
familiar with functional programming and Clean.

In Section 2 a very broad overview of the object I/O library is given, just to give
the reader a taste of what the object I/O system is all about. Section 3 presents
the global structure of the object I/O system.

The remaining part of this document explains the individual components of the
library. But before we can explain the graphical user interface elements, we �rst
talk about object identi�cation (Section 4), font and text handling (Section 5), and
drawing (Section 6). In Section 7 we discuss clipboard handling, a simple user
driven mechanism to transfer data between interactive applications.

To users of graphical user interfaces the interface elements are ofcourse the windows
and dialogues. These are discussed in Section 8. Windows and dialogues can contain
controls. Because there are many aspects about control handling their treatment
deserves a separate section (9). In all graphical user interface systems, the set of
available commands is presented by means of menus, see Section 10. To support
timing features, timers can be used, see Section 11. Flexible communication of
arbitrary expressions between components can be achieved by using receivers and
message passing, see Section 12.

All of the above objects are element of one interactive process. The object I/O
library enables the programmer to split up a large interactive program into several
interactive processes that can be created and closed dynamically. This is presented
in Section 13.

Appendix A contains the de�nition modules of the Clean Object I/O library, version
1.0.1. in alphabetic order.

7

8 CHAPTER 1. PREFACE

Chapter 2

Introduction

In this chapter we give a brief overview of the main features of the object I/O
library. We �rst discuss what the basic components are and how they can be used
to construct more complex components (Section 2.1). When these elements have
been constructed, they must be opened to create an actual working image on the
underlying platform. Elements can be opened and closed dynamically, but it is
ofcourse also possible to change them dynamically (Section 2.2). Once we know
how to construct graphical user interfaces we can start an interactive program.
This is explained in Section 2.3. Finally, to wrap things up Section 2.4 presents the
�rst complete interactive Clean object I/O program of this tutorial, the ubiquitous
\Hello world!".

2.1 What are interactive objects

One way of looking at the object I/O library is to regard it as a collection of building
blocks, the interactive objects, that the programmer can use to construct graphical
user interfaces. For instance, Figure 2.1 summarises the standard set of control
objects that can be placed in a window object.

All interactive objects are de�ned by means of algebraic data types. For instance,
to de�ne the button control element in the table one would write:

button = ButtonControl "Button" []

The constituents of this expressions are the data constructor ButtonControl, ap-
plied to the string "Button", and an empty list [] of control attributes. This is
de�ned more concisely by the library type de�nition of a button control element:

:: ButtonControl ls ps

= ButtonControl String [ControlAttribute (ls,ps)]

Note that the names of the type constructor and the data constructor are identical
(ButtonControl). This convention is used throughout the object I/O library.

The type de�nition of the button control is parameterised with two type variables:
ls and ps. These correspond to another fundamental characteristic of interactive
objects: an interactive object can have local state, and also have an e�ect on a
public state. The type of the local state is identi�ed by the ls type parameter, while
the type of the public state is identi�ed by the ps type parameter. The e�ect of an

9

10 CHAPTER 2. INTRODUCTION

Control object: What does it look like:
RadioControl

CheckControl

PopUpControl

SliderControl

TextControl

EditControl

ButtonControl

CustomButtonControl Program de�ned button
CustomControl Program de�ned button
CompoundControl Program de�ned combination of controls

Figure 2.1: The standard set of controls.

interactive object that has a local state of type ls and a public state of type ps is
de�ned by means of a function of type (ls; ps)! (ls; ps). Such a function is called a
callback function. For most interactive objects, the callback function is an attribute
of the object. Attributes are also de�ned by means of algebraic data types. For
instance, among many other control attributes, one can �nd the callback function
attribute of controls:

:: ControlAttribute state

= ... | ControlFunction (state->state) | ...

Note that the pair of local state and public state constitute the state of an element.
The meaning of attributing a control element with a callback function f is that
when that element is selected by the user, and the current state is the value (l; p),
then the new state will be (f(l; p)). In other words, a callback function de�nes a
state transition.

Besides having a bag of interactive objects the object I/O library provides pro-
grammers glue to construct user interfaces. This glue serves two purposes: (a)
from primitive objects one can construct new composite objects, and (b) it puts
restrictions on what components are `glue compatible'.

The object I/O library has one universal glue :+: that can be used to connect two
interactive objects that operate on the same local state of type ls and public state
of type ps. Its type de�nition is as follows:

:: :+: t1 t2 ls ps

= (:+:) infixr 9 (t1 ls ps) (t2 ls ps)

In order to de�ne what components are compatible to be glued type constructor
classes are applied. The type constructor class Controls contains all control ele-
ments (see table above) but also de�nes that only Controls members can be glued:

instance Controls RadioControl,

2.1. WHAT ARE INTERACTIVE OBJECTS 11

CheckControl,

PopUpControl,

SliderControl,

TextControl,

EditControl,

ButtonControl,

CustomButtonControl,

CustomControl,

:+: t1 t2 | Controls t1 & Controls t2

The last line of the instance declaration list states that if e1 and e2 are Controls
instances, then the expression e1:+:e2 is also a Controls instance. Let button
and edit below de�ne a button control and an edit control respectively:

button = ButtonControl "Button" []

edit = EditControl "Just text" []

then the following expressions are all legal Controls instances:

Control composition: What does it look like:

button :+: button

button :+: edit

edit :+: button

edit :+: edit

The collection of interactive objects that is supported by the object I/O library is
ordered in four categories, called abstract devices.

Menus: Menus provide the set of commands that are available to the user of an
interactive program. A program can have an arbitrary number of menus.
Menus can be hierarchical, i.e. they can contain menus (sub menus) which can
contain submenus as well. Menu items correspond with the menu commands
of the program.

Windows: Windows provide the primary interface element to the user of a pro-
gram. Windows can either be dialogues or general purpose windows. Win-
dows and dialogues can contain arbitrary collections of controls. Analogous
to menus, these control collections can be hierarchical, i.e. they can contain
collections of controls (compound controls), and so on.

Timers: Timers are used by a program to be able to softly synchronise actions.
A timer basically triggers a callback function every passing of a given time
interval.

Receivers: Receivers are the basic components that interactive objects can use to
communicate messages in a
exible way.

12 CHAPTER 2. INTRODUCTION

2.2 How to manage running interactive objects

In the previous section we have had a glimpse of how to de�ne (compositions of)
interactive objects. In the object I/O library every interactive object can be created
and destroyed dynamically, but we prefer to call this opening and closing which
sounds more peacefully. Once an interactive object is running the program will need
to modify it in several ways. Examples are to enable and disable menu elements
depending on the state of the program, change the content of a window to re
ect the
state of the program, and so on. Closing an element is the ultimate modi�cation of
a running interactive object. So interactive objects have a life-cycle which consists
of three consecutive phases: opening, modi�cation, and closing. Below we discuss
these phases.

2.2.1 Opening of interactive objects

For each abstract device a function is de�ned that will open a de�nition of such an
abstract device instance. Again type constructor classes are used to control what
elements are proper instances of each abstract device. For instance, dialogues are
de�ned by the following type de�nition:

:: Dialog c ls ps

= Dialog Title (c ls ps) [WindowAttribute (ls,ps)]

Because callback functions are state transition functions of type (ls; ps)! (ls; ps),
the attribute type constructor is parameterised with (ls; ps).

The type constructor class Dialogs �xes the instances of dialogues. A (Dialog
c) is a proper instance of this class, provided that c is a proper instance of the
Controls type constructor class.

class Dialogs ddef where

openDialog :: .ls (ddef .ls (PSt .l .p)) (PSt .l .p)

-> (ErrorReport,PSt .l .p)

instance Dialogs (Dialog c) | Controls c

In Subsection 2.2.2 we will look more closely at the public state argument PSt.

Of each abstract device, the open function maps the de�nition of an abstract device
instance (a value parameterised with callback functions) to a concrete `physical'
graphical user interface element that can be modi�ed by the user (in case of windows,
dialogues, and menus) or by the program (in case of all abstract device). As an
example we can open a very small and not very useful dialogue by the following
expression:

(error,new_public_state)

= openDialog

my_local_state

(Dialog "" (TextControl "Hello world!" []) [])

the_public_state

which will have the following e�ect (in case no error occurs):

2.2. HOW TO MANAGE RUNNING INTERACTIVE OBJECTS 13

2.2.2 Modi�cation of interactive objects

Once an interactive object has been opened and is in its running phase, it can
be modi�ed by the user and the program. For this purpose a running interactive
object must be stored somewhere, and it must be identi�ed by the program. Every
running interactive object is stored in the I/O state of a program. In Section 2.1
we explained that every interactive object has access to a local state and a public
state. The public state, also called process state, is a structured value de�ned by
means of a record:

:: *PSt l p // The process state record type

= { ls :: l // The local process state

, ps :: p // The public process state

, io :: *IOSt l p // The I/O state

}

:: *IOSt l p // IOSt is an abstract data type

The IOSt is an abstract value of unique type created speci�cally for each interactive
program by the object I/O system. In this special value the state of running inter-
active objects is stored. (The purpose of the local process state and public process
state record �elds ls and ps will be discussed in Chapter 13.)

The modication operations require the IOSt value (although some functions such
as the abstract device open functions require the PSt record). But this is not
su�cient because in general the IOSt will contain an arbitrary number of windows,
dialogues, menus, timers, and receivers. So one has to specify which particular
interactive object one intends to modify. For this purpose interactive objects (and
their component structures) can be identi�ed by means of Ids. An Id is an abstract
type that can be generated by the programmer but also by the object I/O system.
An interactive object is identi�ed by means of a speci�c Id by adding this Id to
the attribute list of the corresponding object de�nition (see Section 2.1). As an
example, for controls the corresponding attribute is:

:: ControlAttribute state

= ... | ControlId Id | ControlFunction (state->state) | ...

The major part of the object I/O library de�nes the modi�cation functions that
the programmer can use to modify a running interactive object.

As an example suppose we want to change the content of the text control of the
\Hello world!" example to \Goodbye world!". To do this, we need to identify the
text control. A control is identi�ed uniquely by the Id of its window or dialogue
and its personal Id. So the de�nition of both the \Hello world" dialogue as the text

14 CHAPTER 2. INTRODUCTION

control need to be parameterised with an Id attribute. Let dialog id be the Id of
the dialogue, and text id the Id of the text control. Then the adapted de�nition
of opening the \Hello world!" dialogue is:

(error,new_public_state)

= openDialog

my_local_state

(Dialog ""

(TextControl "Hello world!" [ControlId text_id])

[WindowId dialog_id]

)

the_public_state

changeText public_state

= setWindow dialog_id

[setControlTexts [(text_id,"Goodbye world!")]]

public_state

2.2.3 Closing of interactive objects

As explained in the previous two subsections, once an interactive object has been
opened it is in a running state and it will remain in that state until it is explicitly
closed by the program. Note that although it may seem to the user that he is able
to close a window, it is actually the program that responds to a user request to
really close a window. For all interactive objects there are close operations. A close
operation will remove the `physical' graphical user interface element and free system
resources that were required to operate the interactive object properly.

2.3 How to start an interactive program

The starting point of every Clean program (interactive or not) is the Start function.
The essence of an interactive program is that it is a function that can change the
world. So for interactive programs the Start function must have type *World !
*World. The typical appearance of an interactive program looks something like
this:

Start :: *World -> *World

Start world

= ... world

In the previous sections we have seen how to de�ne interactive objects and get them
running. The abstract device open functions require a PSt value, containing an IOSt
value. These are created by the object I/O system using the function startIO.

startIO :: !.l !.p !(ProcessInit (PSt .l .p))

![ProcessAttribute (PSt .l .p)]

!*World

-> *World

:: ProcessInit ps :== [ps->ps]

startIO will create an initial process state given the initial local and public process
state components of type l and p. In particular this initial process state will contain

2.4. MY FIRST CLEAN OBJECT I/O PROGRAM 15

a tailor-made IOSt value. In this way one switches from the world environment to
the process state environment, and the interactive program can be initialised. This
is done by the initialisation functions (of type ProcessInit).

After initialising the interactive program startIO will evaluate the interactive pro-
gram until it becomes closed. The only way for an interactive program to be closed
is by means of the process modi�cation function closeProcess:

closeProcess :: (PSt .l .p) -> PSt .l .p

This function will close all currently running interactive objects of the interactive
program and return a process state that contains an empty IOSt value. All modi-
�cation operations have no e�ect when applied to an empty IOSt value. Note that
if an interactive program does not close itself it will run on forever.

2.4 My �rst Clean object I/O program

To complete the introduction we present the Clean object I/O version of the well
known \Hello world!" program. Here it is:

module hello

// **

// Clean tutorial example program.

//

// This program creates a dialog that displays "Hello world!" text.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

= startIO NoState NoState [initialise] [] world

where

initialise process

(error,process) = openDialog NoState hello process

| error<>NoError

= closeProcess process

| otherwise

= process

hello = Dialog ""

(TextControl "Hello world!" []

)

[WindowClose (noLS closeProcess)

]

This program will create an interactive program which opens the same dialogue
as shown earlier in Section 2.2.1. The singleton type NoState is applied to state
that this program has no interesting local and public process state components
(the �rst two arguments of startIO), and also no interesting local dialogue state
(the �rst argument of openDialog). The dialogue has one attribute, the callback
function that should be applied in case the user wants to close the dialogue. In
this case closing the dialogue will close the \Hello world!" program. So the callback
function can simply be closeProcess. However, the type of a callback function
of an interactive object also operates on a local state (which is NoState in this

16 CHAPTER 2. INTRODUCTION

case). To conveniently transform a function of type (a! b) into a function of type
(c; a)! (c; b), the library function noLS :: (a! b) (c; a)! (c; b) is used.

Chapter 3

Global structure of the
object I/O library

The Clean object I/O library currently consists of thirty two modules. All corre-
sponding de�nition modules can be found in Appendix A. These modules contain
everything you need to create interactive Clean programs with. No other modules
and no other symbols should be imported from the object I/O library. Violation of
this rule can result in error-prone applications at worst and non portability at least.

In this chapter the module structure of the object I/O library is discussed. This
will help you to �nd your way quickly in this application programmer's interface.
As a global naming convention, all de�nition modules start with Std. The module
StdIO is a convenience module that collects all other modules of the object I/O
library. The thirty two modules can be divided roughly into four major categories:
the abstract devices, interactive processes, drawing, and general. Below they will be
handled in the same order.

3.1 Abstract devices

Abstract devices have been introduced in Section 2.1 (page 11). These are the menu,
window, timer, and receiver device. These devices occupy most of the modules and
type de�nitions of the object I/O library. The following naming conventions have
been employed for these modules:

� The names of the modules that contain type de�nitions to de�ne abstract
device instances, end with Def. So menu de�nitions can be found in the
module StdMenuDef, receiver de�nitions can be found in the module Std-

ReceiverDef, and so on. Although controls are not an abstract device, a
de�nition module also exists for controls, namely StdControlDef.

� Abstract device instances that consist of elements use type constructor classes
to enumerate their elements. The corresponding type constructor classes and
standard instances are de�ned in the modules which names end with Class.
So menu elements can be found in the module StdMenuElementClass. The
controls can be found in StdControlClass.

� Receivers are non standard elements of some abstract device instances. Given
the name Object of the parent device instance, you can �nd the type con-
structor class instance declarations in the modules which names are formed

17

18 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

like StdObjectReceiver. So, receiver instances of timers can be found in
StdTimerReceiver.

� The operations on an object Object can be found in the module named Std-

Object. So window operations can be found in the module StdWindow, menu
element operations can be found in the module StdMenuElement, and so on.

Below we discuss brie
y the module structure of each of the abstract devices.

3.1.1 Menus

The api for menus and menu elements consists of six modules that are related as
schematised in Figure 3.1.

StdMenu

��	

?

@@R

StdMenuReceiver

����

?

StdMenuElement

@@R

StdMenuElementClass

����

StdMenuDef StdReceiverDef

Figure 3.1: The module structure of menus.

3.1.2 Windows

The api for windows, dialogues, and controls consists of eight modules that are
related as schematised in Figure 3.2.

StdWindow

?
XXXXXXz

StdControlReceiver

����
HHHj

StdWindowDef

HHHHHHHHHHHHj

StdControlClass

?

StdReceiverDef

StdControl

����

StdControlDef

?

StdPicture

Figure 3.2: The module structure of windows.

3.2. INTERACTIVE PROCESSES 19

3.1.3 Timers

The api for timers consists of six modules that are related as schematised in Figure
3.3.

StdTimer

����

?

HHHj

StdTimerReceiver

����

?

StdSystem StdTimerElementClass

����

StdTimerDef StdReceiverDef

Figure 3.3: The module structure of timers.

3.1.4 Receivers

The api for receivers consists of two modules that are related as schematised in
Figure 3.4.

StdReceiver

?

StdReceiverDef

Figure 3.4: The module structure of receivers.

3.2 Interactive processes

As stated in Section 2.3, every interactive program has to be opened as an interactive
process. Interactive processes are handled in more detail in Chapter 13. The api
for interactive processes consists of three modules that are related as schematised
in Figure 3.5.

StdProcess

����
HHHj

StdProcessDef StdWindow

Figure 3.5: The module structure of interactive processes.

20 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

3.3 Drawing

In graphical user interface applications graphics play an important role. Virtually
every interface object has a visual representation that is drawn by the underlying
platform. Drawing operations will be required by most applications to give the
user visual feedback on the current documents that are being manipulated or the
status of controls. The manipulation of text is also an issue in drawing information.
Text can be presented in very di�erent fonts, sizes, and variations (see Chapter 5).
Drawing is discussed in detail in Chapter 6.

The api for drawing consists of �ve modules that are related as schematised in
Figure 3.6.

StdBitmap

?

StdPicture

?

StdPictureDef

?

StdFont

?

StdFontDef

Figure 3.6: The module structure of drawing operations.

3.4 General

Finally, there are a number of modules that are less easily categorised. These are
the following seven modules:

StdClipboard: In this module clipboard operations are de�ned. Clipboard opera-
tions are de�ned in more detail in Chapter 7.

StdFileSelect: In this module two functions are de�ned by which a user can open
platform dependent directory browsing dialogues.

StdId: In this module the identi�cation value generating functions are de�ned.
This is discussed in more detail in Chapter 4.

StdIOCommon: In this module a lot of type de�nitions and functions are provided
that are needed by many of the abstract device modules introduced in Section
3.1.

StdMaybe: In this module a type is introduced that is very useful for providing
optional results and optional arguments. It is used by many operations in the
abstract device modules.

3.4. GENERAL 21

StdPSt: In this module operations are collected on the process state that are not re-
lated to any abstract device. It contains several type constructor class instance
declarations for �le, font, and time access. Other frequently used functions
are the `lifting' functions de�ned on the process state. With these lifting func-
tions one can easily transform for instance an IOSt transition function to a
PSt transition function.

StdTime: In this module some time access operations can be found that can be
used independently of the timer device.

22 CHAPTER 3. GLOBAL STRUCTURE OF THE OBJECT I/O LIBRARY

Chapter 4

Object identi�cation

Before we can really delve into the details of the object I/O library we �rst need
to learn how to identify running interactive objects. As we have brie
y discussed
in Section 2.2.2, all objects can have an identi�cation attribute. An identi�cation
attribute is a value of type Id. This value is an attribute, so the programmer
is not forced to provide a value for this attribute. Objects without identi�cation
attribute can not be modi�ed at run-time. If the program needs to modify an
interactive object, it must have been provided with an identi�cation attribute. In
the remainder of this chapter we will explain about the identi�cation of the other
devices.

The type Id is an abstract data type, and you can import it via the module StdId.
All Ids are generated by the system. The type constructor class Ids de�nes the
creation functions. Ids can be created from the World environment and the IOSt

environment. Every new Id taken from these environments is guaranteed to be
fresh with respect to the other Ids generated by any of these functions.

:: Id

class Ids env where

openId :: !*env -> (!Id, !*env)

openIds :: !Int !*env -> (![Id], !*env)

openRId :: !*env -> (! RId m, !*env)

openRIds :: !Int !*env -> (![RId m], !*env)

openR2Id :: !*env -> (! R2Id m r, !*env)

openR2Ids:: !Int !*env -> (![R2Id m r],!*env)

instance Ids World

instance Ids (IOSt .l .p)

As the Ids class de�nition shows, Id values are not the only identi�cation values
that are used in the object I/O system. Two special kinds of identi�cation values
of type RId m and R2Id m r are used to identify receivers that respond to messages
of type m in the �rst case, and in addition respond with a message of type r in the
second case. Receivers are discussed in Chapter 12.

The purpose of having Ids is to unambiguously identify running interactive objects.
When assigning Ids to interactive objects, a program must comply to the following

23

24 CHAPTER 4. OBJECT IDENTIFICATION

Id assignment rules:

� Within one abstract device element instance, the Ids assigned to its elements
must be unique.

� Within one abstract device, the Ids assigned to the abstract device element
instances must be unique.

For instance, the Ids assigned to windows must all be unique, and inside a window
the Ids assigned to its controls must be unique. But for two di�erent windows, the
Ids assigned to the controls may overlap. Also the Ids assigned to other abstract
device element instances such as menus and timers may overlap.

For RIds and R2Ids the assignment rules are even more strict: at all times when a
program is running, the R(2)Ids assigned to open receivers must be unique. The
reason for this is explained in Chapter 12.

The abstract device open functions check whether the interactive object de�nition
argument is valid with respect to the Id assignment rules. If this is not the case,
the ErrorReport alternative ErrorIdsInUse is returned, and the interactive object
will not be opened. If the Id assignment rules were not violated, and no other error
occured, then the alternative NoError is returned.

Chapter 5

Font and text handling

When working with text you frequently will want to know the dimensions of the
text for layout purposes or simply to calculate the size of an element containing
that text. The dimensions of a piece of text depend on two parameters:

� The font is an abstract value that describes the shape of a text. The usual
way to identify a font is by its name, point size, and style variations.

� The drawing environment determines the actual size in terms of a resolution
dependent unit. The resolution of the screen is usually a lot smaller than the
resolution of a laser writer.

Because there is a great variance of available fonts and drawing environments per
machine writing a program that handles fonts properly requires some experience.

The font data type de�nitions and operations can be found in the de�nition mod-
ules StdFontDef and StdFont. Except for one operation, all font operations are
overloaded in the drawing environment argument and are part of the FontEnv type
constructor class (see StdFont). The operations are ordered in three groups.

The �rst group of font operations return information about the currently installed
fonts. The function getFontNames returns a list of the names of all available fonts.
Given an element of this list, the functions getFontStyles and getFontSizes

return for that particular font the available style variations and sizes. Because in
modern font management systems there is no restriction anymore on the size of
a font, the function getFontSizes is also parameterised with two bounding size
arguments. Their type de�nitions are:

getFontNames :: !*env->(![FontName], !*env)

getFontStyles:: !FontName !*env->(![FontStyle],!*env)

getFontSizes ::!Int !Int !FontName !*env->(![FontSize], !*env)

The second group of font operations opens fonts. The function openFont creates
a value of type Font given a font de�nition. A font de�nition is a record of type
FontDef (see StdFontDef) and is de�ned as follows:

:: FontDef

= { fName :: !FontName

, fStyles :: ![FontStyle]

, fSize :: !FontSize

}

25

26 CHAPTER 5. FONT AND TEXT HANDLING

Because there are so many di�erent font systems and style variations both font
names and style variations are of type String. If you want to be sure that you are
selecting an existing font use the functions of the �rst group. In any case, if the
font de�nition argument of openFont does not correspond with an installed font,
then it returns a False Boolean and a dummy font value. If it succeeds to �nd a
matching font it will return a True Boolean and that font. The type of openFont
is:

openFont :: !FontDef !*env -> (!(!Bool,!Font),!*env)

There are two functions that open the font that is used by default in an application
window (openDefaultFont) and the font that is used by the system for controls
and window titles and so on (openDialogFont). These fonts are of course always
available. Their types are:

openDefaultFont :: !*env -> (!Font,!*env)

openDialogFont :: !*env -> (!Font,!*env)

The last group of font operations determine the metrics of fonts and text. The
metrics of a font consists of three values related to the height of characters of that
font (leading, ascent, and descent) and one value related to the width of characters
of that font (max. width). Figure 5.1 below explains the height characteristics.

descent

?

6

ascent

?

6

leading

?

6

baseline

Figure 5.1: Font metrics.

The max. width characteristic is the maximum width of all characters in that
particular font. For non-proportional fonts such as Courier this implies that the
width of all characters is identical, so \iii" is just as wide as \mmm". For proportional
fonts such as this text the width of characters can vary a lot. Compare for instance
the width of the text \iii" with \mmm". The metrics of a font are collected in a
record of type FontMetrics:

:: FontMetrics

= { fAscent :: !Int // The ascent of the font

, fDescent :: !Int // The descent of the font

27

, fLeading :: !Int // The leading of the font

, fMaxWidth:: !Int // The max. width of the font

}

There are four other functions in the last group of font operations. With these
functions one can calculate the width of a (list of) character(s), and a (list of)
string(s). Actually the list versions (singleton versions) are redundant and can be
expressed in terms of the singleton version (list version) of the functions. They have
been added for reasons of e�ciency because on some systems calculating the size of
a piece of text can be expensive.

There is a subtle di�erence in calculating the width of one character versus the
width of one string. The width of a character is determined by the character only.
The width of a string can depend on the order of the characters it contains. A
font system can take advantage of the fact that some adjacent characters can be
placed more closely together to obtain a better looking result when drawing the
string. This is called kerning. In the object I/O system, the programmer can rely
on the fact that if a piece of text is drawn character by character then the character
width function returns the correct width of the drawn character. If a piece of text
is drawn by using a string, then the string width function returns the correct width
of the drawn string.

In the StdFont module World is declared to be an instance. World itself is not a
drawing environment. When applied to a World value, the metrics functions will be
de�ned in terms of pixels. One �nal function in the StdFont module, getFontDef,
returns the FontDef of a given Font value.

Because there is wide variety of fonts available the StdFontDef module provides
a number of macros that help you make a program less dependent on the set of
available fonts. The following macros provide a number of font de�nitions that are
guaranteed to be available on the platform:

Font macros: Example:
SerifFontDef Garamond, Times
SansSerifFontDef Helvetica
SmallFontDef \This is a small text"
NonProportionalFontDef Courier

SymbolFontDef 8 9 � � ()

The following macros provide a number of standard font variations that are guar-
anteed to be available on the platform:

Style macros: Example:
ItalicsStyle Madam, I'm Adam
BoldStyle Madam, I'm Adam
UnderlinedStyle Madam, I'm Adam

28 CHAPTER 5. FONT AND TEXT HANDLING

Chapter 6

Drawing

All drawing functions require an environment of type *Picture. A Picture is
created for each interactive object that can be drawn in. The life-time of a Picture
environment is equal to the life-time of its parent object.

A Picture de�nes a coordinate system for drawing operations. Increasing x-axis
coordinates run from left to right. Increasing y-axis coordinates run from top to
bottom. The range for both axes is the full Clean Integer range.

Figure 6.1: Picture coordinates.

Drawing operations on a Picture use the coordinate system to de�ne where objects
should be drawn. The objects themselves are made up of the pixels, lying between
the coordinates. Figure 6.2 zooms in on the coordinate system from zero and
increasing. The pixels on x-coordinates 0, 5, 10,. . . and y-coordinates 0, 5, 10,. . . are
displayed.

Like most other interactive objects in the object I/O library, pictures have at-
tributes. These are the following (they can be found in the module StdPictureDef):

:: PictureAttribute

= PicturePenSize Int

| PicturePenPos Point

29

30 CHAPTER 6. DRAWING

Figure 6.2: Picture coordinates and pixels

| PicturePenFont Font

| PicturePenColour Colour

PicturePenSize: This attribute de�nes the width and height of the drawing pen.
The default value is 1, which means that drawing a point will �ll an area of 1
pixel wide and 1 pixel high. Negative or zero values are always set to 1.

PicturePenPos: This attribute determines the current position of the drawing pen.
Its default value is zero. The de�nition of Point is:

:: Point = {x::!Int,y::!Int}

PicturePenFont: This attribute sets the current font that will be used when draw-
ing text (see also Chapter 5). Drawing text is not a�ected by the current
width and height of the pen. Text is always drawn at the baseline of the font
(see Figure 5.1).

PicturePenColour: This attribute determines the colour that is used when drawing
any element. The Colour data type is also de�ned in the module StdPicture-
Def:

:: Colour

= Black | DarkGrey | Grey | LightGrey | White

| Red | Green | Blue

| Cyan | Magenta | Yellow

| RGB RGBColour

:: RGBColour

= {r::!Int, g::!Int, b::!Int}

A colour can range between black and white (�rst �ve alternatives de�ning
100%, 75%, 50%, 25%, and 0% blackness), be one of red, green, blue, be one of
cyan, magenta, yellow, or some custom de�ned combination of red, green, blue
components. Currently the library does not support colour tables or palette
management operations, so the use of RGB colours tends to be speculative.

6.1. EXAMPLES 31

Given a *Picture environment, the function getPicture returns a `read-only' pic-
ture environment (of type Picture). From this value the current attribute values
can be obtained by the function getPictureAttributes. With setPictureAttri-

butes one can change a number of picture attributes using a list of them. For all
picture attributes there are also functions to get and set them individually, using
an updateable picture (of type *Picture).

The drawing operations are divided into three groups, ordered by means of type
constructor classes:

Drawables draws the `outline' of its elements. Its instances are characters, strings,
vectors, ovals, curves, boxes, rectangles, polygons, and bitmaps.

Fillables �lls the interior of its elements. Its instances are ovals, curves, boxes,
rectangles, and polygons.

Hilites �lls the interior of its elements in such a way that the current content
remains visible. Its instances are boxes and rectangles.

Each of these type constructor classes allows its elements to be drawn at the current
pen position or at an absolute pen position. Because of this reason the data type
de�nition of most of these elements do not specify their location. Exceptions are
rectangles, lines, and points.

For making more complex drawings, clipping is also supported. Drawing within a
clipping area forces all drawing to occur inside that area. Again, a type constructor
class, Clips is used for this purpose. One can clip within a box, a rectangle, a
polygon, or a list of clipping elements.

6.1 Examples

In this section we give small examples of all of the drawable elements.

6.1.1 Drawing text

Given a pen position {x,y}, drawing a piece of text (Char or String) will always
draw the text using the current PicturePenFont. The shape of the drawn characters
relies only the font information, not on the current PicturePenSize. Text can be
drawn in any of the available colours. The baseline of the particular font determines
the position of the �rst character, which is drawn with its left baseline starting at
{x,y}. Figure 6.3 shows the result of applying (drawAt zero "Pop" picture)

applied to an empty picture.

The new pen position is, in this case, {x=24,y=0}. One might expect the new
pen position to be {x=22,y=0}, but usually the horizontal character space is also
included. This facilitates drawing text character by character. But some cau-
tion should be taken. One might expect that the function (draw "p" (draw "o"

(draw "P" picture))) produces the same result, but this depends on the font (as
explained in Chapter 5), so in general one should not assume that this is the case.
The only certain way to know how much the pen position will change in case of
text is by calculating the width of the same text, or by comparing the pen positions
before and after drawing.

32 CHAPTER 6. DRAWING

Figure 6.3: Drawing the text \Pop" at zero.

6.1.2 Pen size and position

Given a pen position {x,y}, drawing a point, a line, text, always occurs to the right
and below the pen position. Figure 6.4 illustrates these cases: from left to right the
function (drawPointAt zero (setPicturePenSize n picture)) is applied to an
empty picture, and PicturePenSize attribute values n 1, 2, and 3 respectively.

Figure 6.4: Drawing a point at zero with di�erent pen sizes.

6.1.3 Drawing lines

The shape of a line is in
uenced by the PicturePenSize attribute in the same way
as the shape of points are changed (see Figure 6.5).

Figure 6.5: Drawing a line from zero to fx=5,y=5g with di�erent pen sizes.

There are several ways to draw lines. The function drawLineTo draws a line from
the current pen position to the argument point. If these happen to be equal, then
the result is the same as drawPointAt with the same argument. The new pen
position is the same as the target point. The function drawLine draws a line from
the �rst argument point to the second argument point without changing the pen
position.

6.1. EXAMPLES 33

Lines can also be drawn using the Vector instance functions from the Drawables

type constructor class. The function draw applied to a vector {vx,vy} draws a line
from the current pen position {x,y} to the point {x=x+vx,y=y+vy}. The function
drawAt applied to a point {x,y} and a vector {vx,vy} draws a line from {x,y} to
the point {x=x+vx,y=y+vy}.

6.1.4 Drawing ovals

An Oval is a transformed unit circle de�ned by a horizontal radius, oval_rx and a
vertical radius, oval_ry. For each point {x,y} on a unit circle, its corresponding
point on the oval is given by {x=x*oval_rx,y=y*oval_ry}. The type de�nition of
an Oval is:

:: Oval = {oval_rx::!Int, oval_ry::!Int}

Both radius values are always taken to be atleast zero. If any of these values is neg-
ative, then zero is used instead. Ovals are drawn using the Oval instance functions
from the Drawables type constructor class. The function draw uses the current pen
position as the center of the oval. The function drawAt uses the argument Point
as the center of the oval. Drawing an oval does not change the pen position. In
case one of the radius values is taken to be zero drawing the oval displays nothing.
Figure 6.6 draws three ovals at zero de�ned as follows:

{oval_rx=5, oval_ry=3}

{oval_rx=5, oval_ry=5}

{oval_rx=3, oval_ry=5}

Figure 6.6: Three oval shapes drawn at zero.

The shape of an oval is also a�ected by the current PicturePenSize attribute.
Increasing the pen size does not increase the outline of the oval. The only pixels
that are a�ected are inside the oval. Figure 6.7 shows the center oval of Figure 6.6
when drawn with pen size of 1, 2, and 3.

Ovals are also an instance of the Fillables type constructor class. The function
fill and fillAt �ll rather than draw the oval. Filling an oval includes its outline
and its interior. Figure 6.8 shows the same three ovals as given in Figure 6.6, but
now �lled.

6.1.5 Drawing curves

A Curve is a section of an Oval. A curve is de�ned by the source oval, curve_oval,
a starting angle, curve_from and an ending angle, curve_to, both taken in radians,

34 CHAPTER 6. DRAWING

Figure 6.7: Three oval shapes drawn with increasing pen sizes.

Figure 6.8: Three �lled oval shapes.

and the direction in which the section should be taken, curve_clockwise which is
a Boolean value. The type de�nition of a Curve is:

:: Curve

= { curve_oval :: !Oval

, curve_from :: !Real

, curve_to :: !Real

, curve_clockwise :: !Bool

}

The start and end point of the section are again derived from the unit circle.
Given an angle alpha, and a source oval de�ned by {oval rx, oval ry}, then
the point on the curve (oval) corresponding with alpha is {x=oval rx*cos alpha,

y=oval ry*sin alpha}. If curve clockwise is True then the section is taken clock-
wise from the start point to the end point, otherwise it is taken counter clockwise
direction. Figure 6.9 shows two sections of an Oval. In both cases the curve from

angle is �

6
and the curve to angle is 3�

2
. The left section is taken counter clockwise,

and the right section is taken clockwise.

Figure 6.9: Two curves taken clockwise and counter clockwise.

Figure 6.9 not only shows the curve sections that are taken from an oval, but
also what happens when these sections are drawn at a speci�c position. In both

6.1. EXAMPLES 35

cases the curves are drawn at zero. The starting point, indicated by the starting
angle, is determined by the current pen position in case of the draw function of the
Drawables type constructor class, and is determined by the Point argument of the
drawAt function of the Drawables type constructor class.

Drawing a Curve with varying PicturePenSizes is the same as taking the section of
the corresponding Oval drawn with that pen size. Figure 6.10 shows three times the
same curve taken but drawn with pen sizes 1,2, and 3 respectively. The source oval
is the same as the one drawn in Figure 6.7. The section is taken counter clockwise
from 1

4
� to 1 3

4
�.

Figure 6.10: Three curves drawn with increasing pen sizes.

Curves are also an instance of the Fillables type constructor class. When �lling
a curve, the interior formed by the drawn curve and two lines connecting the center
of the source oval and the end points of the curve is �lled. Figure 6.11 shows the
two curves of Figure 6.9, but now using fill rather than draw.

Figure 6.11: Two �lled curves taken clockwise and counter clockwise.

6.1.6 Drawing rectangles

A Rectangle is a shape of four connected lines that is de�ned by two diagonally
oriented corner Points, corner1 and corner2. The type de�nition of a Rectangle

is as follows:

:: Rectangle = {corner1::!Point, corner2::!Point}

Rectangle is an instance of the Drawables type constructor class. The drawAt

function is not very useful because it ignores its Point argument and proceeds as
draw. Any two Points are valid corner points of a Rectangle. In case a Rectangle
has a zero width or zero height drawing that rectangle will show nothing. It does
not matter in what order the two corner points are given. Figure 6.12 shows three
Rectangles, de�ned as follows:

36 CHAPTER 6. DRAWING

{corner1= zero, corner2={x=10,y=6}}

{corner1= zero, corner2={x=6, y=6}}

{corner1={x=10,y=6}, corner2= zero }}

Figure 6.12: Three rectangle shapes.

The shape of a rectangle is also a�ected by the current PicturePenSize attribute.
Increasing the pen size does not increase the outline of the rectangle. The only
pixels that are a�ected are inside the rectangle. Figure 6.13 shows the Rectangle

{corner1=zero, corner2={x=10,y=10}} when drawn with pen size 1, 2, and 3.

Figure 6.13: Three rectangles drawn with increasing pen sizes.

Rectangles are also an instance of the Fillables type constructor class. The
function fill and fillAt �ll rather than draw the rectangle. Filling a rectangle
includes its outline and its interior. Figure 6.14 shows the same three rectangles as
given in Figure 6.12, but now �lled.

Figure 6.14: Three �lled rectangles.

6.1.7 Drawing boxes

A Box is a Rectangle but without �xing a position. It is therefore only de�ned by
a width, box_w and height, box_h. The type de�nition of a Box is:

:: Box = {box_w::!Int, box_h::!Int}

6.1. EXAMPLES 37

The position of a Box is determined by the drawing functions of the type construc-
tor class Drawables. In case of draw, the current pen position is the base point.
In case of drawAt, the Point argument is the base point. Given this base point
base={x,y}, and a Box {box w,box h}, drawing the Box is the same as drawing
the Rectangle {corner1=base, corner2={x=x+box w,y=y+box h}}. Any value
for box_w or box_h is permitted (so also zero or negative values).

Boxes are drawn and �lled in the same way as Rectangles are. So the e�ect of
using di�erent PicturePenSizes is the same as well as �lling boxes.

6.1.8 Drawing polygons

A Polygon is an object which shape is formed by a number of Vectors, such as
triangles, rectangles, but also more exotic shapes. The type de�nition of a Polygon
is:

:: Polygon = {polygon_shape::![Vector]}

A Polygon is always a closed shape. A shape polygon shape is closed if the fol-
lowing equation holds:

foldr (+) zero polygon shape = zero

The object I/O library will always close the polygon shape if this is not the case,
so you don't have to worry about this. Drawing a polygon of shape polygon shape

is simply drawing the closed list of vectors in sequence:

seq (map draw polygon shape)

Figure 6.15 shows three polygons de�ned by the following shapes (leaving out the
last Vector gives the same Polygon):

[{vx=8,vy=0}, {vx=(-4),vy=8}, {vx=(-4),vy=(-8)}]

[{vx=8,vy=0}, {vx=0, vy=8}, {vx=(-8),vy=0}, {vx=0, vy=(-8)}]

[{vx=8,vy=0}, {vx=(-8),vy=8}, {vx=8, vy=0}, {vx=(-8),vy=(-8)}]

Figure 6.15: Three polygon shapes.

Similar to Boxes, Polygons do not specify their location. Again, this is determined
by the drawing functions of the type constructor class Drawables. In case of draw,
the base point is de�ned by the current pen position. In case of drawAt, the base
point is de�ned by the Point argument. In Figure 6.15 all polygons were drawn at
zero.

38 CHAPTER 6. DRAWING

Figure 6.16: Three polygons drawn with pen size 2.

Because a polygon is a collection of vectors, its shape is a�ected by the current
PicturePenSize attribute. Figure 6.16 shows the three polygons of Figure 6.15
drawn with pen size 2.

Polygons are also an instance of the Fillables type constructor class. The function
fill and fillAt �ll rather than draw the polygon. Filling a polygon includes its
outline and its interior. Figure 6.17 shows the same three polygons as given in
Figure 6.15, but now �lled.

Figure 6.17: Three �lled polygons.

6.1.9 Drawing bitmaps

Using the drawing operations discussed so far one can produce images that have an
`algorithmic' nature: they consist of text, lines, curves, and polygons. Not every
image can be expressed (easily) in this way (consider for instance the image in
Figure 6.18). To produce more complex images bitmaps are very useful. A bitmap
is a prefabricated image of a certain size (in pixels) that is stored in the �le system.

You can use your favourite drawing package and create and store images as a bitmap.
The �le format depends on the platform. Currently the following formats are sup-
ported:

Platform: Format:
Macintosh pict

Windows(95/NT) bmp

The bitmap operations can be found in module StdBitmap (Appendix A.1). Bit-
maps can be read from �le using the function openBitmap:

openBitmap :: !{#Char} !*env -> (!Maybe Bitmap,!*env)

| FileSystem env

Given the full �le name of a bitmap �le, openBitmap reads the bitmap in memory. If
this is successful, (Just bitmap) is returned. Reasons for failure are illegal �le name

6.1. EXAMPLES 39

Figure 6.18: A non algorithmic image.

arguments, wrong �le formats, lack of heap space (in case of Windows(95/NT)), or
lack of extra memory (in case of Macintosh1).

A Bitmap is an abstract data type. The only information one can retrieve from a
Bitmap value is its size:

getBitmapSize :: !Bitmap -> Size

Bitmaps are instances of the Drawables type constructor class. Given a current
pen position pos={x,y} and a bitmap bitmap of size {w,h}, the functions (draw
bitmap) and (drawAt pos bitmap) both place the bitmap exactly inside the rect-
angle {corner1=pos, corner2={x=x+w,y=y+h}}.

6.1.10 Drawing in xor mode

For many programs it is sometimes useful to be able to temporarily draw �gures
over an existing drawing, and being able to remove it without a�ecting the source
picture. Examples are a
ashing cursor in a text editor, and anchor points in a
drawing program. For this purpose drawing in xor mode is supported. The library
function xorPicture takes a list of drawing functions and a picture and applies the
drawing functions in left-to-right order to the picture in xor mode.

xorPicture :: ![DrawFunction] !*Picture -> *Picture

Drawing in xor mode has the important property that drawing the same �gure
twice results in the same picture. Given a picture, and a list of drawing functions
fs, the following equation holds:

xorPicture fs (xorPicture fs picture) = picture

Let's explain what happens in the Picture when one uses xor mode. Consider a
source picture, source, shown left in Figure 6.19, which is a circle. Next to the
source picture is the picture to be drawn in xor mode, a fat rectangle, represented
by a list of drawing functions fs.

1In the current Macintosh implementation bitmaps are not garbage collected. This puts a

restriction on the number of bitmaps that can be used inside one application. In a future version

bitmaps will become garbage collected.

40 CHAPTER 6. DRAWING

Figure 6.19: A source picture and the �gure to be drawn in xor mode.

If one interprets the white pixels of both pictures as False, and the black pixels of
both pictures as True then the result of drawing fs in xor mode in source is the
same as taking the Boolean exclusive or on all such interpreted pixels on the same
coordinates. So all pixels that have the same colour become black, while all pixels
of di�erent colour become white. The result of this is shown in the right picture
of Figure 6.19. Applying fs once more in xor mode to this new picture yields a
picture equal to source.

What happens when using more interesting colours than black and white is basically
the same thing. In one way or another, the exclusive or is taken from the source
picture and the drawing operations in such a way that repeating it gives the source
picture again. What the colours of the `xor-ed' picture are depends on the platform,
and is not speci�ed by the object I/O library.

6.1.11 Drawing in Hilite mode

Programs that want to indicate selections (for instance text segments in a word
processor, or image components in a drawing program) can do this by drawing the
selected area in hilite mode. For this purpose the type constructor class Hilites is
used. Its type de�nition is:

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt :: !Point !figure !*Picture -> *Picture

The instances of Hilites are Box and Rectangle. The pixels that are a�ected by
hilite and hiliteAt are the same as for fill and fillAt. Drawing in hilite mode
has the same property as drawing in xor mode that drawing the same �gure twice
on a source picture leaves the source picture unchanged. Given a picture, and a
�gure figure, the following equation holds:

hilite figure (hilite figure picture) = picture

hiliteAt figure (hiliteAt figure picture) = picture

The visual e�ect of hiliting these areas depends on the platform. On some platforms
hiliting an area will change the colour of all pixels that have the background colour
to a special hilite colour, ignoring all other pixels. Hiliting the area once more
will revert the hilite colours back to the background colour. If a platform does
not support hilite mode, the area will be drawn in xor mode. Figure 6.20 shows
the two techniques. The source picture is the text \Pop" of Figure 6.3. In this
picture the function hilite {corner1={x=0,y=2}, corner2={x=24,y=(-10)}} is
applied. The left picture shows the result of changing background pixels into the
hilite colour, the second picture shows the result of using xor mode.

6.1. EXAMPLES 41

Figure 6.20: Two ways to hilite a rectangular area.

6.1.12 Drawing in Clipping mode

Drawing in clipping mode is a powerful technique to create graphics that can not
be drawn (or using much more complicated expressions) using only the drawing
primitives discussed before. In clipping mode, the programmer speci�es an area
that works like a mask: drawing proceeds as always, but only those pixels that are
inside the clipping area are actually drawn. Clipping is done using the functions of
the Clips type constructor class:

class Clips area where

clip :: !area [DrawFunction] !*Picture -> *Picture

clipAt :: !Point !area [DrawFunction] !*Picture -> *Picture

The clipping area can be a Box, Rectangle, Polygon, or a list of these. In the
latter case the union area of the list elements is taken as the clipping area. The
location of the clipping area is de�ned by the current pen position in case of clip,
and the Point argument in case of clipAt. In case the clipping area happens to
be empty no drawing is done. The list of drawing functions is evaluated as usual in
left-to-right order.

Suppose we have the following list of drawing functions, fs which draws a number
of horizontal lines with a result as shown in Figure 6.21:

fs = [drawLine {x=0,y=y} {x=9,y=y} \\ y<-[0,2..8]]

Figure 6.21: The source picture.
.

As clipping regions the polygons shown in Figure 6.15 are used. Figure 6.22 shows
the result of the following clipping functions to an empty picture:

42 CHAPTER 6. DRAWING

clipAt zero [{vx=8,vy=0}, {vx=(-4),vy=8}] fs

clipAt zero [{vx=8,vy=0}, {vx=0, vy=8}, {vx=(-8),vy=0}] fs

clipAt zero [{vx=8,vy=0}, {vx=(-8),vy=8}, {vx=8, vy=0}] fs

Figure 6.22: The clipped source picture.

Chapter 7

Clipboard handling

The clipboard is a universal simple communication metaphor between applications
and within applications. One application can write some data to the clipboard
(typically text or pictures) which can be read at a later point of time by the same or
another application. This mechanism is supported by the functions in the de�nition
module StdClipboard. At the moment only text can be handled. Because we
intend to incorporate pictures as well in the near future the current version is set
up in such a way that it can be extended upward compatibly. For this purpose an
abstract data type, ClipboardItem, is de�ned. Two overloaded functions from the
type constructor class Clipboard take care that data types can be converted to and
from ClipboardItems:

:: ClipboardItem

class Clipboard item where

toClipboard :: !item -> ClipboardItem

fromClipboard :: !ClipboardItem -> Maybe item

instance Clipboard {#Char}

A further convention of using the clipboard is that applications should provide
several `popular' data formats for the same content in descending order of accuracy.
For instance, a text processor can �rst store its private format for the layn out text
including font and style information, followed by an ascii version of the same text,
followed by a picture of the layn out text. For this reason the function setClipboard
that writes the clipboard is not applied to one single clipboard data item but a list
of them. The previous content will be destroyed completely. Because programs are
supposed to provide only one data item of each format from this list duplicate types
of clipboard items are removed. Note that providing setClipboard with an empty
list will clear the clipboard.

setClipboard :: ![ClipboardItem] !(PSt .l .p) -> PSt .l .p

The function that reads the clipboard, getClipboard, simply gets a list of the cur-
rent content of the clipboard in descending order of accuracy. With the conversion
function fromClipboard an application can determine easily if some data item is
present that it can handle.

getClipboard :: !(PSt .l .p) -> (![ClipboardItem],!PSt .l .p)

43

44 CHAPTER 7. CLIPBOARD HANDLING

Finally, because reading in a complete clipboard can be time-consuming or space-
consuming a function is provided that checks whether the clipboard has been up-
dated since the last time the program checked it.

clipboardHasChanged :: !(PSt .l .p) -> (!Bool,!PSt .l .p)

7.1 Example: a clipboard editor

To illustrate the use of the clipboard, we construct a small program that shows the
current content of the clipboard and that can write some text to the clipboard (see
the picture below). It will create only one dialogue with two text �elds. In the �rst
text �eld, the show �eld, the content of the clipboard can be loaded by pressing a
button. In the second text �eld, the set �eld, the content of the clipboard can be
stored by pressing a button.

The show text �eld and its activating button can be de�ned as follows:

showclip

= EditControl "" width nrlines [ControlSelectState Unable

,ControlId showid

,ControlPos (Center,zero)

]

:+:

ButtonControl "Show" [ControlFunction (noLS show)]

The show text �eld is an edit text control that will not respond to keyboard input
(because its SelectState attribute is Unable). It is identi�ed by some Id of value
showid. It will have some width and a height de�ned by the number of lines
nrlines. The \Show" button, when selected, must read the content of the clipboard
and �gure out if there was a text clipboard item. It then will set the text of the
show text �eld to the loaded clipboard content (an empty string if nothing was
found). This action can be de�ned as follows:

7.1. EXAMPLE: A CLIPBOARD EDITOR 45

show process

(content,process) = getClipboard process

text = getString content

= appPIO (setWindow viewid [setControlTexts [(showid,text)]])

process

getString [clip:clips]

| isNothing item

= getString clips

| otherwise

= fromJust item

where

item = fromClipboard clip

getString []

= ""

The set text �eld and its activating button are de�ned as follows:

setclip

= EditControl "" width nrlines [ControlId setid

,ControlPos (Center,zero)

]

:+:

ButtonControl "Set" [ControlFunction (noLS set)]

The set text �eld is an edit text control which accepts keyboard input. It is identi�ed
by some Id of value setid. It has the same dimensions as the show text control.
The \Set" button, when selected, must get the content of the set text control and
write this to the clipboard. This action is de�ned as follows:

set process

(dialog,process) = accPIO (getWindow viewid) process

text= fromJust (snd (hd (getControlTexts

[setid] (fromJust dialog))))

= setClipboard [toClipboard text] process

The de�nition of the clipboard viewing dialogue simply summaries these elements
and adds a \Quit" button to terminate the program:

clipview = Dialog "Clipboard Viewer"

(showclip :+: setclip :+: quit)

[WindowId viewid]

quit = ButtonControl "Quit"

[ControlFunction (noLS closeProcess)

,ControlPos (Center,zero)

]

The last details that remain to be de�ned are the opening of the interactive program
which is very analogous to the \Hello world!" of Section 2.4. For completeness we
show the complete program code.

module clipboardview

46 CHAPTER 7. CLIPBOARD HANDLING

// **

// Clean tutorial example program.

//

// This program creates a dialog to display and change the current content of the

// clipboard.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

(ids,world) = openIds 3 world

= startIO NoState NoState [initialise ids] [] world

initialise ids process

(error,process) = openDialog NoState clipview process

| error<>NoError

= closeProcess process

| otherwise

= process

where

(viewid,showid,setid) = (ids!!0,ids!!1,ids!!2)

clipview = Dialog "Clipboard Viewer"

(showclip

:+: setclip

:+: quit

)

[WindowId viewid

]

showclip = EditControl "" width nrlines

[ControlSelectState Unable

, ControlId showid

, ControlPos (Center,zero)

]

:+:

ButtonControl "Show"

[ControlFunction (noLS show)

]

setclip = EditControl "" width nrlines

[ControlId setid

, ControlPos (Center,zero)

]

:+:

ButtonControl "Set"

[ControlFunction (noLS set)

]

quit = ButtonControl "Quit"

[ControlFunction (noLS closeProcess)

, ControlPos (Center,zero)

]

width = hmm 200.0

nrlines = 10

show process

(content,process) = getClipboard process

text = getString content

= appPIO (setWindow viewid [setControlTexts [(showid,text)]]) process

set process

(dialog,process) = accPIO (getWindow viewid) process

text = fromJust (snd (hd (getControlTexts [setid]

(fromJust dialog))))

= setClipboard [toClipboard text] process

7.1. EXAMPLE: A CLIPBOARD EDITOR 47

getString [clip:clips]

| isNothing item

= getString clips

| otherwise

= fromJust item

where

item = fromClipboard clip

getString []

= ""

48 CHAPTER 7. CLIPBOARD HANDLING

Chapter 8

Windows and dialogues

Windows and dialogues are the major top level interactive objects of the object
I/O library. In some aspects they are very similar. For instance, they can contain
the same set of controls, and virtually all operations on windows and dialogues
are similar. Dialogues di�er from windows because they usually o�er a special,
enhanced, user interface to users. Another di�erence is that dialogues can be opened
modally. In this mode the user can be forced by the program to handle the dialogue
completely before continuing with the program. To emphasize the similarities of
windows and dialogues, their algebraic type de�nitions are almost identical (these
can be found in module StdWindowDef, Appendix A.32):

:: Window c ls ps = Window Title (c ls ps) [WindowAttribute *(ls,ps)]

:: Dialog c ls ps = Dialog Title (c ls ps) [WindowAttribute *(ls,ps)]

Before delving into details, we �rst introduce some basic terminology for windows
and dialogues in Section 8.1 and discuss the WindowAttribute alternatives in Sec-
tion 8.2.

8.1 Basic terminology

The main purpose of a window is to present to the user a view on a document,
represented as an object of type Picture. Pictures have been discussed in Chapter
6. By using the mouse and keyboard, the user can manipulate the document.
Controls in a window can add further manipulation functionality.

The main purpose of a dialogue is to present to the user a structured way of passing
information to perform actions. This structured communication is realised by means
of controls.

8.1.1 Anatomy of windows and dialogues

Although from an application user's perspective windows and dialogues appear to
be `solid' objects (Figure 8.1) it is illustrative to have a look at a window from a
di�erent perspective.

A window is composed of three layers, see Figure 8.2. The bottom layer, the
document layer is formed by the rendered document, the Picture. The middle
layer, the control layer contains all controls of the window. The top layer, the

49

50 CHAPTER 8. WINDOWS AND DIALOGUES

Figure 8.1: A window seen from the user perspective.

window frame typically consists of a title bar, and window components to close and
resize the window. The window frame can have any size and is in general smaller
than the document layer. It displays only that part of the document layer that
is within the window frame. Windows usually contain scrollbars to help the user
change the current view on the document layer. The default drawing domain of the
document layer Picture ranges from 0 to 231 � 1 in both axes. This is in general
to large for rendering the document. A window can limit the displayable range of
a Picture by setting a picture domain.

window frame

control layer

document layer

Figure 8.2: A di�erent perspective at a window.

In contrast with windows, a dialogue is composed of only two layers, the control
layer and the window frame, the dialogue frame. Instead of a document layer, a
dialogue has a platform dependent background. The program can not draw into
nor navigate the background. The dialogue frame can not be resized by the user
and is usually big enough to display the whole control layer.

For both windows and dialogues, the programmer has full control over the view
frame, control layer, and document layer. Section 8.3 discusses how to handle the

8.2. WINDOW AND DIALOGUE ATTRIBUTES 51

document layer. Handling the control layer is discussed in Section 8.4. The window
and dialogue frame are controlled by the platform, see Section 8.5.

8.1.2 Stacking order

In general, a program can have an arbitrary number of windows and dialogues
opened at the same time. These elements appear in a stacking order, seen by
the application user in top to bottom order. For normal windows and dialogues
the stacking order is not �xed. Modal dialogues however always appear topmost.
Windows and modeless dialogues that are opened while (several) modal dialogues
are open always appear below the bottom most modal dialogue.

8.1.3 Active window or dialogue

When a user works with a program, exactly one window or dialogue receives all
keyboard and mouse input. This element is called the active window/dialogue
and it has the input focus. With the exception of modal dialogues, the active
window/dialogue does not necessarily occupy the top most stacking position.

8.2 Window and dialogue attributes

WindowAttribute is the type of window and dialogue attributes. The table below
shows which attributes are valid for which element.

WindowAttributes
For windows and dialogues: For windows only:
WindowId WindowSelectState

WindowPos WindowLook

WindowIndex WindowViewDomain

WindowSize WindowOrigin

WindowHMargin WindowHScroll

WindowVMargin WindowVScroll

WindowItemSpace WindowMinimumSize

WindowOk WindowResize

WindowCancel WindowActivate

WindowHide WindowDeactivate

WindowClose WindowMouse

WindowInit WindowKeyboard

WindowCursor

WindowId: This attribute identi�es the window/dialogue to which it is associated.
If you do not provide a WindowId, the object I/O system open function creates
a fresh Id for the window/dialogue.

WindowPos: This attribute determines the initial position of the window/dialogue
(see also Section 9.3). Relative Ids that occur in the ItemPos refer to other
windows/dialogues. The object I/O system will always place a window/dia-
logue visibly on the current screen. If you do not provide a WindowPos to a
window, then the window will be placed at the left top of the screen. If you
do not provide a WindowPos to a dialogue, then the dialogue will be placed at
a position conform the platform user interface (typically centered).

52 CHAPTER 8. WINDOWS AND DIALOGUES

WindowIndex: This attribute determines the initial stacking position of the win-
dow/dialogue (see also 8.1.2). If no WindowIndex attribute is provided, then
the window/dialogue will be opened frontmost. Modal dialogues are always
opened frontmost.

WindowSize: This attribute determines the initial size of the window/dialogue. If
no WindowSize attribute is provided, then the system will derive a proper size.
In case of dialogues the size is determined by the set of controls, margins, and
item spaces. In case of windows the size is furthermore determined by the
picture view domain.

WindowHMargin, WindowVMargin: These attributes determine the left-right, and
top-bottom margin of a window/dialogue respectively. Their default value
in case of windows is zero, and platform dependent for dialogues.

WindowItemSpace: This attribute determines the space between controls if no fur-
ther o�sets are provided in the layouts of controls. The default values are
identical for windows and dialogues.

WindowOk, WindowCancel: These attributes indicate which control should act con-
form the platform user interface `con�rm' control and `cancel' control respec-
tively. If such an attribute is not provided, then no control is selected.

WindowHide: This attribute makes the given window/dialogue initially invisible.
This attribute is ignored for modal dialogues. If the WindowHide attribute is
not provided, then the window/dialogue will be opened visible.

WindowClose: This attribute adds the platform dependent close control to the win-
dow/dialogue. The associated function will be evaluated in case this control
is triggered. Actually closing the window/dialogue is the responsibility of this
function. In case no WindowClose attribute is provided, the window/dialogue
can not be closed in that way.

WindowInit: This attribute de�nes a list of actions that should be performed imme-
diately after opening the window/dialogue. This is equivalent to the process
initialisation actions (see Section 2.3 and 13). If no WindowInit attribute is
provided, no additional actions are performed.

WindowSelectState: This attribute de�nes whether the window can be used by the
user (Able) or not (Unable). Dialogues are always Able. The default value
is Able. Note that although a window can be active, it can also be disabled.
This only means that all input is ignored by the window.

WindowLook: This attribute de�nes a function that, given the current SelectState
of the window and information about which part of the window should be
displayed, de�nes what the window should look like. (The Look function
also plays a role for CustomButtonControls (Section 9.1.9), CustomControls
(Section 9.1.10), and CompoundControls (Section 9.1.11).

WindowViewDomain: This attribute de�nes the drawing coordinate system of the
document layer (see also 8.1.1). Drawing operations outside this area will
be clipped. If no ViewDomain is provided, then the window will obtain the
ViewDomain fcorner1=zero, corner2=fx=maxint,y=maxintgg.

WindowOrigin: This attribute determines the initial position of the ViewFrame,
the rectangular part of the ViewDomain that is currently visible in the win-
dow. This position is always veri�ed to be within the given ViewDomain. If
no WindowOrigin attribute is provided, then the left-top coordinates of the
ViewDomain are used.

8.3. HANDLING THE DOCUMENT LAYER 53

WindowHScroll, WindowVScroll: These attributes add a horizontal scrollbar and
a vertical scrollbar to the window. If no attribute is given, no scrollbars are
added.

WindowMinimumSize: This attribute determines the minimum size the window can
obtain by resizing. If no attribute is given, a platform dependent minimum
size is used.

WindowResize: This attribute allows the user to resize the window. If the attribute
is not provided, then the window can not be resized. The size of a window
may exceed the size of its ViewDomain. The area that is not part of the
ViewDomain will be �lled with a platform dependent background.

WindowActivate, WindowDeactivate: These attributes de�ne the behaviour of the
window in case the window becomes the active window (WindowActivate),
and is no longer the active window (WindowDeactivate) respectively (see also
8.1.3). If no attribute is provided, this information will not be passed to the
program.

WindowMouse, WindowKeyboard: These attributes allow a window to respond to
user actions with the mouse (WindowMouse) and keyboard (WindowKeyboard).
If no attribute is provided, then this information will not be passed to the
program. Both attributes can de�ne an additional �lter to ignore some input
actions. If the SelectState of the window is Unable then neither function
will obtain input.

WindowCursor: This attribute de�nes the shape of the cursor in case the mouse is
over the window and not inside a control that may overrule this shape. In case
no attribute is provided moving the mouse over the window will not change
its shape.

8.3 Handling the document layer

The document layer of a window is used to present the user visual feedback on the
current status of the document that is being manipulated. Only windows have a
document layer.

8.3.1 Indirect rendering

Two WindowAttributes play a paramount role with respect to the document layer:
WindowViewDomain and WindowLook. Let's have a closer look at them.

The document layer is rendered using a Picture. As we have seen in Section 8.2,
the default drawing range of a Picture is (0; 231 � 1) in both axes. This range can
be changed by the WindowViewDomain attribute. It has a ViewDomain argument
which is de�ned as a Rectangle. A Rectangle is a record:

:: Rectangle

= { corner1 :: !Point

, corner2 :: !Point

}

:: Point

= { x :: !Int

, y :: !Int

}

54 CHAPTER 8. WINDOWS AND DIALOGUES

consisting of the two diagonally opposite corner points of the new drawing range. It
is illegal to have identical x or y coordinates. This will cause a run-time error of the
application. All drawing that occurs outside of the view domain of the document
layer will be clipped.

The Picture of the document layer is rendered using the WindowLook attribute.
This attribute has a Look function argument. It is de�ned as follows:

:: Look :== SelectState -> UpdateState -> [DrawFunction]

Whenever it is necessary to render (part of) the visible document layer, the object
I/O system will apply the look function of the WindowLook attribute. It will be pa-
rameterised with the current SelectState of the window and detailed information
about which part of the current view frame needs to be rendered. This information
is presented by means of the UpdateState record:

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

This record consists of three �elds:

oldFrame: If the size or orientation of the window was changed, then this �eld
contains the view frame before that change. If this is not the cause, then this
�eld contains the current view frame.

newFrame: If the size or orientation of the window was changed, then this �eld
contains the view frame after that change (so, the current view frame). If this
is not the cause, then this �eld contains the current view frame.

updArea: This �eld contains a list of Rectangles (not necessarily disjoint) that
de�ne the parts of the visible current view frame that need to be drawn. This
list always consists of atleast one element. Each of its elements is always
completely inside the current view frame.

The result of the Look function is a list of drawing functions. These describe
the rendering actions that should be taken on the current Picture. They will be
evaluated in left-to-right order. Before doing this the Object I/O system �rst erases
the rectangles of the updArea �eld.

The purpose of the WindowLook attribute function is to describe the look of the
current state of the document layer. If the document does not change, then this
function always correctly renders the document. However, it is very likely that the
state of the document changes during the life-cycle (Section 2.2) of the window. The
WindowLook attribute can be changed using the StdWindow function setWindowLook
(Appendix A.32):

setWindowLook :: !Id !Bool !Look !(IOSt .l .p) -> IOSt .l .p

setWindowLook will change the current WindowLook attribute of the window in-
dicated by the Id argument with the new Look function provided this window is
present and does not refer to a dialogue. If the Bool argument is False then that's
all. If the Bool argument is True, then the look function will be applied to the
window in the way described above.

8.4. HANDLING THE CONTROL LAYER 55

8.3.2 Direct rendering

Instead of using only the Look function of a window, one can also draw directly
in the document layer Picture. This is done using the function drawInWindow

(Appendix A.32):

drawInWindow :: !Id ![DrawFunction] !(IOSt .l .p) -> IOSt .l .p

drawInWindow applies the list of drawing functions in left-to-right order to the
document layer Picture of the window indicated by the Id argument if this window
is present and does not refer to a dialogue. For some visual feedback such as drawing
blinking cursors or track boxes this method is easier to use than the indirect way of
using the Look function. So direct drawing changes the document layer Picture,
but does not change the Look function of the window!

8.3.3 Pragmatics

The WindowLook function is used by the object I/O system for all cases that the
content of the window needs to rendered. Among others, causes are when the view
frame, size, stacking order, or selectstate of a window changes. It is very annoying
for the application user when these actions take to much time. Therefore it is
worth your while to spend some e�ort in getting a good performance out of the list
of drawing functions.

8.4 Handling the control layer

The control layer contains the controls of a window or dialogue. Both interface
elements can have the same set of controls. This is made explicit by the type con-
structor class instance declarations of their respective creation functions (Appendix
A.32):

class Windows wdef

where

openWindow :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport, !PSt .l .p)

...

class Dialogs wdef

where

openDialog :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport, !PSt .l .p)

openModalDialog :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport, !PSt .l .p)

...

instance Windows (Window c) | Controls c

instance Dialogs (Dialog c) | Controls c

The standard set of Controls instances is de�ned in the module StdControlClass
(Appendix A.4). Many operations with respect to the control layer are identical to
operations on controls that are element of CompoundControls. Controls and their
operations are discussed in detail in Chapter 9.

56 CHAPTER 8. WINDOWS AND DIALOGUES

8.5 Handling the window and dialogue frame

The window and dialogue frame are the `physical' borders of windows and dialogues.
A user can grab them using the mouse or some keyboard interface and drag them
around, change the size (in case of windows), or dispose of them. The program
has very limited in
uence on both the appearence and functionality of the frame.
When opening a window or dialogue, the WindowAttributes are important. This
is discussed in Section 8.5.1. User actions on the window or dialogue frame are
handled by the program via the callback function mechanism. The program can
also change frame properties. This is discussed in Section 8.5.2.

8.5.1 Opening a window or dialogue frame

The attributes of a window and dialogue de�nition that in
uence the window and
dialogue frame are ofcourse the Title and the following WindowAttributes:

WindowSize: This value gives the prefered size of the view frame of the window or
dialogue. Be aware that this is not exterior size, which is in general larger
and depends on the underlying platform.

WindowClose: If this attribute is present, then the window or dialogue frame is
provided with a platform dependent interface element to allow the user to
request the program to close that window or dialogue.

WindowHScroll and WindowVScroll: Although the horizontal and vertical scroll-
bar of a window are element of the control layer (Figure 8.2), their behaviour
is intimately connected with the size of the view frame and therefore also with
the size of the window and dialogue frame.

WindowResize: If this attribute is present, then the window is provided with a
platform dependent interface element to allow the user to change the size of
the window view frame.

These are not the only attributes that a�ect the size of the window frame. The
document interface (Chapter 13) of the parent interactive process also in
uences its
size and functionality. For instance, on a Windows(95/NT) platform, if a window
belongs to a single document process its window frame contains all menus (Chapter
10) of that process. If it belongs to a multiple document interface process then the
size of its frame even depends on its zoom state.

8.5.2 Changing a window and dialogue frame

The two most apparant changes to the window or dialogue frame are changes of
orientation and size. In case of windows, these can be caused by the application
user, depending on the attributes as explained in Section 8.5.1.

The program can also change the size of the frame for both windows and dialogues.
For dialogues this can be done only indirectly by opening or closing controls. For
windows this can also be done directly. If the program changes the view frame
(either its size or orientation) then the layout of controls is changed in the same
way as if the user had caused this change.

8.6. HANDLING KEYBOARD AND MOUSE INPUT 57

8.6 Handling keyboard and mouse input

Of all windows and dialogues that are in control by an application, at most one
receives the keyboard and mouse input. This window is the active window.

Except when modal dialogues are open, the application user can always select
one of the visible windows or dialogues to become the new active window. Dia-
logues are not noti�ed of these changes. Windows can be noti�ed by adding two
WindowAttributes: WindowActivate and WindowDeactivate. Both attributes are
parameterised with a function that will be applied by the object I/O system as
soon as that window becomes active or has become inactive respectively. It is
guaranteed that the WindowDeactivate attribute function is applied before the
WindowActivate function.

The underlying platform always gives visual clues to the application user about
which window or dialogue is currently active. The program can retrieve this in-
formation using the getActiveWindow function (Appendix A.32). One should be
aware that it is not correct to assume that the active window or dialogue has the
topmost stack order position. As an example, one might try to get the Id of the
active window by applying hd twice to the result list of getWindowStack, but this
only returns the top most window and not the active window.

The program can also activate windows and dialogues. This is done with the
activateWindow function (Appendix A.32). Because modal dialogues are always
front-most and the front most modal dialogue is active, one can not activate a win-
dow or modeless dialogue while modal dialogues are open. Instead, activateWindow
restacks such a window or dialogue immediately behind the bottom most modal di-
alogue without making it the active window.

The active window receives all keyboard and mouse input. If this window contains
controls it can be the case that the input is channelled to one of these controls. That
particular control then has the input focus. If no control has the input focus, then
all input is handled by the active window. In case the active window is a dialogue its
response to input is de�ned entirely by the underlying platform. In case of windows
the program can customise the behaviour by adding a WindowKeyboard attribute for
keyboard input (Section 8.6.1) and by adding a WindowMouse attribute for mouse
input (Section 8.6.2). Both attributes have a �lter function (KeyboardStateFilter
and MouseStateFilter respectively) which is applied before the actual callback
function is evaluated. Only if the �lter returns True then the callback function is
evaluated.

8.6.1 Keyboard input

Every keyboard sensitive interface object has a KeyboardFunction which is a pro-
cess state transition function that receives, as a �rst argument, a value of type
KeyboardState. This value represents one keyboard event. Keyboard events are
always generated in sequences that are characterised by a value of type KeyState

in the following order:

(KeyDown False) f(KeyDown True)g� KeyUp

A keyboard event is either an ascii character (CharKey alternative) or a special key
(SpecialKey alternative).

:: KeyboardState

58 CHAPTER 8. WINDOWS AND DIALOGUES

= CharKey Char KeyState

| SpecialKey SpecialKey KeyState Modifiers

The special keys are imported via the module StdIOCommon (Appendix A.12).
Among others they de�ne the function keys, arrow keys, page and line keys. The
Modifiers type is also de�ned in StdIOCommon. It is a record that refers to the
state of the meta keys of the keyboard. Because some ascii characters are gener-
ated using these meta keys they are not provided at the CharKey alternative. So
shift `a' simply generates the CharKey alternative with Char value 'A'.

The object I/O system guarantees that at all times only one keyboard alternative
is being handled. Assume that a user is pressing the `a' key on the keyboard. This
generates a character `a' key down event (CharKey 'a' (KeyDown False)), and
then a sequence of character `a' repeat key events (CharKey 'a' (KeyDown True)).
If the user now also presses the `b' key the object I/O system inserts two virtual
events that force the program to believe that the user �rst released the `a' key with
a character `a' key up event (CharKey 'a' KeyUp), and then pressed the `b' key
with a character `b' key down event (CharKey 'b' (KeyDown False)). These are
followed by character `b' repeat key events.

8.6.2 Mouse input

Every mouse sensitive interface object has a MouseFunctionwhich is a process state
transition function that receives, as a �rst argument, a value of type MouseState.
This value represents one mouse event.

:: MouseState

= MouseMove Point Modifiers

| MouseDown Point Modifiers Int

| MouseDrag Point Modifiers

| MouseUp Point Modifiers

The Point and Modifiers types are de�ned in the module StdIOCommon (Appendix
A.12). The Point type constructor states the position of the mouse at the mouse
event in terms of the view frame coordinates of the interactive object that contains
the speci�c MouseFunction. The Modifiers type constructor is a record that refers
to the state of the meta keys of the keyboard that were pressed at the mouse event.

Mouse events are always generated in sequences that are characterised by the alter-
native constructor of the MouseState type constructor:

fMouseMoveg� [MouseDown fMouseDragg� MouseUp]

The Int argument of the MouseDown alternative gives the number of times the
mouse was down within the mouse double down time. The mouse double down time
is a platform dependent time interval that distinguishes two sequential mouse down
from a double click. Although an integer is used for this count, its maximum value
is usually three. If a mouse down event with count i has occured and a new mouse
down event is generated within the mouse double down time, then the next mouse
down event has count i+ 1. If the next mouse down event is not generated within
the mouse double down time, then the next mouse down event has count 1.

The object I/O system guarantees that every MouseFunction of a mouse sensitive
interface object is applied to a sequence of mouse events as characterised above.
Assume that a certain window is active and the user is pressing the mouse. This

8.6. HANDLING KEYBOARD AND MOUSE INPUT 59

generates �rst a mouse down event (MouseDown alternative), followed by a sequence
of mouse drag events (MouseDrag alternative). If for some reason another window
is being activated, the object I/O system inserts a virtual event that forces the
program to believe that the user has released the mouse button with a mouse up
event (MouseUp alternative). If the new window is also mouse sensitive, then its
MouseFunction is applied to a new virtual event that forces the program to believe
that the user has pressed the mouse again with a mouse down event (MouseDown
alternative). These are followed again by mouse drag events.

60 CHAPTER 8. WINDOWS AND DIALOGUES

Chapter 9

Control handling

The previous chapter introduced windows and dialogues. These top level interface
elements can contain controls, which are handled in this chapter. Control structures
can be hierarchical, i.e. they can be composed of controls themselves. Using controls
helps a program to provide a consistent and structured user interface. There are a
lot of issues involved when working with controls.

First of all we introduce each control object in Section 9.1. Then the glue is in-
troduced to build larger control structures in Section 9.2. An important aspect
of controls is to manage their layout, presented in Section 9.3. Related to layout
is what should happen in case a window containing controls is resized. This is
discussed in Section 9.4. Finally, Section 9.5 contains a number of examples that
demonstrate the use of controls.

9.1 The standard controls

Table 2.1 (page 10) shows the standard set of object I/O library controls. They can
be divided into three groups:

Platform standard controls: these are the controls that exist on all platforms
and that have a well-de�ned behaviour and look that is platform de�ned. In
the table these are the �rst seven controls (RadioControl . . . ButtonControl).

Customised controls: the look and feel of these controls is completely or partially
de�ned by the program. In the table these are the CustomButtonControl

(look is de�ned by the program, but it feels like a button) and CustomControl

(look and feel de�ned by the program).

Hierarchical controls: there is actually only one such control, the CompoundCon-
trol. It contains other controls which will be positioned relative to this
control. Except that it is hierarchical it can also have a look and feel.

There is an extensive set of control attributes that are shared by most controls.
CompoundControls have an additional set of attributes that are strongly related to
window and dialogue attributes. These will be discussed in Section 9.1.11. Before
we discuss each of the controls individually we pay some attention to the shared
control attributes.

61

62 CHAPTER 9. CONTROL HANDLING

9.1.1 The shared control attributes

The ControlId attribute identi�es the control to which it is associated. If you do
not provide a ControlId, the control can not be modi�ed.

The ControlPos attribute determines its layout position (see Section 9.3). If you
do not provide a ControlPos, the control will be placed right next to the previous
control (if it happens to be the �rst control, it will be positioned at the left-top).

The ControlSize attribute provides the initial size of the control. For all plat-
form standard controls except the slider control, the size can be derived from their
demanded attributes. So if you do not provide a ControlSize, then this is calcu-
lated by the system. If you do provide one then this value will override the system
calculated size (again, except for slider controls). For customised controls the size
is mandatory. For compound controls the size can be calculated given the control
elements of the compound control. So, if no ControlSize is given, the compound
control will exactly �t its element controls. If a ControlSize is given, then this
value overrides the system calculated size.

The ControlMinimumSize attribute de�nes the minimum size of the control. This
value is relevant in case of resizing (see Section 9.4). If no ControlMinimumSize is
provided, the default value zero is chosen.

The ControlResize attribute de�nes that the control is resizeable. If no Control-
Resize is provided, the control is not resizeable. See Section 9.4 about the resizing
behaviour of controls.

The ControlSelectState attribute de�nes whether the control can be used by the
user (Able) or not (Unable). Usually this will a�ect the look of the control. The
default value is Able.

The ControlHide attribute de�nes that the control is initially invisible. It does
occupy space. If you do not provide this attribute then the control is visible.

The ControlFunction and ControlModsFunction attributes are the primary call-
back function attributes of controls. The di�erence between these two attributes
is that the former is simply evaluated whenever the control is selected, and that
the latter also provides the callback function with the modi�er keys that have been
pressed at the moment of selecting the control (for the de�nition of the modi�er
keys, see de�nition module StdIOCommon). In an attribute list the �rst of the two
attributes is chosen.

The ControlMouse and ControlKeyboard attributes add mouse and keyboard han-
dling callback functions to the control. This is only possible for non platform stan-
dard controls because platform standard controls have a prede�ned behaviour.

9.1.2 The RadioControl

A radio control is a group of radio control items of which exactly one item is selected.
All alternatives are visible. The de�nition of a radio control is as follows:

:: RadioControl ls ps

= RadioControl [RadioControlItem (ls,ps)] RowsOrColumns Index

[ControlAttribute (ls,ps)]

:: RowsOrColumns

= Rows Int

| Columns Int

:: RadioControlItem ps :== (TextLine,IOFunction ps)

:: IOFunction ps :== ps -> ps

9.1. THE STANDARD CONTROLS 63

:: TextLine :== String

:: Index :== Int

The items are ordered rowwise (the Rows alternative of RowsOrColumns) or colum-
nwise (the Columns alternative of RowsOrColumns). The initially selected item is
indicated by the Index value. As a convention in the object I/O library, when in-
dicating elements indices range from 1 upto the number of elements. So n elements
are indexed by 1. . .n. In case the index is out of range, i.e. less than 1 or larger
than n, it is set to 1 and n respectively. Valid radio control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

When a radio control item is selected the previously selected radio control item will
be unchecked, and the new radio control item gets the check mark. The correspond-
ing callback function is then evaluated. The callback function is also evaluated if
the currently selected radio control item is selected.

Example This RadioControl consists of �ve items, layn out in two rows. The �rst
item is initially selected.

radiocontrol

= RadioControl

[("Radio item "+++toString i,id)\\i<-[1..5]] (Rows 2) 1 []

9.1.3 The CheckControl

A check control is a group of check control items of which an arbitrary number of
items can be selected. All alternatives are visible. The de�nition of a check control
is as follows:

:: CheckControl ls ps

= CheckControl [CheckControlItem (ls,ps)] RowsOrColumns

[ControlAttribute (ls,ps)]

:: RowsOrColumns

= Rows Int

| Columns Int

:: CheckControlItem ps :== (TextLine,MarkState,IOFunction ps)

:: IOFunction ps :== ps -> ps

:: TextLine :== String

The items are ordered rowwise (the Rows alternative of RowsOrColumns) or colum-
nwise (the Columns alternative of RowsOrColumns). The initially selected items are
indicated by their MarkState value (Mark if checked, Nomark if not checked). Valid
control attributes are:

64 CHAPTER 9. CONTROL HANDLING

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

When a check control item is selected its mark state will be toggled (from Mark to
NoMark and vice versa). No other check control items are a�ected. The correspond-
ing callback function is then evaluated.

Example This CheckControl consists of �ve items, layn out in two columns. Each
odd numbered item has a check mark.

checkcontrol

= CheckControl

[("Check item "+++toString i,if isOdd i Mark NoMark,id)

\\i<-[1..5]

] (Columns 2) []

9.1.4 The PopUpControl

A pop up control is a group of pop up control items of which exactly one item is
selected. The items of a pop up control are presented in a pop up menu. Usually
only the currently selected item is displayed in the title of that pop up menu. For this
reason pop up controls consume much less space than the functionally equivalent
radio controls. The de�nition of a pop up control is as follows:

:: PopUpControl ls ps

= PopUpControl [PopUpControlItem (ls,ps)] Index

[ControlAttribute (ls,ps)]

:: PopUpControlItem ps :== (TextLine,IOFunction ps)

:: IOFunction ps :== ps -> ps

:: TextLine :== String

The initially selected item is indicated by the Index value. As a convention in the
object I/O library, when indicating elements indices range from 1 upto the number
of elements. So n elements are indexed by 1. . .n. In case the index is out of range,
i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid control
attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

9.1. THE STANDARD CONTROLS 65

When a pop up control item is selected the previously selected item is unchecked
and the new item becomes the selected item. The corresponding callback function
is then evaluated. The callback function is also evaluated if the currently selected
radio control item is selected.

Example This PopUpControl consists of �ve items. The �rst item is the initially
selected item. The left picture shows the pop up control when not selected by
the user, the right picture when selected by the user.

popupcontrol

= PopUpControl

[("PopUp item "+++toString i,id)\\i<-[1..5]] 1 []

9.1.5 The SliderControl

Slider controls are used to change the view to space consuming visual data in one
particular dimension. The de�nition of a slider control is as follows:

:: SliderControl ls ps

= SliderControl Direction Length SliderState

(SliderAction (ls,ps))

[ControlAttribute (ls,ps)]

:: Direction

= Horizontal | Vertical

:: Length :== Int

:: SliderState

= { sliderMin :: !Int

, sliderMax :: !Int

, sliderThumb:: !Int

}

:: SliderAction ps :== SliderMove -> ps -> ps

:: SliderMove

= SliderIncSmall | SliderDecSmall

| SliderIncLarge | SliderDecLarge

| SliderThumb Int

A slider control can be layn out in a horizontal direction (the Horizontal alternative
of Direction) or a vertical direction (the Vertical alternative of Direction). In
this direction it can have a certain length. Its width is platform dependent.

The scrolling range of a slider control is de�ned by the SliderState record. The
initial slider state determines the integer range: sliderMin gives the minimum
value, sliderMax gives the maximum value. In case these values are given in the
wrong order, they will be ordered properly. The initially chosen value is given by
the sliderThumb value. This value must be inclusively between sliderMin and
sliderMax. If a value smaller than the minimum range is given, then it is set to

66 CHAPTER 9. CONTROL HANDLING

the minimum. If a value larger than the maximum range is given, then it is set to
the maximum.

Valid control attributes for the SliderControl are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize
p

ControlKeyboard

ControlSelectState
p

A slider control typically has �ve regions that can be selected by the user. These
regions are shown in Figure 9.1.

decrement
arrow

?

increment
arrow

?

page
decrement

?

page
increment

?

thumb
move

?

SliderDecSmall

6

SliderIncSmall

6

SliderDecLarge

6

SliderIncLarge

6

SliderThumb

6

Figure 9.1: The regions of the SliderControl.

When the user is working with the slider control, its callback function is evaluated.
The algebraic data type SliderMove has an alternative constructor for each of the
regions of the slider control:

SliderDecSmall decrement arrow
SliderIncSmall increment arrow
SliderDecLarge page down region
SliderIncLarge page up region
SliderThumb thumb move

The program can decide what to do with this information. It is the responsibility
of the programmer that the application responds the way the user expects.

9.1. THE STANDARD CONTROLS 67

Example This SliderControl is orientied horizontally and has a length of 200
pixels.

slidercontrol

= SliderControl Horizontal 200

{sliderMin=(-100),sliderMax=100,sliderThumb=0}

(_ ps->ps) []

9.1.6 The TextControl

A text control displays one line of text that can not be changed by the user. The
de�nition of a text control is as follows:

:: TextControl ls ps

= TextControl TextLine [ControlAttribute (ls,ps)]

:: TextLine

:== String

Currently all control characters such as newlines in the textline argument are ig-
nored. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

ControlPos
p

ControlFunction

ControlSize
p

ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

The initial size of a text control is determined by its initial text line. If the text
control has a ControlSize attribute that is larger than its initial size, then that
value becomes its initial size. A text control is not resizeable, and it will also not
change in size in case its text line is modi�ed.

Example A text control that contains a text with newline characters.

textcontrol

= TextControl "This is a \ntext control" []

9.1.7 The EditControl

The edit control is applied to provide the user with an interface to edit (typically
small amounts of) textual data. The de�nition of an edit control is as follows:

:: EditControl ls ps

= EditControl TextLine Width NrLines

[ControlAttribute (ls,ps)]

:: TextLine :== String

:: Width :== Int

:: NrLines :== Int

68 CHAPTER 9. CONTROL HANDLING

An edit control initially displays some text line. If the textline contains newlines
then these are interpreted as line breaks. The edit control has an initial interior
width (in terms of pixels) and shows an integral number of lines. Valid control
attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize ControlMouse

ControlResize ControlKeyboard
p

ControlSelectState
p

If the SelectState of an edit control is Unable, the user can not type in data in
edit control. The program can keep track of the inserted text by setting the control
keyboard attribute. For each typed key the keyboard function is evaluated.

Example An EditControl that contains text with newline characters. Its interior
width is 80 pixels and it shows three lines of text.

editcontrol

= EditControl "This is an \nEditControl" 80 3 []

9.1.8 The ButtonControl

The button control represents an action that should occur given the current state
of the window or dialogue. The de�nition of a button control is as follows:

:: ButtonControl ls ps

= ButtonControl TextLine [ControlAttribute (ls,ps)]

:: TextLine :== String

A button control has a name, given by a text line. Control characters are not
interpreted. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

p
ControlSize

p
ControlModsFunction

p
ControlMinimumSize ControlMouse

ControlResize ControlKeyboard

ControlSelectState
p

The initial size of a button control is determined by its initial text line. If the
button control has a ControlSize attribute that is larger than its initial size, then
that value becomes its initial size. The callback function of a button control is the
function that is evaluated in case the button control was selected by the user and
its SelectState was Able. If the name of the button control is modi�ed to a new
text line, then its size is not changed.

9.1. THE STANDARD CONTROLS 69

Example A ButtonControl with a title that contains newlines.

buttoncontrol

= ButtonControl "This a \nButtonControl" []

9.1.9 The CustomButtonControl

A custom button control is a control which feels like a button control, but which
look is customised by the program. The de�nition of a custom button control is as
follows:

:: CustomButtonControl ls ps

= CustomButtonControl Size Look [ControlAttribute (ls,ps)]

:: Size

= {w::Int,h::Int}

:: SelectState

= Able | Unable

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: Look :== SelectState -> UpdateState -> [DrawFunction]

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: DrawFunction:== *Picture -> *Picture

Both the initial size and look of a custom button control are de�ned by the program.
The look of a custom button control is identical to the look of a window as discussed
in Section 8.3.1. The UpdateState argument contains zero based rectangles of the
same size as the custom button control itself. Every custom button control has
a *Picture environment to which the look drawing functions are applied. Valid
control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

p
ControlSize ControlModsFunction

p
ControlMinimumSize

p
ControlMouse

ControlResize
p

ControlKeyboard

ControlSelectState
p

The callback function of a custom button control is the function that is evaluated
in case the custom button control was selected by the user and its SelectState

was Able.

Example A CustomButtonControl which look depends on its SelectState. The
picture on the left shows the custom button control in Able state, the picture
on the right in Unable state.

70 CHAPTER 9. CONTROL HANDLING

custombuttoncontrol

= CustomButtonControl {w=50,h=50} look []

where

look :: SelectState UpdateState -> [DrawFunction]

look Able {newFrame}

= [setPenColour DarkGrey, fill newFrame

, setPenColour Black, draw newFrame

]

look Unable {newFrame}

= [setPenColour LightGrey,fill newFrame

]

9.1.10 The CustomControl

A custom control is a control of which both the look and feel are program de�ned.
The de�nition of a custom control is as follows:

:: CustomControl ls ps

= CustomControl Size Look [ControlAttribute (ls,ps)]

:: Size

= {w::Int,h::Int}

:: SelectState

= Able | Unable

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: Look :== SelectState -> UpdateState -> [DrawFunction]

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: DrawFunction:== *Picture -> *Picture

Both the initial size and look of a custom control are de�ned by the program. The
look of a custom control is identical to the look of a window as discussed in Section
8.3.1. The UpdateState argument contains zero based rectangles of the same size
as the custom control itself. Every custom control has a *Picture environment to
which the look drawing functions are applied. Valid control attributes are:

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlHide

p
ControlPos

p
ControlFunction

ControlSize ControlModsFunction

ControlMinimumSize
p

ControlMouse
p

ControlResize
p

ControlKeyboard
p

ControlSelectState
p

The feel of a custom control is de�ned by its mouse and keyboard callback functions.
If the user selects the custom control with the mouse, then the mouse callback

9.1. THE STANDARD CONTROLS 71

function handles all feedback. If the custom control has the keyboard input focus,
and the user is typing, then the keyboard callback function handles all feedback.

Example A CustomControl which look depends on its SelectState. The picture
on the left shows the custom control in Able state, the picture on the right in
Unable state.

customcontrol

= CustomControl {w=50,h=50} look []

where

look :: SelectState UpdateState -> [DrawFunction]

look Able {newFrame}

= [setPenColour DarkGrey, fill newFrame

, setPenColour Black, draw newFrame

]

look Unable {newFrame}

= [setPenColour LightGrey,fill newFrame

]

9.1.11 The CompoundControl

The compound control is a control that contains other controls. A compound control
is actually a window within a window. It introduces a new layout scope: i.e.
controls inside it are positioned relative to the bounds of the compound control.
The compound control can have an additional look and feel. The de�nition and
Controls class instance declaration of a compound control is as follows:

:: CompoundControl c ls ps

= CompoundControl (c ls ps) [ControlAttribute (ls,ps)]

instance Controls (CompoundControl c) | Controls c

The c parameter of the CompoundControl type constructor is a type constructor
variable that corresponds with the control elements of the compound controls. Any
composition of controls that is an instance of the Controls type constructor class
is a valid argument of CompoundControl.

Compared with the previous controls, compound controls have an additional number
of control attributes that are irrelevant to the other controls. These attributes are
similar to some attributes of windows and dialogues, and ofcourse they intend to
have the same meaning. Valid control attributes are:

72 CHAPTER 9. CONTROL HANDLING

ControlAttribute: Valid: ControlAttribute: Valid:
ControlId

p
ControlItemSpace

p
ControlPos

p
ControlHMargin

p
ControlSize

p
ControlVMargin

p
ControlMinimumSize

p
ControlLook

p
ControlResize

p
ControlViewDomain

p
ControlSelectState

p
ControlOrigin

p
ControlHide

p
ControlHScroll

p
ControlFunction ControlVScroll

p
ControlModsFunction

ControlMouse
p

ControlKeyboard

The size of a compound control, if not provided as a ControlSize attribute, is
derived by the system from its control elements (see for more information on the
layout of control Section 9.3). Related to the size of a compound control and layout
of its elements are a number of attributes. The ControlMinimumSize attribute de-
termines the minimum size of the compound control (see resizing controls, Section
9.4), the ControlResize attribute controls the resize behaviour (see also Section
9.4), the ControlItemSpace, ControlHMargin, and ControlVMargin attributes de-
�ne the distance between the elements themselves and the horizontal and vertical
distance of the elements to the border of the compound control respectively.

The compound control anatomy is the same as that of a window (Section 8.1.1). It
consists of the same three layers as a window except that we call its top layer the
compound frame rather than window frame. The compound frame has no title nor
features like resize controls and so on.

Analogous to windows, compound controls have a view domain if the Control-

ViewDomain is given. Otherwise it has a zero based arbitrarily large view domain.
A view domain de�nes a �nite area in which can be drawn (see Chapter 6), but
also is used as an area to place controls (see Section 9.3). Given a view domain,
and a compound control that can in principle be smaller than the view domain, two
scrolling attributes can be added: ControlHScroll and ControlVScroll. These
attributes control the current view frame of the compound control. The left top
point of the view frame that is currently visible is called the origin. This value can
be set initially with the ControlOrigin attribute.

The document layer of a CompoundControl can be drawn into only if both the
ControlLook and ControlViewDomain attributes are given. In that case the system
provides the compound control with a drawing environment. If a ControlLook is
not given, then the compound control is transparant.

The feel of a compound control is ofcourse partially determined by its element
controls. If the ControlMouse attribute is given, then the compound control can
handle all mouse events that are directed to one of its element controls. This is not
the case for keyboard input.

An example of a CompoundControl is given once we have discussed the means to
create compositions of controls in the next section.

9.2 Control glue

In the previous section the standard set of controls has been discussed. This list
does not cover all controls class instances. In the library module StdControlClass
(Appendix A.4) a number of additional instances are de�ned, namely the type

9.2. CONTROL GLUE 73

constructors AddLS, NewLS, ListLS, NilLS, and :+: (their de�nition can be found
in Appendix A.12). These additional instances are required to glue controls. They
are treated below.

9.2.1 :+:

The most common constructor to glue controls is :+:. Its type constructor de�nition
and Controls class instance declaration are as follows:

:: :+: t1 t2 local context

= (:+:) infixr 9 (t1 local context) (t2 local context)

instance Controls ((:+:) c1 c2) | Controls c1 & Controls c2

Given two Controls instances c1 and c2, working on the same local state of type
local and context state context, the expression c1:+:c2 is also a Controls in-
stance working on the same local state and context state. Because :+: is right
associative, the expression c1:+:c2:+:c3 should be read as c1:+:(c2:+:c3).

9.2.2 ListLS and NilLS

In principle the :+: glue is su�cient to create all required control structures. In
case of working with a number of control instances of the same type, it is much more
convenient to use lists and list comprehensions. This glue is provided by the type
constructors ListLS and NilLS. Their type constructor de�nitions and Controls

class instance declarations are as follows:

:: ListLS t local context = ListLS [t local context]

:: NilLS local context = NilLS

instance Controls (ListLS c) | Controls c

instance Controls NilLS

Given a list of Controls instances cs = [c1 ...cn], working on the same local
state of type local and context state context, the expression ListLS cs is also
a Controls instance working on the same local state and context state. The type
constructor NilLS is a shorthand for ListLS []. It can also be conveniently used
to state that a CompoundControl or window or dialogue has no controls.

9.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue controls that work on
the same local state and context state. Two other glueing constructors are de�ned
to extend and change the local state, AddLS and NewLS. Their type constructor
de�nitions and Controls class instance declarations are as follows:

:: AddLS t local context

= E..add:

{ addLS :: add

, addDef:: t *(add,local) context

}

:: NewLS t local context

74 CHAPTER 9. CONTROL HANDLING

= E..new:

{ newLS :: new

, newDef:: t new context

}

instance Controls (AddLS c) | Controls c

instance Controls (NewLS c) | Controls c

Given a Controls instance c1 that works on a local state of type local and a
context state of type context, one can add another Controls instance c2 that
works on an extended local state of type (add,local) and the same context state
of type context. Let x be a value of type add, then this is done by the expression
c1 :+: {addLS=x, addDef=c2}.

Given a Controls instance c1 that works on a local state of type local and a
context state of type context, one can add another Controls instance c2 that
works on a new local state of type new and the same context state of type context.
Let x be a value of type new, then this is done by the expression c1 :+: {newLS=x,

newDef=c2}.

In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quanti�cation.

9.2.4 Example: a counter control

In this section we show an example of glueing controls to form a new Controls class
instance. A CompoundControl is de�ned that consists of three other controls. It
implements a manually incrementable counter. To display the current count value
it uses an Unable EditControl. Two ButtonControls are used to decrement and
increment the counter.

counter windowid displayid

= { newLS =initcount

, newDef=CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)]

) []

}

where

initcount = 0

count :: Int (Int,PSt .l .p) -> (Int,PSt .l .p)

count dx (count,ps)

= (count+dx, setText windowid displayid (count+dx) ps)

setText :: Id Id x (PSt .l .p) -> PSt .l .p | toString x

setText wid cid x ps

9.3. CONTROL LAYOUT 75

= appPIO

(setWindow wid [setControlTexts [(cid,toString x)]]) ps

Figure 9.2 shows the counter after some user manipulations that resulted in the
counter value -15.

Figure 9.2: The counter control.

9.3 Control layout

The object I/O library o�ers the programmer an expressive layout mechanism to
de�ne the layout of controls. Controls can be element of windows, dialogues, and
compound controls. The layout rules that are discussed in this section are followed
in all these cases. Some layout rules refer to the view domain and frame of the
parent object. In case of dialogues these two are identical. They are zero based
rectangles with a size equal to the dialogue interior.

As we have seen, every control can have a ControlPos attribute. This attribute is
de�ned as follows:

:: ControlAttribute ps

= ... | ControlPos ItemPos | ...

:: ItemPos

:== (ItemLoc,ItemOffset)

:: ItemLoc

= Fix Point

| LeftTop | RightTop | LeftBottom | RightBottom

| Left | Center | Right

| LeftOf Id | RightTo Id | Above Id | Below Id

| LeftOfPrev | RightToPrev | AbovePrev | BelowPrev

:: ItemOffset

:== Vector

The layout position of a control consists of two values: an ItemLoc value and an
ItemOffset value which is a vector. The ItemLoc actually determines the location
of the control, the ItemOffset value adds an o�set to this position (which ofcourse
in
uences the position of other controls). The ItemLoc values can be divided into
four groups:

Fixed position: this is actually only the Fix alternative of ItemLoc. Fix point

places the left top corner of the control of which it is the attribute at the
speci�ed point. The point is given in the coordinate system of the compound
control. This coordinate system is determined by the current view domain of
the parent object.

Boundary aligned: these are the alternatives LeftTop . . .RightBottom. When
applied their control is placed at the left-top, right-top, left-bottom, or right-
bottom of the current view frame of the parent object.

76 CHAPTER 9. CONTROL HANDLING

Line aligned: these are the alternatives Left . . . Right. When applied their con-
trol is placed below all previous line aligned controls and either left-aligned,
centered, or right-aligned with respect to the current view frame of the parent
object.

Relative position: these are the remaining alternatives LeftOf . . . BelowPrev.
The �rst four alternatives must be parameterised with the Id of a control
that is element of the same parent object, otherwise a runtime error will
occur. The latter four alternatives can be de�ned in terms of the �rst four
but have the advantage that you do not have to think of Ids for controls that
you only want to relatively place other controls to. Placing controls relatively
to other controls must construct a tree of related controls: cyclic references
are not allowed and result also in a runtime error.

Controls that are layn out relatively form a layout tree with one layout root control.
The layout attribute of the layout root control determines the layout positions of
the whole layout tree. If it is at a �xed position, the layout tree obtains a �xed
position. If it is boundary aligned, the layout tree is aligned at the same boundary.
If it is line aligned, the layout tree is line aligned.

Except for the �rst layout root control the default layout attribute for controls
is (RightToPrev,zero). For the �rst layout root control the default attribute is
(Left,zero). Consequently, the default layout order is from left to right in one
single row.

Controls are allowed to overlap partially or completely. This is particularly useful
in case of combinations of hidden and visible controls when at all times only one
is visible. It allows the program to change the control structure in an easy way by
hiding and showing controls.

In the remaining part of this section a number of examples are given to illustrate
control layout. In each of the examples we assume that the controls that are being
layn out are placed in a parent object with a view domain and view frame as given
in Figure 9.3. The x axis (the horizontal arrow) and y axis (the vertical arrow)
intersect at the coordinate zero.

?

-

view domain

view frame

Figure 9.3: View domain and view frame.

Controls are being displayed as boxes. The control con�guration shown in Figure
9.4 occurs frequently in the examples. It consists of �ve equally sized controls,

9.3. CONTROL LAYOUT 77

c0 ...c4. The layout root control is c0. The controls c1 ...c4 are layn out
relatively to c0 and have the layout attributes LeftOf, RightTo, Above, and Below

respectively with zero o�sets.

c0c1 c2

c3

c4

Figure 9.4: A layout tree of �ve controls.

9.3.1 Layout at �xed position

Controls and layout trees that have a Fix layout attribute are being placed relative
to the view domainof the parent object. So their visibility depends on the current
orientation of the parent view frame (recall that the view frame clips everything
that is outside of it). Figure 9.5 shows the control con�guration of Figure 9.4 when
the layout root control has the attribute (Fix zero,zero).

?

-
c0c1 c2

c3

c4

Figure 9.5: The layout tree at (Fix zero,zero).

9.3.2 Layout at view frame boundary

Controls and layout trees that are laynout relative to the parent view frame bound-
ary will always be visible, provided ofcourse that the view frame is su�ently large.
If the view frame is not large enough, these controls may become overlapped. Figure
9.6 shows the positions of the control con�guration of Figure 9.4 when positioned
at every corner of the view frame (using LeftTop, RightTop, LeftBottom, and
RightBottom with zero o�sets.

9.3.3 Layout in lines

Laying out controls and layout trees in lines is similar to writing characters in
an English piece of text: each new character is placed right next to the previous

78 CHAPTER 9. CONTROL HANDLING

?

-

c0c1 c2

c3

c4

c0c1 c2

c3

c4

c0c1 c2

c3

c4

c0c1 c2

c3

c4

Figure 9.6: The layout tree at LeftTop, RightTop, LeftBottom, and RightBottom.

character until a new line is started. A new line starts below the previous line. This
new line can be left aligned, centered, or right aligned. The layout attributes Left,
Center, and Right introduce both a new line and its alignment. Figure 9.7 shows
the positions of the control con�guration of Figure 9.4 when positioned at Left,
Center, and Right respectively, using zero o�sets. It also illustrates that if the
view frame is not big enough, controls may become partially invisible.

?

-

c0c1 c2

c3

c4

c0c1 c2

c3

c4

c0c1 c2

c3

c4

Figure 9.7: The layout tree at Left, Center, and Right.

9.3.4 Layout o�sets

So far we have used zero o�sets in the layout attribute examples. The layout
position of a control is changed by an o�set vector value v = {vx,vy} as follows:
�rst, the layout position of the control is calculated as explained above, using a
zero o�set. Now assume that this results in the exact location pos = {x,y}. Then
the real position of the control is {x=x+vx, y=y+vy}. Figure 9.8 illustrates this.
Given two controls c0 and c1 it shows the result of placing c1 at RightTo control c0
with an o�set value v = {vx,vy}. The dashed box shows the location of c1 using

9.4. RESIZING CONTROLS 79

a zero o�set.

c0

c1

@
@
@R

-vx

?

vy

Figure 9.8: Laying out controls using an o�set vector.

9.3.5 Layout relative to the previous control

As explained earlier in this section, the default layout attribute of a control is
(RightToPrev,zero). The other layout attributes that refer to the previous control
are LeftOfPrev, AbovePrev, and BelowPrev. In this section we explain what the
previous control is.

Section 9.2 introduced the glue to create control structures. The best way to look at
such a control structure is to have a look at its numbered graph structure. Consider
the following expression: (a:+:b:+:c) with a, b, and c standard Controls class
instances as introduced in Section 9.1. Figure 9.9 shows the graph structure (recall
that :+: is right associative).

a
1

��	

:+:
2

@@R
:+:

4

��	
b 3

@@R
c

5

Figure 9.9: The numbered graph of (a:+:b:+:c).

Each node in the graph has an index. If a node is a glue node, then �rst number
the left sub tree, then the node itself, then the right sub tree. If a node is a
standard Controls class instance, then number it. The nodes of the sub tree of
a CompoundControl are not numbered. Proceeding in this way, one obtains the
index �gures at each of the nodes in Figure 9.9. If a node in the graph with index
i represents one of the standard Controls class instances then its previous control
is represented by that node in the graph that has the highest index less than i

and represents also one of the standard Controls class instances. So the previous
control of c is not :+:4 but b3 because we assumed that b is an instance of the
standard Controls class. Analogously, the previous element of b is neither one of
the two :+: nodes, but a1. Finally, a has no previous control.

9.4 Resizing controls

The object I/O system has a simple mechanism to let controls respond to resize
actions of their parent interface element (window, dialogue, or compound control).
If a control wants to respond to resize events, it should have a ControlResize

attribute. It is de�ned as follows:

80 CHAPTER 9. CONTROL HANDLING

:: ControlAttribute ps

= ... | ControlResize ControlResizeFunction | ...

:: ControlResizeFunction

:== Size -> Size -> Size -> Size

The control resize function is applied to its current size, old size of its parent,
and the new size of its parent. It returns its own new size. This calculation is
performed for all controls that are part of the control that is being resized. If
a CompoundControl has a resize function, and the new size is di�erent from its
previous size, then this computation continues recursively, otherwise the layout of
its elements is not recalculated. Given the new sizes of the controls, the layout
is recalculated and adjusted accordingly. The e�ect of this strategy is that the
relative layout of controls is never changed in case of resizing a window, dialogue,
or compound control.

As an example, consider one wants to have a CompoundControl that always dis-
plays three CustomControls next to each other at the top of its view frame. The
CompoundControl takes care that it always has a width dividable by 3, using its
own ControlResize function compoundresize. Its ControlLook function draws a
rectangle �tting its current view frame.

compound = CompoundControl

(ListLS [custom,custom,custom])

[ControlResize compoundresize

,ControlSize compoundsize

,ControlLook (_ {newFrame}->[draw newFrame])

,CompoundHMargin 0 0

,CompoundVMargin 0 0

,CompoundItemSpace 0 0

]

compoundsize = {w=60,h=75}

compoundresize _ _ newparentsize=:{w}

= {newparentsize & w=w/3*3}

The CustomControls resize their widths according to the new width of their par-
ent control, using the ControlResize function customresize. The look of the
CustomControl simply draws a rectangle �tting its current view frame and the two
diagonals.

custom = CustomControl

{w=compoundsize.w/3,h=6}

look

[ControlResize customresize]

customresize customsize _ {w}

= {customsize & w=w/3}

look _ {newFrame}

= [draw newFrame

,drawLine newFrame.corner1

newFrame.corner2

,drawLine {newFrame.corner1 & y=newFrame.corner2.y}

{newFrame.corner2 & y=newFrame.corner1.y}

]

Figure 9.10 shows what happens with the controls when the parent object is resized.
At the left the initial state of the CompoundControl and its CustomControls is

9.5. EXAMPLES 81

displayed. As explained in Section 9.3, the three custom controls form a layout
tree with the layout root control having the layout attribute (Left,zero) and the
other CustomControls (RightToPrev,zero). In the middle, the CompoundControl
is resized in both directions. This resize action causes �rst recalculation of the size
of the CompoundControl, using compoundresize. Because this value di�ers from
the old size, recalculation continues for each CustomControl. The �nal result is
shown at the right.

���PPP���PPP���PPP ���PPP���PPP���PPP

Q
QQs

���
�XXXX���

�XXXX���
�XXXX

Figure 9.10: Resizing a CompoundControl with three CustomControls.

9.5 Examples

In this section a number of examples are given to clarify the use of controls.

9.5.1 Keyspotting

To illustrate keyboard handling we discuss a small example program that mon-
itors keyboard events, called `keyspotting'. It creates a Window that contains a
CompoundControl that contains a CustomControl. Before we discuss each of the
components below, we have a look at the way they handle keyboard input.

Each of the components is keyboard sensitive and uses the same KeyboardFunction
spotting. Given a string that states who currently has the input focus, spotting
simply changes the Look function of the CustomControl and forces its update (by
using a True boolean). We assume that there is a conversion function that trans-
forms a KeyboardState into a String. The Look function look draws the text that
it is parameterised with within a framed box.

spotting who key ps

= appPIO (setWindow windowid

[setControlLooks

[(controlid,True,look (who+++":"+++toString key))

]

]

) ps

look text _ {newFrame}

= [setPenColour White

,fill newFrame

,setPenColour Black

,draw newFrame

82 CHAPTER 9. CONTROL HANDLING

,drawAt {x=10,y=customsize.h/2} text

]

The CustomControl custom displays which component is currently receiving what
keyboard input. The control is identi�ed by controlid. It parameterises its Key-
boardFunction spotting function with the string "Control".

custom

= CustomControl customsize (look "")

[ControlKeyboard (const True) Able (noLS1 (spotting "Control"))

,ControlId controlid

]

The CompoundControl compound contains only custom. It parameterises its Key-
boardFunction spotting with the string "Compound". Its size is chosen such that
it is large enough to display custom completely. It conveniently uses the look

function to draw a box around itself.

compound

= CompoundControl custom

[ControlKeyboard (const True) Able (noLS1 (spotting "Compound"))

,ControlSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

,ControlLook (look "")

]

Finally, the Window window contains only compound. It parameterises its spotting
function with the string "Window". Its size is chosen such that it is large enough
to display compound completely. For this purpose also the margin layout attributes
are set. Termination of the program is taken care of by having the program quit
when the user closes the window.

window

= Window "keyspotting" compound

[WindowKeyboard (const True) Able (noLS1 (spotting "Window"))

,WindowId windowid

,WindowSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

,WindowHMargin margin margin

,WindowVMargin margin margin

,WindowClose (noLS closeProcess)

]

Remaining details that need to be de�ned are the actual creation of the interac-
tive program and its window. For completeness, we include the program code of
keyspotting below. We assume that the module stringconv contains a string
conversion function for KeyboardStates.

module keyspotting

// **

// Clean tutorial example program.

9.5. EXAMPLES 83

//

// This program monitors keyboard input that is sent to a Window which consists

// of a CompoundControl which consists of a CustomControl.

// **

import StdEnv,StdIO,stringconv

:: NoState

= NoState

Start :: *World -> *World

Start world

(windowid, world)= openId world

(controlid,world)= openId world

= startIO NoState NoState [initialise windowid controlid] [] world

where

initialise windowid controlid ps

custom = CustomControl customsize (look "")

[ControlKeyboard (const True) Able

(noLS1 (spotting "Control"))

, ControlId controlid

]

compound = CompoundControl custom

[ControlKeyboard (const True) Able

(noLS1 (spotting "Compound"))

, ControlSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

, ControlLook (look "")

]

window = Window "keyspotting" compound

[WindowKeyboard (const True) Able

(noLS1 (spotting "Window"))

, WindowId windowid

, WindowSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

, WindowClose (noLS closeProcess)

, WindowHMargin margin margin

, WindowVMargin margin margin

]

(error,ps) = openWindow NoState window ps

| error<>NoError

= abort "keyspotting could not open window"

| otherwise

= ps

where

customsize = {w=550,h=100}

margin = 10

spotting who key ps

= appPIO (setWindow windowid

[setControlLooks [(controlid,True,look text)]]

) ps

where

text = who+++":"+++toString key

look text _ {newFrame}

= [setPenColour White, fill newFrame

, setPenColour Black, draw newFrame

, drawAt {x=10,y=customsize.h/2} text

]

9.5.2 Mousespotting

To illustrate mouse handling we discuss a small example program that monitors
mouse events, called `mousespotting'. It creates a Window that contains a Compound-

84 CHAPTER 9. CONTROL HANDLING

Control that contains a CustomControl. Before we discuss each of the components
below, we have a look at the way they handle mouse input.

Each of the components is mouse sensitive and uses the same MouseFunction

spotting. Given a string that states who currently has the input focus, spotting
simply changes the Look function of the CustomControl and forces its update (by
using a True boolean). We assume that there is a conversion function that trans-
forms a MouseState into a String. The Look function look draws the text that it
is parameterised with within a framed box.

spotting who mouse ps

= appPIO (setWindow windowid

[setControlLooks [(controlid,True,look text)]]) ps

where

text = who+++":"+++toString mouse

look text _ {newFrame}

= [setPenColour White, fill newFrame

, setPenColour Black, draw newFrame

, drawAt {x=10,y=customsize.h/2} text

]

The CustomControl custom displays which component is currently receiving what
mouse input. The control is identi�ed by controlid. It parameterises its Mouse-
Function spotting function with the string "Control".

custom

= CustomControl customsize (look "")

[ControlMouse (const True) Able (noLS1 (spotting "Control"))

,ControlId controlid

]

The CompoundControl compound contains only custom. It parameterises its Mouse-
Function spotting with the string "Compound". Its size is chosen such that it is
large enough to display custom completely. It conveniently uses the look function
to draw a box around itself.

compound

= CompoundControl custom

[ControlMouse (const True) Able (noLS1 (spotting "Compound"))

,ControlSize {w=customsize.w+2*margin,h=customsize.h+2*margin}

,ControlLook (look "")

]

Finally, the Window window contains only compound. It parameterises its spotting
function with the string "Window". Its size is chosen such that it is large enough
to display compound completely. For this purpose also the margin layout attributes
are set. Termination of the program is taken care of by having the program quit
when the user closes the window.

window

= Window "mousespotting" compound

[WindowMouse (const True) Able (noLS1 (spotting "Window"))

,WindowId windowid

9.5. EXAMPLES 85

,WindowSize {w=customsize.w+4*margin,h=customsize.h+4*margin}

,WindowHMargin margin margin

,WindowVMargin margin margin

,WindowClose (noLS closeProcess)

]

Remaining details that need to be de�ned are the actual creation of the interac-
tive program and its window. For completeness, we include the program code of
mousespotting below. We assume that the module stringconv contains a string
conversion function for MouseStates.

module mousespotting

// **

// Clean tutorial example program.

//

// This program monitors mouse input that is sent to a Window which consists

// of a CompoundControl which consists of CustomControl.

// **

import StdEnv,StdIO,stringconv

:: NoState

= NoState

Start :: *World -> *World

Start world

(windowid, world)= openId world

(controlid,world)= openId world

= startIO NoState NoState [initialise windowid controlid] [] world

where

initialise windowid controlid ps

custom = CustomControl customsize (look "")

[ControlMouse (const True) Able

(noLS1 (spotting "Control"))

, ControlId controlid

]

compound = CompoundControl custom

[ControlMouse (const True) Able

(noLS1 (spotting "Compound"))

, ControlSize {w=customsize.w+2*margin

,h=customsize.h+2*margin

}

, ControlLook (look "")

]

window = Window "mousespotting" compound

[WindowMouse (const True) Able

(noLS1 (spotting "Window"))

, WindowId windowid

, WindowSize {w=customsize.w+4*margin

,h=customsize.h+4*margin

}

, WindowHMargin margin margin

, WindowVMargin margin margin

, WindowClose (noLS closeProcess)

]

(error,ps) = openWindow NoState window ps

| error<>NoError

= abort "mousespotting could not open window"

| otherwise

= ps

where

customsize = {w=550,h=100}

margin = 10

spotting who mouse ps

86 CHAPTER 9. CONTROL HANDLING

= appPIO (setWindow windowid

[setControlLooks [(controlid,True,look text)]]) ps

where

text = who+++":"+++toString mouse

look text _ {newFrame}

= [setPenColour White, fill newFrame

, setPenColour Black, draw newFrame

, drawAt {x=10,y=customsize.h/2} text

]

Chapter 10

Menus

Many interactive applications allow a user to manipulate a number of documents.
As we saw in the previous chapter, the user can issue these manipulations by means
of the keyboard and mouse. Another common source of manipulations is by issueing
commands to the application. This is where menus come in. Menus help a program
to structure the set of available commands. To the user of an application, the use
of menus provides a consistent and easily browsable graphical display of the set
of available commands. For these reasons it is recommended to use menus in a
program.

In Section 10.1 we introduce the standard set of menu de�nitions that are at a
programmers disposal. Then the glue is introduced to create larger menu structures
in Section 10.2. One special menu is available for interactive processes that have
the multiple document interface (MDI) attribute, the windows menu. This menu
enumerates the current open and visible windows of that process and give some
commands to organise them. This is treated in Section 10.3. Menus provide a
consistent graphical interface to users. To enhance the consistency, a number of
programming conventions have evolved. These are discussed in Section 10.4.

10.1 Menus and menu elements

Menus and menu elements can be de�ned by means of the type de�nitions in mod-
ule StdMenuDef (Appendix A.15). Analogous to Windows, Dialogs, and Compound-

Controls, Menus are parameterised with a type constructor variable. The admiss-
able instances are the menu elements. Below we introduce each of the components.

10.1.1 The menu attributes

The menu attributes are used by both menus and menu elements. They are the
following:

:: MenuAttribute ps

= MenuId Id

| MenuSelectState SelectState

| MenuIndex Int

| MenuShortKey Char

| MenuMarkState MarkState

| MenuFunction (IOFunction ps)

87

88 CHAPTER 10. MENUS

| MenuModsFunction (ModsIOFunction ps)

The MenuId attribute identi�es the menu or menu element to which it is associated.
If you do not provide a MenuId the menu (element) can not be modi�ed.

The MenuSelectState attribute de�nes whether the menu (element) can be used
by the user (Able) or not (Unable). Usually this will a�ect the look of the menu
(element). The default value is Able.

The MenuIndex attribute de�nes the index position of a menu. Index positions
range from one (for the �rst menu) upto the number of menus. A negative or zero
MenuIndex attribute value will place the menu in front of all current menus. A
MenuIndex attribute value that is larger than the current number of menus will
place the menu behind all current menus. Other MenuIndex attribute values place
the menu behind the menu with that index value.

The MenuShortKey attribute de�nes a character that can be used by user to select
the menu element to which the character is associated by means of the keyboard.
The menu element can be selected by pressing that character and some special,
platform dependent meta key.

The MenuMarkState attribute can add a check mark symbol (Mark) or leave it out
(NoMark) to a menu element. The default value is NoMark.

The MenuFunction and MenuModsFunction attributes add callback functions to
menu elements that are evaluated when the menu element to which they are as-
sociated is selected by the user. The di�erence between these two attributes is
that the former is simply evaluated whenever the menu element is selected, and
that the latter also provides the callback function with the modi�er keys that have
been pressed at the moment of selecting the menu element (for the de�nition of the
modi�er). In a MenuAttribute list, the �rst of these two attributes is chosen.

10.1.2 The Menu

A menu is a top level interface element that contains a group of related commands.
The de�nition of a menu is as follows:

:: Menu m ls ps

= Menu Title (m ls ps) [MenuAttribute *(ls,ps)]

The usual appearance of a menu is by its title. The user can browse through its
commands by mouse or by a platform dependent keyboard interface. Valid menu
attributes are:

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

p
MenuShortKey

MenuMarkState

MenuFunction

MenuModsFunction

Example Here is an example of a menu. The left picture shows the menu when
not selected by the user, the right picture when selected by the user.

10.1. MENUS AND MENU ELEMENTS 89

menu

= Menu "Menu"

(MenuItem "Open..." [MenuShortKey 'o']

:+: MenuItem "Close" [MenuSelectState Unable

,MenuShortKey 'w'

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q']

) []

10.1.3 The MenuItem

The menu item is the standard element that refers to a command. The de�nition
of a menu item is as follows:

:: MenuItem ls ps = MenuItem Title [MenuAttribute *(ls,ps)]

The title of a menu element is displayed as a member of its parent menu. When
the user selects the menu item its Menu(Mods)Function attribute is evaluated if the
menu item, and all of its parent menus are Able. The appearence of the menu item
re
ects this state. Valid menu item attributes are:

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

MenuShortKey
p

MenuMarkState
p

MenuFunction
p

MenuModsFunction
p

Examples of menu items are given in Section 10.1.2.

10.1.4 The MenuSeparator

Themenu separator is a menu element that is only used to separate groups of related
menu elements within a parent menu. Graphically, a menu separator usually inserts
some vertical space within a menu. Menu separators have no further functionality.
The de�nition of a menu separator is as follows:

:: MenuSeparator ls ps = MenuSeparator [MenuAttribute *(ls,ps)]

Because menu separators have no other purpose than providing some `white space'
between menu elements, the only valid menu separator attribute is the MenuId:

90 CHAPTER 10. MENUS

MenuAttribute: Valid:
MenuId

p
MenuSelectState

MenuIndex

MenuShortKey

MenuMarkState

MenuFunction

MenuModsFunction

In the menu example of Section 10.1.2 a menu separator has been used.

10.1.5 The RadioMenu

A radio menu element is a group of menu items of which exactly one menu item is
selected. All alternatives are visible. The de�nition of a radio menu is as follows:

:: RadioMenu ls ps = RadioMenu [MenuRadioItem *(ls,ps)] Index

[MenuAttribute *(ls,ps)]

:: MenuRadioItem ps :== (Title,Maybe Id,Maybe Char,IOFunction ps)

The initially selected item is indicated by the Index value. As a convention in the
object I/O library, when indicating elements indices range from 1 upto the number
of elements. So n elements are indexed by 1. . .n. In case the index is out of range,
i.e. less than 1 or larger than n, it is set to 1 and n respectively. Valid radio menu
attributes are:

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

MenuShortKey
p

MenuMarkState

MenuFunction

MenuModsFunction

When an item of the radio menu is selected the previously selected radio menu
item will be unchecked, and the new radio menu item gets the check mark. The
corresponding callback function is then evaluated. The callback function is also
evaluated if the currently selected radio menu item is selected.

Example Here is an example of a radio menu and what it initially looks like (it is
instructive to compare this with the radio control example at page 63).

radiomenu

= RadioMenu

[("Radio item "+++toString i,Nothing,Just (iChar i),id)

\\ i<-[1..5]

] 1 []

where

iChar i = toChar (toInt '1'+i-1)

10.1. MENUS AND MENU ELEMENTS 91

10.1.6 The SubMenu

The sub menu is a menu element that contains other menu elements. So it is a
menu within a menu, and ofcourse can contain sub menus as well. The de�nition
of a sub menu is as follows:

:: SubMenu m ls ps = SubMenu Title (m ls ps) [MenuAttribute *(ls,ps)]

The usual appearance of a sub menu is by its title. The user can browse through
its elements by mouse or by a platform dependent keyboard interface. Valid sub
menu attributes are:

MenuAttribute: Valid:
MenuId

p
MenuSelectState

p
MenuIndex

MenuShortKey

MenuMarkState

MenuFunction

MenuModsFunction

Example Here is an example of a sub menu. It is actually the same de�nition as
the menu at page 88 except that it has a SubMenu data constructor rather
than the Menu data constructor and a di�erent title. The left picture shows
the sub menu when not selected by the user, the right picture when selected
by the user.

submenu

= SubMenu "Sub Menu"

(MenuItem "Open..." [MenuShortKey 'o']

:+: MenuItem "Close" [MenuSelectState Unable

,MenuShortKey 'w'

]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuShortKey 'q']

) []

92 CHAPTER 10. MENUS

10.2 Menu glue

In the previous section the standard set of menus and menu elements has been
discussed. This list is not complete. In the library module StdMenuElementClass

(Appendix A.17) a number of additional instances are de�ned, namely the type
constructors AddLS, NewLS, ListLS, NilLS, and :+: (their de�nition can be found
in Appendix A.12). These additional instances are required to glue menus. They
are treated below.

10.2.1 :+:

The most common constructor to glue menu elements is :+:. Its type constructor
de�nition and MenuElements class instance declaration are as follows:

:: :+: t1 t2 local context

= (:+:) infixr 9 (t1 local context) (t2 local context)

instance MenuElements ((:+:) m1 m2) | MenuElements m1

& MenuElements m2

Given two MenuElements instances m1 and m2, working on the same local state
of type local and context state context, the expression m1:+:m2 is also a Menu-

Elements instance working on the same local state and context state. Because :+: is
right associative, the expression m1:+:m2:+:m3 should be read as m1:+:(m2:+:m3).

10.2.2 ListLS and NilLS

In principle the :+: glue is su�cient to create all required menu element structures.
In case of working with a number of menu instances of the same type, it is much
more convenient to use lists and list comprehensions. This glue is provided by
the type constructors ListLS and NilLS. Their type constructor de�nitions and
MenuElements class instance declarations are as follows:

:: ListLS t local context = ListLS [t local context]

:: NilLS local context = NilLS

instance MenuElements (ListLS m) | MenuElements m

instance MenuElements NilLS

Given a list of MenuElements instances ms = [m1 ...mn], working on the same lo-
cal state of type local and context state context, the expression ListLS ms is also
a MenuElements instance working on the same local state and context state. The
type constructor NilLS is a shorthand for ListLS []. It can also be conveniently
used to state that a SubMenu or Menu has no menu elements.

10.2.3 AddLS and NewLS

The previously discussed glueing type constructors always glue menu elements that
work on the same local state and context state. Two other glueing constructors
are de�ned to extend and change the local state, AddLS and NewLS. Their type
constructor de�nitions and MenuElements class instance declarations are as follows:

10.3. THE WINDOWS MENU 93

:: AddLS t local context

= E..add:

{ addLS :: add

, addDef:: t *(add,local) context

}

:: NewLS t local context

= E..new:

{ newLS :: new

, newDef:: t new context

}

instance MenuElements (AddLS m) | MenuElements m

instance MenuElements (NewLS m) | MenuElements m

Given a MenuElements instance m1 that works on a local state of type local and a
context state of type context, one can add another MenuElements instance m2 that
works on an extended local state of type (add,local) and the same context state
of type context. Let x be a value of type add, then this is done by the expression
m1 :+: {addLS=x, addDef=m2}.

Given a MenuElements instance m1 that works on a local state of type local and a
context state of type context, one can add another MenuElements instance m2 that
works on a new local state of type new and the same context state of type context.
Let x be a value of type new, then this is done by the expression m1 :+: {newLS=x,

newDef=m2}.

In both cases the extended part of the local state and the new local state are
encapsulated completely from the external context using existential quanti�cation.

10.3 The Windows menu

In this section the special MDI Windows menu should be discussed. This section
is not done because currently that menu has not yet been implemented for the
Windows(95/NT) platform.

10.4 Menu conventions

The use of menus provides application users with a consistent and uniform access to
the available set of commands. In this section we discuss a number of conventions
that are usually followed to increase the consistency level.

10.4.1 Subsetting the available commands

In general when using an interactive application, the application will move through
several states. In each state a particular subset of the complete set of available
commands will be applicable to the user while the remaining commands should
not be selected. A well designed application should make this clear to the user by
subsetting the available commands.

The easiest way to subset commands is by disabling and enabling the menu elements
that should be unselectable and selectable respectively. For this purpose the func-
tions enableMenuElements and disableMenuElements (module StdMenuElement,

94 CHAPTER 10. MENUS

Appendix A.16) are available to enable and disable individual menu elements. Com-
plete menus can be enabled and disabled using the StdMenu (Appendix A.14) func-
tions enableMenus and disableMenus. The whole current set of menus can be
enabled and disabled using enableMenuSystem and disableMenuSystem.

10.4.2 Command conventions

In this section we discuss some conventions that are found frequently in many
applications with respect to commands.

Clipboard commands

Applications that support the use of the clipboard (Chapter 7) to cut, copy, and
paste private and external data usually are found in an "Edit" menu. Conventions
are:

cut This command should be enabled only if the application is in a state that an
object has been selected that can be transfered to the clipboard. Issueing
this command should remove that object from its context and place it in the
clipboard. Its name should be "Cut" and it should have the shortkey attribute
'x'.

copy This command should be enabled only if the application is in a state that an
object has been selected that can be transfered to the clipboard. Issueing this
command should place it in the clipboard, but not remove it from its context.
Its name should be "Copy" and it should have the shortkey attribute 'c'.

paste This command should be enabled only if the clipboard contains an object
that can be currently incorporated in the application. Issueing this command
should read the clipboard and put that object in the application. Its name
should be "Paste" and it should have the shortkey attribute 'v'.

Undo command

Applications that allow users to manipulate documents by sequences of commands
can support an undo command. The undo command can also be undone by the redo
command. These commands are usually found in an "Edit" menu. Conventions
are:

undo This command should be enabled only if the user has issued a sequence of
commands that can be undone. The number of undoable commands depends
on the sophistication of the application. The name of this command is "Undo"
and it has the shortkey attribute 'z'.

redo This command should be enabled only if a (sequence of) undo command has
been issued. At each selection it restores the changes of the undo command.
The name of this command is "Redo" and it has the shortkey attribute 'y'.

Document commands

The document commands are frequently found commands to create new documents,
open existing documents, and save and close open documents. These commands
are usually found in an "File" menu. Conventions are:

10.4. MENU CONVENTIONS 95

new This command should be enabled only if the application can modify a new
document. Issueing this command should create or reuse a window containing
the new document. Its name should be "New" and it should have the shortkey
attribute 'n'.

open This command should be enabled only if the application can modify an ad-
ditional, existing document. Issueing this command should give the user the
opportunity to search for a �le that will be opened by the application. For
this purpose the StdFileSelect function selectInputFile can be used (Ap-
pendix A.7). The name of the command should be "Open..." and it should
have the shortkey attribute 'o'.

close This command should be enabled only if the application has an open docu-
ment window or dialogue. Issueing this command should close the currently
active window or dialogue. It is good programming practice to check if the
document has been recently saved. If this is not the case, then the user should
be asked if the document should be saved before closing. The name of this
command should be "Close" and it should have the shortkey attribute 'w'.

save This command should be enabled only if the currently active document win-
dow version di�ers from a (possibly not present) �le version. Issueing this
command should save the current state of the document in the active window
to �le. If there is no �le associated yet, then the application should �rst ask for
a �le name. For this purpose the StdFileSelect function selectOutputFile

can be used (Appendix A.7). The name of the command should be "Save"

and it should have the shortkey attribute 's'.

save as This command should be enabled only if the application has an open
document window. Issueing this command should give the user the possi-
bility to browse the �le system and provide a �le name. For this purpose
the StdFileSelect function selectOutputFile can be used (Appendix A.7).
The name of the command should be "Save As..."

Quit command

Users can leave an application using the quit command. A user should always be
allowed to quit the application. It is good programming practice to check if there are
any unsaved documents in the application. If this is the case then the user should
be asked if these documents should be saved before closing. The name of the quit
command is usually "Quit" and has the shortkey attribute 'q'. This command is
usually found in a "File" menu.

96 CHAPTER 10. MENUS

Chapter 11

Timers

Timers provide interactive programs with a tool to let actions occur at regular
time intervals. These actions respond to timer events, and so they can be properly
de�ned as callback functions. Typical examples of timer uses are blinking cursors,
clocks, and time-out mechanisms.

The de�nition types of timers can be found in module StdTimerDef, Appendix
A.29. The main type de�nitions are as follows:

:: Timer t ls ps

= Timer TimerInterval (t ls ps) [TimerAttribute *(ls,ps)]

:: TimerInterval

:== Int

:: TimerAttribute ps

= TimerId Id

| TimerSelectState SelectState

| TimerFunction (TimerFunction ps)

:: TimerFunction ps

:== NrOfIntervals->ps->ps

A TimerInterval is an integer value that must be atleast zero. The time unit is
platform dependent and is de�ned by the StdSystem function ticksPerSecond (see
Appendix A.26).

The TimerAttributes are the following:

TimerId This attribute identi�es the timer. If you do not provide a TimerId the
timer can not be modi�ed.

TimerSelectState This attribute de�nes whether the timer will respond to timer
events (Able) or not (Unable). The default value is Able.

TimerFunction This attribute is the callback function that is evaluated when a
timer event is handled. Its �rst argument is the number of whole timer inter-
vals that have elapsed since its previous evaluation, so this value is atleast 1.
If the timer interval is zero, then this number is always 1. Enabling a timer
from a disabled state resets the last evaluation time.

The Timer type constructor is parameterised with a type constructor variable. Anal-
ogous to menus that contain menu elements, timers can contain timer elements.

97

98 CHAPTER 11. TIMERS

The instances must be member of the TimerElements class. This is expressed by
the timer creation function, openTimer which can be found in module StdTimer

(Appendix A.28):

class Timers tdef where

openTimer :: .ls !(tdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

instance Timers (Timer t) | TimerElements t

Currently, the instances of the TimerElements class are receivers and the usual
glueing type constructors that we have already encountered in controls (Section
9.2) and menu elements (Section 10.2), namely AddLS, NewLS, ListLS, NilLS, and
:+:. The receiver instances are declared in module StdTimerReceiver (Appendix
A.31). Receivers are not handled in this chapter but in Chapter 12. The glueing
constructors are declared in the same module StdTimerElement that contains the
TimerElements class (Appendix A.30).

11.1 Examples

In this section we give some examples to illustrate the use of timers.

11.1.1 Expanding circles

In this example we create a program that uses a timer to draw a number of growing
concentric circles in a �xed size window periodically. It also opens a menu containing
only the quit command. Figure 11.1 shows the program in action. We discuss these
object I/O components in reverse order (menu, window, timer).

Figure 11.1: The circles program in action.

The menu de�nition is very simple, as it contains only one command to termi-
nate the example program. Recall that to terminate an interactive process the
StdProcess function closeProcessmust be used. The StdIOCommon function noLS

suitably turns closeProcess into the desired type. Here is the menu de�nition.

mdef = Menu "Circles"

11.1. EXAMPLES 99

(MenuItem "Quit" [MenuFunction (noLS closeProcess)

,MenuShortKey 'q'

]

) []

For simplicity, the window in which the circles are to be drawn has a �xed size,
namely windowEdge by windowEdge (200 in the example). To ease drawing, we take
care that the view domain of the window has the origin zero right in the center of
the view domain. This can be done conveniently by de�ning the WindowViewDomain
attribute to be:

windowViewDomain

= { corner1 = {x= ~windowEdge/2,y= ~windowEdge/2}

, corner2 = {x= windowEdge/2,y= windowEdge/2}

}

The window does not contain controls (expressed by the Controls type instance
NilLS) and is identi�ed by the value windowid. The window de�nition is as follows:

wdef = Window "Circles" NilLS

[WindowId windowid

,WindowSize (rectangleSize windowViewDomain)

,WindowViewDomain windowViewDomain

]

The timer draws a number of concentric circles that have an increasing radius. For
this purpose it uses a local state of the following type and initial value:

:: TimerState

= { nrCircles :: Int

, equiDistance :: Int

, minRadius :: Int

}

initTimerState

= { nrCircles = 4

, equiDistance = 2

, minRadius = 0

}

The nrCircles �eld contains the number of circles that are drawn. The equi-

Distance �eld is the di�erence of radius between two neighbouring circles. The
minRadius �eld keeps track of the radius of the smallest visible circle.

The timer interval is set to a twentieth of a second (ticksPerSecond/20). The
timer contains no timer elements. Its de�nition is as follows:

tdef = Timer (ticksPerSecond/20) NilLS [TimerFunction timer]

The timer function timerwill be evaluated by the object I/O system every twentieth
of a second (if possible). The timer function actually ignores the number of elapsed
intervals and simply draws the next sequence of circles. There are two cases to
distinguish:

If the smallest circle still �ts entirely inside the window (tested by minRadius <

windowEdge/2), then timer erases the smallest circle by drawing it in white. It

100 CHAPTER 11. TIMERS

then draws the new circle in black which should have a radius equal to minRadius

+ nrCircles * equiDistance. Finally, the minRadius �eld is changed to re
ect
the fact that the smallest visible circle now has radius minRadius + equiDistance.

If the smallest circle does not �t entirely inside the window, then timer completely
erases the window by �lling the document layer picture with a white rectangle. By
setting the new local TimerState back to initTimerState the circles are drawn
again from the center.

timer :: NrOfIntervals (TimerState,PSt .l .p)

-> (TimerState,PSt .l .p)

timer _ (ls=:{nrCircles,equiDistance,minRadius},ps)

| minRadius<windowEdge/2

ls = {ls & minRadius=minRadius+equiDistance}

newRadius = minRadius+nrCircles*equiDistance

ps = appPIO (drawInWindow windowid

[setPenColour White

,draw {oval_rx=minRadius

,oval_ry=minRadius

}

,setPenColour Black

,draw {oval_rx=newRadius

,oval_ry=newRadius

}

]) ps

= (ls,ps)

| otherwise

ps = appPIO (drawInWindow windowid

[setPenColour White

,fill windowViewDomain

]) ps

= (initTimerState,ps)

The last details that remain to be de�ned are the actual opening of the menu,
window, and timer, the opening of the interactive process, and the creation of the
windowid. For completeness we show the complete program code.

module circles

// **

// Clean tutorial example program.

//

// This program creates a window that displays growing concentric circles.

// For this purpose it uses a timer.

// **

import StdEnv, StdIO

:: NoState = NoState

:: TimerState

= { nrCircles :: Int

, equiDistance :: Int

, minRadius :: Int

}

Start :: *World -> *World

Start world

(windowid,world) = openId world

11.1. EXAMPLES 101

= startIO NoState NoState [initialise windowid] [] world

initialise windowid ps

(error,ps) = openMenu NoState mdef ps

| error<>NoError

= closeProcess ps

(error,ps) = openWindow NoState wdef ps

| error<>NoError

= closeProcess ps

(error,ps) = openTimer initTimerState tdef ps

| error<>NoError

= closeProcess ps

| otherwise

= ps

where

mdef = Menu "Circles"

(MenuItem "Quit" [MenuFunction (noLS closeProcess)

,MenuShortKey 'q'

]

) []

wdef = Window "Circles" NilLS

[WindowId windowid

, WindowSize (rectangleSize windowViewDomain)

, WindowViewDomain windowViewDomain

]

tdef = Timer (ticksPerSecond/20) NilLS

[TimerFunction timer

]

windowEdge = 200

windowViewDomain = { corner1={x= ~windowEdge/2,y= ~windowEdge/2}

, corner2={x= windowEdge/2,y= windowEdge/2}

}

initTimerState = { nrCircles = 4

, equiDistance= 2

, minRadius = 0

}

timer _ (ls=:{nrCircles,equiDistance,minRadius},ps)

| minRadius<windowEdge/2

ls = {ls & minRadius=minRadius+equiDistance}

newRadius = minRadius+nrCircles*equiDistance

ps = appPIO

(drawInWindow windowid

[setPenColour White

,draw {oval_rx=minRadius,oval_ry=minRadius}

,setPenColour Black

,draw {oval_rx=newRadius,oval_ry=newRadius}

]

) ps

= (ls,ps)

| otherwise

ps = appPIO

(drawInWindow windowid

[setPenColour White,fill windowViewDomain]

) ps

= (initTimerState,ps)

11.1.2 Internal clock

In this example we create a program that uses three timers to track the elapsed time
since startup. The timers track the elapsed seconds, minutes, and hours respectively.
A dialogue is used to provide visual feedback. Figure 11.2 shows the application in
action. We �rst have a look at the dialogue, and then the three timers.

The dialogue ddef simply uses TextControls to display the hours, minutes, and
seconds. These controls are identi�ed by the Id values hoursId, minutesId, and

102 CHAPTER 11. TIMERS

Figure 11.2: The timing program in action.

secondsId respectively. The dialogue itself is identi�ed by the value dialogId.
CompoundControls are used to get the layout done in the desired way. Observe the
use of list comprehensions and the ListLS Controls class instance. In this example
closing the dialogue also terminates the application. Here is the dialogue de�nition:

ddef

= Dialog "Stopwatch"

(CompoundControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: CompoundControl

(ListLS [TextControl "00" [ControlPos (Left,zero)

,ControlId id

]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

)

[WindowClose (noLS closeProcess)

, WindowId dialogId

]

Because the operation of each of the three timers is very similar, we use one function
tdef to de�ne them and parameterise it with their respective TimerIntervals.
The timers do not contain any timer elements. Each timer has a local integer
state (initially zero) that keeps the current number of evaluated time units modulo
their maximum number. This number is derived from the TimerInterval using
the straightforward function maxunit. The timerfunction tick now relies on the
NrOfIntervals parameter. Given the current number of evaluated time units in
its local integer state, each timer function adds the NrOfIntervals value to it.
Depending on the TimerInterval value, the proper modulo value is taken (using
maxunit). This new value is the new local state and is also drawn in the dialogue,
using a local convenience function setText and textid to determine the Id of the
corresponding text control.

tdef timerInterval

= Timer timerInterval NilLS [TimerFunction tick]

where

11.1. EXAMPLES 103

tick nrElapsed (time,ps)

time = (time+nrElapsed) mod (maxunit timerInterval)

= (time,setText (textid timerInterval) (toString time) ps)

setText id text ps

= appPIO (setWindow dialogId [setControlTexts [(id,text)]]) ps

maxunit interval

| interval==second = 60

| interval==minute = 60

| interval==hour = 24

textid interval

| interval==second = secondsId

| interval==minute = minutesId

| interval==hour = hoursId

The last details that remain to be de�ned are the actual opening of the three timers,
the dialogue, the opening of the interactive process, and the creation of the proper
Ids. For completeness we show the complete program code.

module stopwatch

// **

// Clean tutorial example program.

//

// This program creates a window that tracks the elapsed time since startup.

// For this purpose it uses three timers to track the seconds, minutes, and hours

// separately.

// **

import StdEnv,StdIO

:: NoState

= NoState

:: DialogInfo

= { secondsId :: Id

, minutesId :: Id

, hoursId :: Id

, dialogId :: Id

}

second :== ticksPerSecond

minute :== 60*second

hour :== 60*minute

openDialogInfo :: *env -> (DialogInfo,*env) | Ids env

openDialogInfo env

([secondsid,minutesid,hoursid,dialogid:_],env) = openIds 4 env

= ({ secondsId=secondsid

, minutesId=minutesid

, hoursId =hoursid

, dialogId =dialogid

}

, env

)

Start :: *World -> *World

Start world

= startIO NoState NoState [initialise`] [] world

where

initialise` ps

(dialogInfo,ps) = accPIO openDialogInfo ps

= initialise dialogInfo ps

104 CHAPTER 11. TIMERS

initialise :: DialogInfo (PSt .l .p) -> (PSt .l .p)

initialise {secondsId,minutesId,hoursId,dialogId} ps

(errors,ps) = seqList [openTimer 0 (tdef timerinfo)

\\ timerinfo<-[second,minute,hour]

] ps

| any ((<>) NoError) errors

= closeProcess ps

(error,ps) = openDialog NoState ddef ps

| error<>NoError

= closeProcess ps

| otherwise

= ps

where

tdef timerInterval

= Timer timerInterval NilLS [TimerFunction tick]

where

tick nrElapsed (time,ps)

time = (time+nrElapsed) mod (maxunit timerInterval)

= (time,setText (textid timerInterval) (toString time) ps)

setText id text ps

= appPIO (setWindow dialogId [setControlTexts [(id,text)]]) ps

textid interval

| interval==second = secondsId

| interval==minute = minutesId

| interval==hour = hoursId

maxunit interval

| interval==second = 60

| interval==minute = 60

| interval==hour = 24

ddef= Dialog "Stopwatch"

(CompoundControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: CompoundControl

(ListLS [TextControl "00" [ControlPos (Left,zero)

,ControlId id]

\\ id<-[hoursId,minutesId,secondsId]

]

) []

)

[WindowClose (noLS closeProcess)

, WindowId dialogId

]

Chapter 12

Receivers

All the interactive object I/O components discussed so far have in common that the
events to which they respond are abstract. In this context abstract means that it is
not speci�ed in detail what concrete events cause a speci�c callback function to be
evaluated. For instance, a callback function associated with a MenuItem (Section
10.1.3) is evaluated when it has been selected by the user. How this selection takes
place is not speci�ed.

In this section we discuss an interactive object I/O component that responds to
program de�ned events, or rather messages. This component is the receiver. It
plays an important role in the construction of interactive components. There are
no restrictions on the kind of messages that can be sent or received, provided that
they are type correct. The latter is obtained by using special identi�cation values
for receivers, the receiver ids (Chapter 4).

We will �rst have a look at the de�nition of receivers in Section 12.1. Receivers can
be opened as top level object I/O components, but also as elements of windows,
dialogues, and menus. This is discussed in Section 12.2. Knowing how to de�ne
and open receivers, we show which functions are available to send messages in
Section 12.3. Section 12.4 contains a number of examples to demonstrate the use
of receivers.

12.1 Receiver de�nitions

There are two kinds of receivers. Uni-directional receivers respond only to mes-
sages. Bi-directional receivers respond to messages and also reply with a message.
The types needed to de�ne receivers can be found in the module StdReceiverDef,
Appendix A.25.

A uni-directional receiver that responds to messages of type msg is de�ned by:

:: Receiver msg ls ps

= Receiver (RId msg) (ReceiverFunction msg *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: ReceiverFunction msg ps

:== msg -> ps -> ps

A bi-directional receiver that responds to messages of type msg and returns a re-
sponse message of type resp is de�ned by:

105

106 CHAPTER 12. RECEIVERS

:: Receiver2 msg resp ls ps

= Receiver2 (R2Id msg resp) (Receiver2Function msg resp *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: Receiver2Function msg resp ps

:== msg -> ps -> (resp,ps)

The set of receiver attributes is currently limited to the ReceiverSelectState

which default value is Able.

:: ReceiverAttribute ps

= ReceiverSelectState SelectState

12.2 Receiver creation

Receivers can be opened as top level interface elements such as windows, dialogues,
menus, and timers. This is done in the usual, overloaded way (module StdReceiver,
Appendix A.24):

class Receivers rdef where

openReceiver :: .ls !(rdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

...

instance Receivers (Receiver msg)

instance Receivers (Receiver2 msg resp)

Receivers can also be opened as elements of windows, dialogues, menus, and timers.
So, in a window or dialogue one can not only add the set of controls as discussed
in Chapter 9 but also receivers. This is accomplished by declaring receivers to be
instances of the Controls type constructor class in module StdControlReceiver

(Appendix A.6). Analogously, receivers can be menu elements (module StdMenu-

Receiver, Appendix A.18), and timer elements (module StdTimerReceiver, Ap-
pendix A.31).

In all cases, when opening receivers, their R(2)Id values must be unique (Chapter
4). The reason is that the message passing functions that we are about to discuss
next require the R(2)Id value.

12.3 Message passing

In contrast with the previously discussed object I/O components, receivers must
have an identi�cation value. The message passing functions require this identi�ca-
tion value to ensure that a message of the correct type is sent. The message passing
functions can be found in module StdReceiver, Appendix A.24.

All message passing functions return a report about the message passing action.
This report is an algebraic type SendReport has the following alternatives:

:: SendReport

= SendOk

| SendUnknownProcess

| SendUnknownReceiver

12.3. MESSAGE PASSING 107

| SendUnableReceiver

| SendDeadlock

For all functions, the alternative value SendOk is returned in case message pass-
ing was successful. The alternative SendUnknownReceiver is returned in case the
indicated receiver is not open at the moment of sending the message. The other
SendReport alternatives are discussed below.

We start with message passing to uni-directional receivers in Section 12.3.1. Bi-
directional message passing is discussed in Section 12.3.2.

12.3.1 Uni-directional message passing

There are two functions a programmer can use to send a message to a uni-directional
receiver: asyncSend and syncSend. which have the same function types:

asyncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport,!PSt .l .p)

syncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport,!PSt .l .p)

Using asyncSend, a message is placed at the end of the asynchronous message queue
of the indicated receiver and will, at some point, be handled by that receiver. It
is unspeci�ed when that event occurs. Because events are handled one by one, the
programmer can be certain that this will not occur within evaluation of the callback
function that applies asyncSend. Asynchronous messages that are sent in sequence
will be evaluated in that sequence. Asynchronous message passing only fails in
case the indicated receiver is not open, as discussed above. One should observe
that successfully queueing an asynchronous message does not guarantee that the
message will be handled. The receiver might be disabled or closed before all of its
messages have been handled.

If one wants to enforce a receiver to handle a message, one should use syncSend.
This function does not place the message in the message queue of the indicated
receiver, but evaluates its receiver function given the message. This implies that
syncSend has to switch context because the indicated receiver may be part of an-
other object I/O component. Another consequence is that synchronous messages
may overtake asynchronous messages. However, synchronous messages that are sent
in sequence will be evaluated in that sequence.

Sending a synchronous message fails in case the indicated receiver does not exist. If
the indicated receiver does exist, but its ReceiverSelectState attribute is Unable,
then the message is also not handled. In this case, the SendReport alternative
SendUnableReceiver is returned.

Examples of uni-directional message passing are given in Section 12.4. The �rst
example, in Section 12.4.1, demonstrates the use of asynchronous message passing,
while the second example, in Section 12.4.2, demonstrates synchronous message
passing.

12.3.2 Bi-directional message passing

Bi-directional message passing is synchronous. A message is sent using the function
syncSend2:

syncSend2 :: !(R2Id msg resp) msg !(PSt .l .p)

-> (!(!SendReport,!Maybe resp), !PSt .l .p)

108 CHAPTER 12. RECEIVERS

Analogous to syncSend, syncSend2 locates the indicated bi-directional receiver and
applies the argument message immediately to the corresponding receiver function.
If this receiver could be found and happens to be Able, evaluation of the receiver
function will yield a response message resp. In this case the SendReport result of
syncSend2 is SendOk, and the response value is returned as (Just resp). In all
exceptional cases, there is no response value and Nothing is returned. To evaluate
the receiver function, syncSend2 has to switch context as well.

Bi-directional receivers can be used to retrieve local encapsulated data. Example
12.4.3 demonstrates this.

12.4 Examples

In this section we give some examples to illustrate the use of receivers.

12.4.1 Talk windows

In this example we create a program that uses receivers to send keyboard input
from one window to another window, and vice versa. This results in a talk like
application (although it is not very useful as a talk application because it runs on
one computer). Figure 12.1 shows the application in action.

Figure 12.1: The talk program in action.

The initialisation actions of the talk program, de�ned by the function initialise,
�rst create a menu that has only one quit menu item. Then two RId values are gen-
erated that will be used to identify the two receivers. The function openTalkWindow

is then applied twice to create the two windows. Its parameters are the name of
the window and the two receiver ids. The �rst receiver id parameter identi�es the
private receiver, while the second identi�es the other receiver.

initialise :: (PSt .l .p) -> PSt .l .p

initialise ps

menu = Menu "Talk"

(MenuItem "Quit" [MenuShortKey'q'

,MenuFunction (noLS closeProcess)

12.4. EXAMPLES 109

]

) []

(error,ps) = openMenu NoState menu ps

| error<>NoError

= abort "talk could not open menu."

(a,ps) = accPIO openRId ps

(b,ps) = accPIO openRId ps

ps = openTalkWindow "A" a b ps

ps = openTalkWindow "B" b a ps

| otherwise

= ps

openTalkWindow creates a dialogue in which the user can type text and see the mes-
sages of the other talk window. The dialogue consists of three components: in the
�rst EditControl, identi�ed by inId, the user can type text. The ControlKeyboard
attribute takes care that the program can respond to keyboard input. The second
EditControl, identi�ed by outId, is used to present the messages coming from the
other talk window. To prevent the user from typing text in this control its initial
ControlSelectState attribute is Unable. The Receiver component is the one to
which the messages are being sent.

openTalkWindow :: String (RId String) (RId String) (PSt .l .p)

-> PSt .l .p

openTalkWindow name me you ps

(wId, ps) = accPIO openId ps

(inId, ps) = accPIO openId ps

(outId,ps) = accPIO openId ps

talk = Dialog ("Talk "+++name)

(EditControl "" (hmm 50.0) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input wId inId you))

]

:+: EditControl "" (hmm 50.0) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

]

:+: Receiver me (noLS1 (receive wId outId)) []

)

[WindowId wId

]

(error,ps) = openDialog NoState talk ps

| error<>NoError

= abort "talk could not open window."

| otherwise

= ps

The input EditControl has a keyboard �lter, inputfilter, that accepts only
KeyDown keyboard input.

inputfilter :: KeyboardState -> Bool

inputfilter keystate = getKeyboardStateKeyState keystate<>KeyUp

110 CHAPTER 12. RECEIVERS

For accepted keyboard input value of type KeyboardState, the callback func-
tion input is evaluated. It �rst gets the current state of the dialogue, using
the StdControl library function getWindow (Appendix A.3). From this value
the current content of the input EditControl can be retrieved, using the func-
tion getControlTexts. This new content, which is a String, is being sent asyn-
chronously to the other receiver. Note that input assumes that both getWindow

and asyncSend never fail.

input :: Id Id (RId String) KeyboardState (PSt .l .p) -> PSt .l .p

input wId inId you _ ps

(Just window,ps)

= accPIO (getWindow wId) ps

text = fromJust (snd (hd (getControlTexts [inId] window)))

= snd (asyncSend you text ps)

For every string message received from the other talk window, the receiver func-
tion receive is evaluated. It simply replaces the current content of the output
EditControl with the new text. This is done using the function setControl-

Texts. The function setEditControlCursor makes sure that the end of the text
is visible.

receive :: Id Id String (PSt .l .p) -> PSt .l .p

receive wId outId text ps

= appPIO (setWindow wId [setControlTexts [(outId,text)]

,setEditControlCursor outId (size text)

]) ps

For completeness the whole program is shown here.

module talk

// **

// Clean tutorial example program.

//

// This program creates two windows that communicate with each other using message

// passing. Text that has been typed in one window is being sent to the other, and

// vice versa.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

= startIO NoState NoState [initialise] [] world

where

initialise :: (PSt .l .p) -> PSt .l .p

initialise ps

menu = Menu "Talk"

(MenuItem "Quit" [MenuShortKey 'q'

, MenuFunction (noLS closeProcess)

]

) []

(error,ps) = openMenu undef menu ps

| error<>NoError

= abort "talk could not open menu."

(a,ps) = accPIO openRId ps

(b,ps) = accPIO openRId ps

12.4. EXAMPLES 111

ps = openTalkWindow "A" a b ps

ps = openTalkWindow "B" b a ps

| otherwise

= ps

openTalkWindow :: String (RId String) (RId String) (PSt .l .p) -> PSt .l .p

openTalkWindow name me you ps

(wId, ps) = accPIO openId ps

(inId, ps) = accPIO openId ps

(outId,ps) = accPIO openId ps

wdef = Dialog ("Talk "+++name)

(EditControl "" (hmm 50.0) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input wId inId you))

]

:+: EditControl "" (hmm 50.0) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

]

)

[WindowId wId

]

(error,ps) = openDialog undef wdef ps

| error<>NoError

= abort "talk could not open window."

rdef = Receiver me (noLS1 (receive wId outId)) []

(error,ps) = openReceiver NoState rdef ps

| error<>NoError

= abort "talk could not open receiver"

| otherwise

= ps

where

inputfilter :: KeyboardState -> Bool

inputfilter keystate

= getKeyboardStateKeyState keystate<>KeyUp

input :: Id Id (RId String) KeyboardState (PSt .l .p) -> PSt .l .p

input wId inId you _ ps

(Just window,ps) = accPIO (getWindow wId) ps

text = fromJust (snd (hd (getControlTexts [inId] window)))

= snd (asyncSend you text ps)

receive :: Id Id String (PSt .l .p) -> PSt .l .p

receive wId outId text ps

= appPIO (setWindow wId [setControlTexts [(outId,text)]

, setEditControlCursor outId (size text)

]) ps

12.4.2 Resetting the counter

In this example we extend the example counter in Section 9.2.4 (page 74) with a
means to reset the counter to zero. We proceed in a bottom-up style: the counter
control is a compound control extended with a receiver that, when it receives a
message, will reset the counter to zero. This control encapsulates its local counter
state. Then a button control is de�ned that, when selected, sends a message to the
receiver component of the counter control. The whole is being placed in a dialogue.
Figure 12.2 gives a snapshot of the program.

The main component is ofcourse the counter control, de�ned by counter. It encap-
sulates an integer local state with initial value initcount. Its de�nition is almost
identical to the one shown on page 74 except that a Receiver has been added.

112 CHAPTER 12. RECEIVERS

Figure 12.2: The counter control with reset button.

counter

= {newLS = initcount

,newDef= CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)]

:+: Receiver resetid reset []

) []

}

The only purpose of the receiver is to reset the current local counter value to
initcount and show this by changing the content of the EditControl. Note that
the receiver function reset is not interested at all in the message.

reset :: m (Int,PSt .l .p) -> (Int,PSt .l .p)

reset _ (_,ps)

= (initcount,setText windowid displayid initcount ps)

The reset button is a straightforward ButtonControl. It is centered below the
counter control. Its ControlFunction is just to send a message synchronously to
the receiver component of the counter control. Because this component does not
care about the message, the button function can be as bold to send the StdMisc

library function undef. This function, when evaluated, aborts the application. This
demonstrates that message passing is truely lazy in the message argument.

resetbutton

= ButtonControl "Reset"

[ControlFunction (noLS (snd o syncSend resetid undef))

,ControlPos (Center,zero)

]

The �nal details of the program are to generate the proper identi�cation values and
to create the initial process and dialogue. For completeness, the program code is
given here.

12.4. EXAMPLES 113

module counterreset

// **

// Clean tutorial example program.

//

// This program defines a Controls component that implements a manually settable

// counter. A receiver is used to add a reset option.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

= startIO NoState NoState [initialise] [] world

where

initialise ps

(windowid, ps) = accPIO openId ps

(displayid,ps) = accPIO openId ps

(resetid, ps) = accPIO openRId ps

(error,ps) = openDialog NoState

(dialog windowid displayid resetid) ps

| error<>NoError

= abort "counter could not open Dialog."

| otherwise

= ps

dialog windowid displayid resetid

= Dialog "Counter"

(counter

:+: resetbutton

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

where

counter

= { newLS = initcount

, newDef = CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)]

:+: Receiver resetid reset []

) []

}

where

initcount = 0

count :: Int (Int,PSt .l .p) -> (Int,PSt .l .p)

count dx (count,ps)

= (count+dx,setText windowid displayid (count+dx) ps)

reset :: m (Int,PSt .l .p) -> (Int,PSt .l .p)

reset _ (_,ps)

= (initcount,setText windowid displayid initcount ps)

setText :: Id Id x (PSt .l .p) -> PSt .l .p | toString x

setText wid cid x ps

= appPIO (setWindow wid [setControlTexts [(cid,toString x)]]) ps

114 CHAPTER 12. RECEIVERS

resetbutton

= ButtonControl "Reset"

[ControlFunction (noLS (snd o syncSend resetid undef))

,ControlPos (Center,zero)

]

12.4.3 Reading the counter

In this example we extend the counter example once more and add a dialogue that
reads the local counter value. To be able to do this a bi-directional receiver is added
to the counter. Figure 12.3 gives a snapshot of the program.

Figure 12.3: Reading the counter control with reset button.

The �rst change is to extend the counter component with a bi-directional receiver
component de�ned by the expression (Receiver2 readid read []), where readid
is a R2Id identi�cation value. The receiver function read is very straightforward:
it returns the current local counter value without changing anything (also in this
case read is not interested in the input message type):

read :: m (Int,PSt .l .p) -> (Int,(Int,PSt .l .p))

read _ (count,ps)

= (count,(count,ps))

The initialisation actions open another dialogue de�ned by display that obtains
and shows the counter value on request. This request can be done by a user by
pressing the ButtonControl labeled "Read".

display windowid displayid readid

= Dialog "Read"

(EditControl "" (hmm 50.0) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "Read" [ControlFunction (noLS read)

,ControlPos (Center,zero)

]

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

12.4. EXAMPLES 115

When the "Read" button has been selected, its callback function read is evaluated.
It sends a message to the bi-directional receiver component of the counter control
using syncSend2. If this action fails it aborts the program. Although this situation
will never occur, this check has been added for program hygiene. In a success-
full communication, value will be (Just count), and it is this value that is then
displayed in the EditControl of the dialogue.

read ps

((error,value),ps) = syncSend2 readid undef ps

| case error of SendOk -> False; _ -> True

= abort "could not read counter value"

| otherwise

= setText windowid displayid (fromJust value) ps

The initialisation actions create the necessary identi�cation values. Because of the
Id assignment rules (Chapter 4) the Id displayid can be used in both dialogues.
Here is the complete program code.

module counterread

// **

// Clean tutorial example program.

//

// This program defines a Controls component that implements a manually settable

// counter.

// A bi-directional receiver is added to give external access to the counter value.

// **

import StdEnv, StdIO

:: NoState

= NoState

Start :: *World -> *World

Start world

= startIO NoState NoState [initialise] [] world

initialise ps

(windowid, ps) = accPIO openId ps

(displayid,ps) = accPIO openId ps

(resetid, ps) = accPIO openRId ps

(readid, ps) = accPIO openR2Id ps

(error,ps) = openDialog NoState

(dialog windowid displayid resetid readid) ps

| error<>NoError

= abort "counter could not open counter dialog."

(windowid,ps) = accPIO openId ps

(error,ps) = openDialog NoState (display windowid displayid readid) ps

| error<>NoError

= abort "counter could not open display dialog."

| otherwise

= ps

where

dialog windowid displayid resetid readid

= Dialog "Counter"

(counter

:+: resetbutton

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

where

counter

116 CHAPTER 12. RECEIVERS

= { newLS = initcount

, newDef = CompoundControl

(EditControl (toString initcount) (hmm 50.0) 1

[ControlSelectState Unable

,ControlPos (Center,zero)

,ControlId displayid

]

:+: ButtonControl "-" [ControlFunction (count (-1))

,ControlPos (Center,zero)

]

:+: ButtonControl "+" [ControlFunction (count 1)]

:+: Receiver resetid reset []

:+: Receiver2 readid read []

) []

}

where

initcount = 0

count :: Int (Int,PSt .l .p) -> (Int,PSt .l .p)

count dx (count,ps)

count = count+dx

= (count,setText windowid displayid count ps)

reset :: m (Int,PSt .l .p) -> (Int,PSt .l .p)

reset _ (_,ps)

= (initcount,setText windowid displayid initcount ps)

read :: m (Int,PSt .l .p) -> (Int,(Int,PSt .l .p))

read _ (count,ps)

= (count,(count,ps))

resetbutton

= ButtonControl "Reset" [ControlFunction (noLS reset)

,ControlPos (Center,zero)

]

where

reset ps

= snd (syncSend resetid undef ps)

display windowid displayid readid

= Dialog "Read"

(EditControl "" (hmm 50.0) 1

[ControlSelectState Unable

,ControlId displayid

]

:+: ButtonControl "Read" [ControlFunction (noLS read)

,ControlPos (Center,zero)

]

)

[WindowId windowid

, WindowClose (noLS closeProcess)

]

where

read ps

((error,value),ps) = syncSend2 readid undef ps

| case error of SendOk -> False; _ -> True

= abort "could not read counter value"

| otherwise

= setText windowid displayid (fromJust value) ps

setText :: Id Id x (PSt .l .p) -> PSt .l .p | toString x

setText wid cid x ps

= appPIO (setWindow wid [setControlTexts [(cid,toString x)]]) ps

Chapter 13

Interactive processes

All of the examples discuss so far created an interactive program using the Std-

Process function startIO (Appendix A.21). This function creates an interactive
process that engages in some graphical user interface actions with a user and then
terminates, using the StdProcess function closeProcess. In this chapter we show
how an interactive process can spawn new interactive processes that will run in-
terleaved. Instead of using only startIO and these interactive process creation
functions, it is also possible to create a whole process topology at once.

We start the discussion by looking at the ways to de�ne interactive processes in
Section 13.1. This is followed by the functions to open interactive processes. Finally
we give some examples to illustrate their application.

13.1 De�ning interactive processes

The types to de�ne interactive processes can be found in the module StdProcessDef
(Appendix A.22). In the object I/O library, interactive processes are distinguished
by their document interface. There are three kinds of document interfaces, and there
are also three corresponding type constructors to de�ne an individual interactive
process:

No Document Interface (NDI): An interactive process with this document in-
terface does not present a document to a user. It has no menus. It is typically
used for `background' interactive processes. The interactive process is allowed
to open dialogues, timers, and receivers. The type constructor that de�nes a
NDI process is NDIProcess:

:: NDIProcess p

= E..l:NDIProcess l (ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

Single Document Interface (SDI): An interactive process with this document
interface presents exactly one document to the user. All menu commands are
associated with this document. The interactive process is allowed to open
dialogues, timers, and receivers. The type constructor that de�nes a SDI
process is SDIProcess:

:: SDIProcess wdef p

117

118 CHAPTER 13. INTERACTIVE PROCESSES

= E..l ls:SDIProcess l ls (wdef ls (PSt l p))

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

Multiple Document Interface (MDI): An interactive process with this docu-
ment interface can present an arbitrary number of documents to the user
(even zero). In its menu system all available commands are presented. The
interactive process is allowed to open dialogues, timers, and receivers.

:: MDIProcess p

= E..l:MDIProcess l (ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

(The function startIO actually creates a MDI process.)

The type constructor de�nitions of each of the three kinds of interactive processes
are identical in case of NDI and MDI processes. A SDI process has two additional
parameters: ls and (wdef ls (PSt l p)). The type constructor variable wdef

must be a Windows type constructor class instance. The variable ls is the local
state of that window. A SDI process is allowed to close this window, but can not
open another window.

The interactive process type constructors are polymorphic in the public process state
p. Each constructor introduces an initial local process state l and encapsulates it
using existential quanti�cation. The initialisation actions are given by a list of
process state transition functions:

:: ProcessInit ps :== [IdFun ps]

:: IdFun ps :== ps -> ps

Process de�nitions can be attributed with the following alternatives:

ProcessWindowPos, ProcessWindowSize, ProcessWindowResize: Depen-
ding on the underlying platform and document interface of the interactive
process, the process window is the root window in which all user interface ele-
ments are created. On a Macintosh the process window is simply the screen.
On Windows(95/NT) it is also the screen in case of NDI and SDI processes.
For MDI processes it is a window that can be resized by the user. If this
happens, and a ProcessWindowResize attribute has been speci�ed, then a
function of type ProcessWindowResizeFunction is evaluated:

:: ProcessWindowResizeFunction ps

:== Size -> Size -> ps -> ps

The two Size parameters are the size of the process window before and after
resizing.

ProcessHelp, ProcessAbout: These two attributes can be provided by an inter-
active process to display information about itself. The ProcessHelp attribute
typically displays online `user manual' information. The ProcessAbout at-
tribute typically displays version information.

13.2. INTERACTIVE PROCESS CREATION 119

ProcessActivate, ProcessDeactivate: These two attributes correspond closely
to the WindowActivate and WindowDeactivate attributes. Recall that key-
board and mouse input is always directed to the so called active window. The
parent interactive process that contains this window is the active process. If
the input focus is moved to a window that is not owned by the interactive pro-
cess then the ProcessDeactivate attribute function is evaluated to inform
the program that the interactive process has become inactive. If an inactive
process obtains the input focus, its ProcessActivate attribute function is
evaluated to inform the program that it has become active again.

ProcessClose: This attribute corresponds closely to the WindowClose attribute. If
for some reason the interactive process is requested to be closed, its Process-
Close attribute function is evaluated. It can take the opportunity to save
data to disk and to ask the user if the process can be closed safely. It is
however the responsibility of the program to terminate the process.

ProcessShareGUI: Interactive processes have a private graphical user interface
administration, encoded by the IOSt �eld of their process state record. In
the default case the graphical user interface elements are maintained to-
gether as if the interactive process is an independent application: activating
a (root)window or dialogue brings the whole user interface structure into the
foreground. When this attribute is set, the user interface elements of this in-
teractive process (the sub process) will be merged with user interface elements
of the interactive process that spawned it (the parent process).

ProcessNoWindowMenu: This attribute is valid only for MDI processes. In the
default case every MDI process has a special \Window" menu (discussed in
Section 10.3). If this attribute is set, then this menu is not added to the
menu system of the interactive process. (This is actually the case for the MDI
processes that are created by startIO.)

13.2 Interactive process creation

As mentioned brie
y in the beginning of this chapter, interactive processes can be
created one by one, or by groups. In this section we will �rst discuss individual
creation of interactive processes in Section 13.2.1, and then have a look at the
creation of multiple interactive processes in Section 13.2.2. Finally, we discuss the
relations between interactive processes in Section 13.2.3.

13.2.1 Creating single processes

The basic function to create individual processes from a World environment is the
function startIO that we have encountered many times. For completeness we
repeat its type de�nition once more:

startIO :: !.l !.p !(ProcessInit (PSt .l .p))

![ProcessAttribute (PSt .l .p)]

!*World

-> *World

Interactive processes can also create individual processes. Ofcourse they can not
use startIO for this purpose because the World environment is not retrievable from
this context. For this purpose the overloaded function shareProcesses is available:

120 CHAPTER 13. INTERACTIVE PROCESSES

class shareProcesses pdef :: !(pdef .p) !(PSt .l .p) -> PSt .l .p

instance shareProcesses NDIProcess

instance shareProcesses (SDIProcess wdef) | Windows wdef

instance shareProcesses MDIProcess

When applied to a NDI, SDI, or MDI process de�nition, shareProcesses adds an
initial version of that interactive process to the process state administration. At
some point in time that interactive process will initialise itself and join the game.
So process creation is asynchronous.

From the type de�nition of shareProcesses one can see that the public process
state components of the process states have the same type. One should also observe
that no new public process state value is introduced. Interactive processes that are
created by shareProcesses share the public state component of the process that
spawned them. Interactive processes that share the same public process state value
constitute a process group. Because interactive processes run interleaved, the public
process state component can be changed in turn by each of the members of that
group. This explains why it is called `public'.

If one wants to spawn an interactive process that has a public process state of its
own using only the shareProcesses class instances is not su�cient because they
assume a public process state is already given. For this purpose the ProcessGroup
type constructor (module StdProcessDef) can be used:

:: ProcessGroup pdef

= E..p:ProcessGroup p (pdef p)

ProcessGroup introduces a public process state value and encapsulates it using
existential quanti�cation. The type constructor variable pdef can be any of the
instances of the shareProcesses class de�ned above. In this way we obtain a
function that can spawn an interactive process with an independent public process
state:

class Processes pdef where

startProcesses :: !pdef !*World -> *World

openProcesses :: !pdef !(PSt .l .p) -> PSt .l .p

instance Processes (ProcessGroup pdef) | shareProcesses pdef

The two constructor class functions spawn an interactive process that does not share
its public process state with the process that created it (in case of openProcesses).
We also see the other process creation function that operates on a World environ-
ment, startProcesses. It is this function that is used by startIO to do its job.
This is the way it is implemented:

startIO :: !.l !.p !(ProcessInit (PSt .l .p))

![ProcessAttribute (PSt .l .p)]

!*World

-> *World

startIO local public initialise attributes world

= startProcesses

(ProcessGroup public

(MDIProcess local initialise [ProcessNoWindowMenu:attributes]

)

) world

13.2. INTERACTIVE PROCESS CREATION 121

13.2.2 Creating multiple processes

In the previous section we have shown all functions that are needed to create indi-
vidual interactive processes. Because these functions are overloaded they are also
suited to create a number of processes within one function application. This is
achieved by declaring suitable glueing instances for the type constructor classes
Processes (:^: and []) and shareProcesses (:~:, and ListCS). Except for lists,
these type de�nitions can be found in module StdIOCommon (Appendix A.12).

:^: The type constructor :^: glues two arbitrary type constructors. Its type con-
structor de�nition and Processes class instance declaration are as follows:

:: :^: t1 t2 = (:^:) infixr 9 t1 t2

instance Processes (:^: pdef1 pdef2) | Processes pdef1

& Processes pdef2

Given two Processes instances p1 and p2, then the expression p1:^:p2 is
also a Processes instance. Because :^: is right associative, an expression
such as p1 :^: p2 :^: p3 should be read as p1 :^: (p2 :^: p3).

[] In principle the :^: glue is su�cient to create all required process structures.
In case of working with a number of process instances of the same type, it
is much more convenient to use lists and list comprehensions. Because the
process type constructors are not parameterised we can use the normal lists
for this purpose. So we get the following Processes class instance declaration:

instance Processes [pdef] | Processes pdef

Given a list of Processes instances ps = [p1 ...pn], then the expression
ps itself is also a Processes instance.

:~: The type constructor :~: glues two type constructors that work on the same
context. Its type constructor de�nition and shareProcesses class instance
declaration are as follows:

:: :~: t1 t2 context = (:~:) infixr 9 (t1 context) (t2 context)

instance shareProcesses (:~: pdef1 pdef2) | shareProcesses pdef1

& shareProcesses pdef2

Given two shareProcesses instances p1 and p2 working on the same con-
text state of type context, then the expression p1 :~: p2 is also a share-

Processes instance working on the same context state. Because :~: is right
associative, an expression such as p1 :~: p2 :~: p3 should be read as p1

:~: (p2 :~: p3).

ListCS In principle the :~: glue is su�cient to create all required process group
structures. In case of working with a number of process group instances of the
same type, it is much more convenient to use lists and list comprehensions.
This glue is provided by the type constructor ListCS. Its type constructor
de�nition and shareProcesses class instance declaration is as follows:

:: ListCS t context = ListCS [t context]

instance shareProcesses (ListCS pdef) | shareProcesses pdef

122 CHAPTER 13. INTERACTIVE PROCESSES

Given a list of shareProcesses instances ps = [p1 ...pn], working on the
same context state of type context, then the expression ListCS ps is also a
shareProcesses instance working on the same context state.

13.2.3 Process relations

An interactive program in general consists of a number of process groups, each of
which consists of a number of interactive processes. As explained above, interactive
processes and process groups can be created dynamically.

Except for sub processes, there is no special parent-child relationship between an
interactive process that creates an interactive process. For instance, termination of
one process (using closeProcess) has no consequence for the other processes. Sub
processes are the exception to the rule (recall that sub processes have the Process-
ShareGUI attribute set (Section 13.1, page 119). Closing an interactive process
closes also all of its sub processes.

Process groups exist by virtue of their element processes. As soon as all interactive
processes of one process group have been closed, also the process group and the
shared public state are closed.

The process creation functions that work on the World environment, startProces-
ses and its derived function startIO, terminate as soon as all of the process groups
that have been created during their life cycle have been closed.

13.3 Examples

In this section we give some examples of the use of interactive processes.

13.3.1 Talk revisited

In this example we have a new look at the talk example of Section 12.4.1. In
that version, the program created one interactive process, using startIO, which
opened the two talk windows. In the new version for each talk window we create
an interactive process. Receivers are still used to send the user typed messages to
each of the talk windows. The menu is now created for both processes. Below we
discuss the di�erences.

The initialisation of the new talk program is ofcourse di�erent. Creation of the
menu is now moved to openTalkWindow. The talk processes are going to be created
as one process group. This implies that the RIds are also created earlier. We obtain
the following Start rule:

Start :: *World -> *World

Start world

(a,world) = openRId world

(b,world) = openRId world

= startProcesses

(ProcessGroup NoState

(ListCS [talk "A" a b,talk "B" b a]

)

) world

where

talk :: String (RId Message) (RId Message) -> MDIProcess .p

13.3. EXAMPLES 123

talk name me you

= MDIProcess NoState [openTalkWindow name me you]

[ProcessNoWindowMenu]

The menu de�nition that is moved to openTalkWindow is almost identical to the
old version. The only di�erence is termination of the application. In the old version
termination was no issue because there was only one interactive process. In the new
version, closing one talk process does not close the other. Instead, before closing
its parent process, the "Quit" function sends a new message to the other process
to request termination. To do this the message type needs to be changed. The
message type is now the following algebraic data type:

:: Message

= NewLine String

| Quit

Instead of sending a String s in the old version we send the value (NewLine s) in
the new version. The request to terminate is done by sending the Quit message.
The "Quit" MenuFunction is now de�ned as:

quit :: (PSt .l .p) -> PSt .l .p

quit ps

= closeProcess (snd (asyncSend you Quit ps))

Ofcourse the de�nition of the receiver function receive must be changed accord-
ingly:

receive :: Id Id Message (PSt .l .p) -> PSt .l .p

receive wId outId (NewLine text) ps

= appPIO (setWindow wId [setControlTexts [(outId,text)]

,setEditControlCursor outId (size text)

]) ps

receive _ _ Quit ps

= closeProcess ps

On receipt of the Quit message, the receiver only needs to terminate its parent
process, knowing that the requesting process will terminate itself.

These are the major di�erences. Below is the complete program.

module talk

// **

// Clean tutorial example program.

//

// This program creates two interactive processes. Each process opens a window in

// which the user can type text. Text that has been typed in one window is being

// sent to the other, and vice versa.

// **

import StdEnv, StdIO

:: Message

= NewLine String

| Quit

:: NoState

= NoState

124 CHAPTER 13. INTERACTIVE PROCESSES

Start :: *World -> *World

Start world

(a,world) = openRId world

(b,world) = openRId world

= startProcesses

(ProcessGroup NoState (ListCS [talk "A" a b,talk "B" b a])

) world

where

talk :: String (RId Message) (RId Message) -> MDIProcess .p

talk name me you

= MDIProcess NoState [openTalkWindow name me you] [ProcessNoWindowMenu]

openTalkWindow :: String (RId Message) (RId Message) (PSt .l .p) -> PSt .l .p

openTalkWindow name me you ps

menu = Menu ("Talk "+++name)

(MenuItem "Quit" [MenuShortKey 'q'

, MenuFunction (noLS quit)

]

) []

(error,ps) = openMenu NoState menu ps

| error<>NoError

= abort "talk could not open menu."

(wId, ps) = accPIO openId ps

(inId, ps) = accPIO openId ps

(outId,ps) = accPIO openId ps

wdef = Dialog ("Talk "+++name)

(EditControl "" (hmm 50.0) 5

[ControlId inId

, ControlKeyboard inputfilter Able

(noLS1 (input wId inId you))

]

:+: EditControl "" (hmm 50.0) 5

[ControlId outId

, ControlPos (BelowPrev,zero)

, ControlSelectState Unable

]

)

[WindowId wId

]

(error,ps) = openDialog undef wdef ps

| error<>NoError

= abort "talk could not open window."

rdef = Receiver me (noLS1 (receive wId outId)) []

(error,ps) = openReceiver NoState rdef ps

| error<>NoError

= abort "talk could not open receiver"

| otherwise

= ps

where

inputfilter :: KeyboardState -> Bool

inputfilter keystate

= getKeyboardStateKeyState keystate<>KeyUp

input :: Id Id (RId Message) KeyboardState (PSt .l .p) -> PSt .l .p

input wId inId you _ ps

(Just window,ps) = accPIO (getWindow wId) ps

text = fromJust (snd (hd (getControlTexts [inId] window)))

= snd (asyncSend you (NewLine text) ps)

receive :: Id Id Message (PSt .l .p) -> PSt .l .p

receive wId outId (NewLine text) ps

= appPIO (setWindow wId [setControlTexts [(outId,text)]

, setEditControlCursor outId (size text)

]) ps

receive _ _ Quit ps

= closeProcess ps

13.3. EXAMPLES 125

quit :: (PSt .l .p) -> PSt .l .p

quit ps

= closeProcess (snd (asyncSend you Quit ps))

13.3.2 Clock revisited

In this example we are going to turn the clock example of Section 11.1.2 into a
stopwatch component that can be added in an arbitrary interactive process. The
stopwatch commands will be to reset timing, pause timing, continue timing, and
close the stopwatch component. All stopwatch de�nitions are placed in the module
stopwatch.icl. The function stopwatch de�nes the stopwatch component. A
main module, usestopwatch.icl that opens and controls the stopwatch is also
de�ned. We �rst look at the stopwatch and then at the main program.

The stopwatch component

The original clock program created an interactive process with three timers and
a dialogue. Each of the three timers changes a local state that keeps track of the
elapsed seconds, minutes, and hours. This situation is schematised in Figure 13.1.

Timer hours

Timer minutes

Timer seconds

Dialog

clock process

Figure 13.1: The structure of the clock process.

The stopwatch process is controlled by sending messages to a `gateway' receiver.
The timers are extended with a receiver component that handle the commands
reset, pause, and continue. These commands will be sent to them by the gateway
receiver. This gateway receiver handles the close command. Finally, the stopwatch
process creates the same dialogue as the original clock program. The stopwatch
process is schematised in Figure 13.2.

So the new components are the gateway receiver and the receiver components of
the timers. We �rst look at the gateway receiver and then timer receivers. Both
receivers accept messages of the following type:

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

The alternatives of the algebraic type StopwatchCommands correspond ofcourse with
the stopwatch commands reset, pause, continue, and close. The gateway receiver

126 CHAPTER 13. INTERACTIVE PROCESSES

- Receiver �
�
��

-
A
A
AU Timer hours

Receiver

Timer minutes

Receiver

Timer seconds

Receiver

Dialog

stopwatch process

Figure 13.2: The structure of the stopwatch process.

function receive, on receiving the Closemessage simply terminates the interactive
process by applying closeProcess to its process state. Every other message is
routed to the timer receiver components which are identi�ed by the list timerinfos.
Here is the function de�nition of receive:

receive :: StopwatchCommands (PSt .l .p) -> PSt .l .p

receive Close ps

= closeProcess ps

receive msg ps

= snd (seqList [syncSend timerRId msg\\{timerRId}<-timerinfos] ps)

The timer receiver components receive only the StopwatchMessage alternatives
Reset, Pause, and Continue. In the clock example, the timer was parameterised
with its timer interval. In this example, we also need to identify both the timer and
its receiver component. So the de�nition of a stopwatch timer now is:

tdef :: TimerInfo

-> Timer (Receiver StopwatchCommands) Int (PSt .l .p)

tdef {timerId,timerRId,timerInterval}

= Timer timerInterval

(Receiver timerRId receive []

)

[TimerId timerId

, TimerFunction tick

]

The reset command should set the timer back to zero. One might suppose that
it is su�cient to change only the value of the local state to zero, but that is not
completely true. Resetting the stopwatch can occur at any moment. At that mo-
ment the timer should be synchronised with its local state. This can be done by
�rst disabling and then enabling the timer. For this purpose the StdTimer func-
tions disableTimer and enableTimer should be used. The reason that is works
is because enableTimer, when applied to a disabled timer, synchronises the timer
with the moment of evaluation. It does nothing in case the indicated timer was
already enabled. Finally, on receiving the Reset message, the timer receiver com-
ponent must set the corresponding text �eld of the dialogue to zero. This gives the
following de�nition of the Reset alternative.

receive Reset (time,ps)

13.3. EXAMPLES 127

ps = appListPIO [disableTimer timerId,enableTimer timerId] ps

ps = setText (textid timerInterval) "00" ps

= (0,ps)

The pause command should halt the timer until further notice (either reset or con-
tinue). This is easily done by disabling the timer:

receive Pause (time,ps)

= (time,appPIO (disableTimer timerId) ps)

The continue command should let the timer continue from where it was paused.
This is easily done by enabling the timer:

receive Continue (time,ps)

= (time,appPIO (enableTimer timerId) ps)

The �nal details of the stopwatch component are to create the proper identi�cation
values for the timers and their receiver components, and to export its de�nition
as an interactive process. This is done by the function stopwatch. The stopwatch
process is de�ned as a process group with no interesting local or public process state
(using the ubiquitous NoState singleton type constructor). Its initialisation actions
�rst create the Ids necessary for the dialogue, and then the parameters required
for the timers. Then initialisation proceeds as described above. The interesting
aspect of this de�nition is that the process has the ProcessShareGUI attribute
set (Section 13.1, page 119). This attribute makes sure that the dialogue of the
stopwatch process shares the windows stack (Section 8.1.2) of the parent process.

stopwatch :: (RId StopwatchCommands) -> ProcessGroup NDIProcess

stopwatch rid

= ProcessGroup NoState

(NDIProcess NoState [initialise`] [ProcessShareGUI]

)

where

initialise` ps

(dialogIds, ps) = accPIO openDialogIds ps

(timerInfos,ps) = accPIO openTimerInfos ps

= initialise rid dialogIds timerInfos ps

For completeness, the de�nition module and implementation module of the stop-
watch component are given below.

definition module stopwatch

// **

// Clean tutorial example program.

//

// This module exports the types and functions needed to incorporate a stopwatch

// component.

// **

import StdIO

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

stopwatch :: (RId StopwatchCommands) -> ProcessGroup NDIProcess

128 CHAPTER 13. INTERACTIVE PROCESSES

implementation module stopwatch

// **

// Clean tutorial example program.

//

// This program defines a stopwatch process component.

// It uses three timers to track the seconds, minutes, and hours separately.

// Message passing is used to reset, pause, and continue timing.

// The current time is displayed using a dialogue.

// **

import StdEnv,StdIO

:: NoState

= NoState

:: DialogIds

= { secondsId :: Id

, minutesId :: Id

, hoursId :: Id

, dialogId :: Id

}

:: TimerInfo

= { timerId :: Id

, timerRId :: RId StopwatchCommands

, timerInterval :: TimerInterval

}

:: StopwatchCommands

= Reset

| Pause

| Continue

| Close

second :== ticksPerSecond

minute :== 60*second

hour :== 60*minute

openDialogIds :: *env -> (DialogIds,*env) | Ids env

openDialogIds env

([secondsid,minutesid,hoursid,dialogid:_],env) = openIds 4 env

= ({ secondsId=secondsid

, minutesId=minutesid

, hoursId =hoursid

, dialogId =dialogid

}

, env

)

openTimerInfos :: *env -> ([TimerInfo],*env) | Ids env

openTimerInfos env

(tids,env) = openIds 3 env

(rids,env) = openRIds 3 env

intervals = [second,minute,hour]

= ([{timerId=tid,timerRId=rid,timerInterval=i}

\\ tid<-tids & rid<-rids & i<-intervals

]

, env

)

stopwatch :: (RId StopwatchCommands) -> ProcessGroup NDIProcess

stopwatch rid

= ProcessGroup NoState (NDIProcess NoState [initialise`] [ProcessShareGUI])

where

initialise` ps

(dialogIds,ps) = accPIO openDialogIds ps

(timerInfos,ps) = accPIO openTimerInfos ps

= initialise rid dialogIds timerInfos ps

13.3. EXAMPLES 129

initialise :: (RId StopwatchCommands) DialogIds [TimerInfo]

(PSt .l .p) -> (PSt .l .p)

initialise rid {secondsId,minutesId,hoursId,dialogId} timerinfos ps

(errors,ps) = seqList [openTimer 0 (tdef timerinfo)

\\ timerinfo<-timerinfos

] ps

| any ((<>) NoError) errors

= closeProcess ps

(error,ps) = openDialog NoState ddef ps

| error<>NoError

= closeProcess ps

(error,ps) = openReceiver NoState rdef ps

| error<>NoError

= closeProcess ps

| otherwise

= ps

where

tdef {timerId,timerRId,timerInterval}

= Timer timerInterval

(Receiver timerRId receive []

)

[TimerId timerId

, TimerFunction tick

]

where

tick nrElapsed (time,ps)

time = (time+nrElapsed) mod (maxunit timerInterval)

= (time,setText (textid timerInterval) (toString time) ps)

setText id text ps

= appPIO (setWindow dialogId [setControlTexts [(id,text)]]) ps

receive Reset (time,ps)

ps = appListPIO [disableTimer timerId,enableTimer timerId] ps

ps = setText (textid timerInterval) "00" ps

= (0,ps)

receive Pause (time,ps)

= (time,appPIO (disableTimer timerId) ps)

receive Continue (time,ps)

= (time,appPIO (enableTimer timerId) ps)

textid interval

| timerInterval==second

= secondsId

| timerInterval==minute

= minutesId

| timerInterval==hour

= hoursId

maxunit interval

| timerInterval==second

= 60

| timerInterval==minute

= 60

| timerInterval==hour

= 24

ddef= Dialog "Stopwatch"

(CompoundControl

(ListLS [TextControl text [ControlPos (Left,zero)]

\\ text<-["Hours:","Minutes:","Seconds:"]

]

) []

:+: CompoundControl

(ListLS [TextControl "00" [ControlPos (Left,zero)

,ControlId id

]

\\ id<-[hoursId,minutesId,secondsId]

130 CHAPTER 13. INTERACTIVE PROCESSES

]

) []

)

[WindowClose (noLS closeProcess)

, WindowId dialogId

]

rdef

= Receiver rid (noLS1 receive) []

where

receive Close ps

= closeProcess ps

receive msg ps

= snd (seqList [syncSend timerRId msg \\ {timerRId}<-timerinfos] ps)

Using the stopwatch

Given the stopwatch component module stopwatch, we can create a program that
opens, uses, and closes the stopwatch. The program will be as simple as possible. As
its initialisation action it will create a RId needed to open the stopwatch component.
It also opens a menu, mdef, that triggers the stopwatch commands reset, pause,
continue, and close. It also contains the quit command to terminate the whole
program. Its de�nition is as follows:

mdef

= Menu "Stopwatch"

(MenuItem "Reset" [MenuFunction (noLS (send Reset))]

:+: MenuItem "Pause" [MenuFunction (noLS (send Pause))]

:+: MenuItem "Continue" [MenuFunction (noLS (send Continue))]

:+: MenuItem "Close" [MenuFunction (noLS (send Close))]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuFunction (noLS closeProcess)]

) []

Each of the stopwatch commands menu functions is de�ned by the send function
which is parameterised with the corresponding StopwatchCommandsmessage alter-
native. Its purpose is to send its argument message to the gateway receiver of the
stopwatch process, identi�ed by stopwatchid. If this fails it also emits a system
beep. Here is its de�nition:

send msg ps

(error,ps) = syncSend stopwatchid msg ps

| case error of SendOk->False; _->True

= appPIO beep ps

| otherwise

= ps

Here is the complete code of the main program.

module usestopwatch

// **

// Clean tutorial example program.

//

// This program creates a simple program that uses the stopwatch process.

// The program only has a menu to open the stopwatch and control it.

// **

13.3. EXAMPLES 131

import StdEnv, StdIO

import stopwatch

:: NoState

= NoState

Start :: *World -> *World

Start world

(stopwatchid,world) = openRId world

= startIO NoState NoState [initialise stopwatchid] [] world

initialise :: (RId StopwatchCommands) (PSt .l .p) -> PSt .l .p

initialise stopwatchid ps

ps = openProcesses (stopwatch stopwatchid) ps

(error,ps) = openMenu NoState mdef ps

| error<>NoError

= closeProcess ps

| otherwise

= ps

where

mdef = Menu "Stopwatch"

(MenuItem "Reset" [MenuFunction (noLS (send Reset))]

:+: MenuItem "Pause" [MenuFunction (noLS (send Pause))]

:+: MenuItem "Continue" [MenuFunction (noLS (send Continue))]

:+: MenuItem "Close" [MenuFunction (noLS (send Close))]

:+: MenuSeparator []

:+: MenuItem "Quit" [MenuFunction (noLS closeProcess)]

) []

send msg ps

(error,ps) = syncSend stopwatchid msg ps

| case error of SendOk->False; _->True

= appPIO beep ps

| otherwise

= ps

132 CHAPTER 13. INTERACTIVE PROCESSES

Appendix A

I/O library

A.1 StdBitmap

definition module StdBitmap

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdBitmap contains functions for reading bitmap files and drawing bitmaps.

// **

import StdMaybe

from StdFile import FileSystem

import StdPicture

getBitmapSize :: !Bitmap -> Size

/* getBitmapSize returns the size of the given bitmap.

In case the bitmap is the result of an erroneous openBitmap, then the size is

zero.

*/

:: Bitmap

openBitmap :: !{#Char} !*env -> (!Maybe Bitmap,!*env) | FileSystem env

/* openBitmap reads in a bitmap from file.

The String argument must be the file name of the bitmap.

If the bitmap could be read, then (Just bitmap) is returned, otherwise Nothing

is returned.

*/

instance Drawables Bitmap

/* draw bitmap

draws the given bitmap with its left top at the current pen position.

drawAt pos bitmap

draws the given bitmap with its left top at the given pen position.

*/

133

134 APPENDIX A. I/O LIBRARY

A.2 StdClipboard

definition module StdClipboard

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdClipboard specifies all functions on the clipboard.

// **

import StdMaybe

from iostate import PSt, IOSt

// Clipboard data items:

:: ClipboardItem

class Clipboard item where

toClipboard :: !item -> ClipboardItem

fromClipboard :: !ClipboardItem -> Maybe item

/* toClipboard

makes an item transferable to the clipboard.

fromClipboard

attempts to retrieve an item of the instance type from the clipboard item.

If this fails, the result is Nothing, otherwise it is (Just item).

*/

instance Clipboard {#Char}

// Access to the current content of the clipboard:

setClipboard :: ![ClipboardItem] !(PSt .l .p) -> PSt .l .p

getClipboard :: !(PSt .l .p) -> (![ClipboardItem],!PSt .l .p)

/* setClipboard

replaces the current content of the clipboard with the argument list.

Of the list only the first occurence of a ClipboardItem of the same type

will be stored in the clipboard.

Note that setClipboard [] erases the clipboard.

getClipboard

gets the current content of the clipboard without changing the content.

*/

clipboardHasChanged :: !(PSt .l .p) -> (!Bool,!PSt .l .p)

/* clipboardHasChanged holds if the current content of the clipboard is different

from the last access to the clipboard.

*/

A.3. STDCONTROL 135

A.3 StdControl

definition module StdControl

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdControl specifies all control operations.

// Changing controls in a window/dialogue requires a *WState.

// Reading the status of controls requires a WState.

// **

import StdControlDef, StdMaybe

from iostate import IOSt

:: WState

getWindow :: !Id !(IOSt .l .p) -> (!Maybe WState, !IOSt .l .p)

/* getWindow returns a read-only WState for the indicated window.

In case the indicated window does not exist Nothing is returned.

*/

setWindow :: !Id ![IdFun *WState] !(IOSt .l .p) -> IOSt .l .p

/* Apply the control changing functions to the current state of the indicated

window.

In case the indicated window does not exist nothing happens.

*/

/* Functions that change the state of controls.

When applied to unknown Ids these functions have no effect.

*/

showControls :: ![Id] !*WState -> *WState

hideControls :: ![Id] !*WState -> *WState

/* (show/hide)Controls makes the indicated controls visible/invisible.

Hiding a control overrides the visibility of its elements, which become

invisible.

Showing a hidden control re-establishes the visibility state of its elements.

*/

enableControls :: ![Id] !*WState -> *WState

disableControls :: ![Id] !*WState -> *WState

/* (en/dis)ableControls (en/dis)ables the indicated controls.

Disabling a control overrides the SelectStates of its elements, which become

unselectable.

Enabling a disabled control re-establishes the SelectStates of its elements.

*/

markCheckControlItems :: !Id ![Index] !*WState -> *WState

unmarkCheckControlItems :: !Id ![Index] !*WState -> *WState

/* (unm/m)arkCheckControlItems unmarks/marks the indicated check items of the given

CheckControl. Indices range from 1 to the number of check items. Illegal indices

are ignored.

*/

selectRadioControlItem :: !Id !Index !*WState -> *WState

/* selectRadioControlItem marks the indicated radio item of a RadioControl, causing

the mark of the previously marked radio item to disappear. The item is given by

the Id of the RadioControl and its index position (counted from 1).

*/

selectPopUpControlItem :: !Id !Index !*WState -> *WState

/* selectPopUpControlItem marks the indicated popup item of a PopUpControl, causing

136 APPENDIX A. I/O LIBRARY

the mark of the previously marked popup item to disappear. The item is given by

the Id of the PopUpControl and its index position (counted from 1).

*/

moveControlViewFrame :: !Id Vector !*WState -> *WState

/* moveControlViewFrame moves the orientation of the CompoundControl over the given

vector, and updates the control if necessary. The control frame is not moved

outside the ViewDomain of the control. MoveControlViewFrame has no effect if the

indicated control has no ControlDomain attribute.

*/

setControlTexts :: ![(Id,String)] !*WState -> *WState

/* setControlTexts sets the text of the indicated (Text/Edit/Button)Controls.

If the indicated control is a (Text/Button)Control, then AltKey are interpreted

by the system.

If the indicated control is an EditControl, then the text is taken as it is.

*/

setEditControlCursor :: !Id !Int !*WState -> *WState

/* setEditControlCursor sets the cursor at position @2 of the current content of

the EditControl.

In case @2<0, then the cursor is set at the start of the current content.

In case @2>size content, then the cursor is set at the end of the current

content.

*/

setControlLooks :: ![(Id,Bool,Look)] !*WState -> *WState

/* setControlLooks applied to a CompoundControl turns it into a non-transparant

CompoundControl.

Setting the Look only redraws the indicated controls if the corresponding

Boolean is True.

*/

setSliderStates :: ![(Id,SliderState->SliderState)] !*WState -> *WState

setSliderThumbs :: ![(Id,Int)] !*WState -> *WState

/* setSliderStates

applies the function to the current SliderState of the indicated

SliderControl and redraws the settings if necessary.

setSliderThumbs

sets the new thumb value of the indicated SliderControl and redraws the

settings if necessary.

*/

drawInControl :: !Id ![DrawFunction] !*WState -> *WState

/* Draw in a (Custom(Button)/Compound)Control. If the CompoundControl is

transparant then this operation has no effect.

*/

getControlTypes :: !WState -> [(ControlType,Maybe Id)]

getCompoundTypes :: !Id !WState -> [(ControlType,Maybe Id)]

/* getControlTypes

yields the list of ControlTypes of the component controls of this window.

getCompoundTypes

yields the list of ControlTypes of the component controls of this

CompoundControl.

For both functions (Just id) is yielded if the component control has a

(ControlId id) attribute, and Nothing otherwise. Component controls are not

collected recursively through CompoundControls.

If the indicated CompoundControl is not a CompoundControl, then [] is yielded.

*/

getControlLayouts :: ![Id] !WState -> [(Bool,(Maybe ItemPos,ItemOffset))]

// (Nothing,zero)

getControlViewSizes :: ![Id] !WState -> [(Bool,Size)] // zero

getControlSelectStates :: ![Id] !WState -> [(Bool,SelectState)] // Able

A.3. STDCONTROL 137

getControlShowStates :: ![Id] !WState -> [(Bool,Bool)] // False

getControlTexts :: ![Id] !WState -> [(Bool,Maybe String)] // Nothing

getControlNrLines :: ![Id] !WState -> [(Bool,Maybe NrLines)] // Nothing

getControlLooks :: ![Id] !WState -> [(Bool,Maybe Look)] // Nothing

getControlMinimumSizes :: ![Id] !WState -> [(Bool,Maybe Size)] // Nothing

getControlResizes :: ![Id] !WState -> [(Bool,Maybe ControlResizeFunction)]

// Nothing

getRadioControlItems :: ![Id] !WState -> [(Bool,Maybe [TextLine])] // Nothing

getRadioControlSelection:: ![Id] !WState -> [(Bool,Maybe Index)] // Nothing

getCheckControlItems :: ![Id] !WState -> [(Bool,Maybe [TextLine])] // Nothing

getCheckControlSelection:: ![Id] !WState -> [(Bool,Maybe [Index])] // Nothing

getPopUpControlItems :: ![Id] !WState -> [(Bool,Maybe [TextLine])] // Nothing

getPopUpControlSelection:: ![Id] !WState -> [(Bool,Maybe Index)] // Nothing

getSliderDirections :: ![Id] !WState -> [(Bool,Maybe Direction)] // Nothing

getSliderStates :: ![Id] !WState -> [(Bool,Maybe SliderState)] // Nothing

getControlViewFrames :: ![Id] !WState -> [(Bool,Maybe ViewFrame)] // Nothing

getControlViewDomains :: ![Id] !WState -> [(Bool,Maybe ViewDomain)] // Nothing

getControlItemSpaces :: ![Id] !WState -> [(Bool,Maybe (Int,Int))] // Nothing

getControlMargins :: ![Id] !WState -> [(Bool,Maybe ((Int,Int),(Int,Int)))]

// Nothing

/* Functions that return the current state of controls.

The result list is of equal length as the argument Id list. Each result list

element corresponds in order with the argument Id list. Of each element the

first Boolean result is False in case of invalid Ids (if so dummy values are

returned - see comment).

Important: controls with no ControlId attribute, or illegal ids, can not be

found in the WState!

getControlLayouts

Yields (Just ControlPos) if the indicated control had a ControlPos attribute

and Nothing otherwise. The ItemOffset offset is the exact current location

of the indicated control (LeftTop,offset).

getControlViewSizes

Yields the current view frame size of the indicated control. Note that for

any control other than the CompoundControl this is the exact size of the

control.

getControlSelectStates

Yields the current SelectState of the indicated control.

getControlShowStates

Yields True if the indicated control is visible, and False otherwise.

getControlTexts

Yields (Just text) of the indicated (Text/Edit/Button)Control.

If the control is not such a control, then Nothing is yielded.

getControlNrLines

Yields (Just nrlines) of the indicated EditControl.

If the control is not such a control, then Nothing is yielded.

getControlLooks

Yields the Look of the indicated (Custom/CustomButton/Compound)Control.

If the control is not such a control, or is a transparant CompoundControl,

then Nothing is yielded.

getControlMinimumSizes

Yields (Just minimumsize) if the indicated control had a ControlMinimumSize

attribute and Nothing otherwise.

getControlResizes

Yields (Just resizefunction) if the indicated control had a ControlResize

attribute and Nothing otherwise.

getRadioControlItems

Yields the TextLines of the items of the indicated RadioControl.

If the control is not such a control, then Nothing is yielded.

getRadioControlSelection

Yields the index of the selected radio item of the indicated RadioControl.

If the control is not such a control, then Nothing is yielded.

getCheckControlItems

Yields the TextLines of the items of the indicated CheckControl.

If the control is not such a control, then Nothing is yielded.

getCheckControlSelection

138 APPENDIX A. I/O LIBRARY

Yields the indices of the selected checkitems of the indicated CheckControl.

If the control is not such a control, then Nothing is yielded.

getPopUpControlItems

Yields the TextLines of the items of the indicated PopUpControl.

If the control is not such a control, then Nothing is yielded.

getPopUpControlSelection

Yields the Index of the indicated PopUpControl.

If the control is not such a control, then Nothing is yielded.

getSliderDirections

Yields (Just Direction) of the indicated SliderControl.

If the control is not such a control, then Nothing is yielded.

getSliderStates

Yields (Just SliderState) of the indicated SliderControl.

If the control is not such a control, then Nothing is yielded.

getControlViewFrames

Yields (Just ViewFrame) of the indicated CompoundControl.

If the control is not such a control, then Nothing is yielded.

getControlViewDomains

Yields (Just ViewDomain) of the indicated CompoundControl.

If the control is not such a control, then Nothing is yielded.

getControlItemSpaces

Yields (Just (horizontal space,vertical space)) of the indicated

CompoundControl.

If the control is not such a control, then Nothing is yielded.

getControlMargins

Yields (Just (ControlHMargin,ControlVMargin)) of the indicated

CompoundControl.

If the control is not such a control, then Nothing is yielded.

*/

A.4. STDCONTROLCLASS 139

A.4 StdControlClass

definition module StdControlClass

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdControlClass define the standard set of controls instances.

// **

import StdIOCommon, StdControlDef

from windowhandle import ControlState

from StdPSt import PSt, IOSt

class Controls cdef where

controlToHandles:: !(cdef .ls (PSt .l .p)) -> [ControlState .ls (PSt .l .p)]

getControlType :: (cdef .ls .ps) -> ControlType

instance Controls (AddLS c) | Controls c

instance Controls (NewLS c) | Controls c

instance Controls (ListLS c) | Controls c

instance Controls NilLS

instance Controls ((:+:) c1 c2) | Controls c1 & Controls c2

instance Controls RadioControl

instance Controls CheckControl

instance Controls PopUpControl

instance Controls SliderControl

instance Controls TextControl

instance Controls EditControl

instance Controls ButtonControl

instance Controls CustomButtonControl

instance Controls CustomControl

instance Controls (CompoundControl c) | Controls c

140 APPENDIX A. I/O LIBRARY

A.5 StdControlDef

definition module StdControlDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdControl contains the types to define the standard set of controls.

// **

import StdIOCommon

from StdPicture import DrawFunction, Picture

:: RadioControl ls ps

= RadioControl [RadioControlItem *(ls,ps)] RowsOrColumns Index

[ControlAttribute *(ls,ps)]

:: CheckControl ls ps

= CheckControl [CheckControlItem *(ls,ps)] RowsOrColumns

[ControlAttribute *(ls,ps)]

:: PopUpControl ls ps

= PopUpControl [PopUpControlItem *(ls,ps)] Index

[ControlAttribute *(ls,ps)]

:: SliderControl ls ps

= SliderControl Direction Length SliderState (SliderAction *(ls,ps))

[ControlAttribute *(ls,ps)]

:: TextControl ls ps

= TextControl TextLine [ControlAttribute *(ls,ps)]

:: EditControl ls ps

= EditControl TextLine Width NrLines [ControlAttribute *(ls,ps)]

:: ButtonControl ls ps

= ButtonControl TextLine [ControlAttribute *(ls,ps)]

:: CustomButtonControl ls ps

= CustomButtonControl Size Look [ControlAttribute *(ls,ps)]

:: CustomControl ls ps

= CustomControl Size Look [ControlAttribute *(ls,ps)]

:: CompoundControl c ls ps

= CompoundControl (c ls ps) [ControlAttribute *(ls,ps)]

:: TextLine :== String

:: NrLines :== Int

:: Width :== Int

:: Length :== Int

:: RowsOrColumns

= Rows Int

| Columns Int

:: RadioControlItem ps :== (TextLine, IOFunction ps)

:: CheckControlItem ps :== (TextLine, MarkState, IOFunction ps)

:: PopUpControlItem ps :== (TextLine, IOFunction ps)

:: Look :== SelectState -> UpdateState -> [DrawFunction]

:: SliderAction ps :== SliderMove -> ps -> ps

:: SliderMove

= SliderIncSmall

| SliderDecSmall

| SliderIncLarge

| SliderDecLarge

| SliderThumb Int

:: ControlAttribute ps // Default:

= ControlId Id // no id

| ControlPos ItemPos // (RightTo previous,zero)

| ControlSize Size // system derived/overruled

| ControlMinimumSize Size // zero

| ControlResize ControlResizeFunction // no resize

| ControlSelectState SelectState // control Able

A.5. STDCONTROLDEF 141

| ControlHide // initially visible

| ControlFunction (IOFunction ps) // id

| ControlModsFunction (ModsIOFunction ps) // ControlFunction

| ControlMouse MouseStateFilter SelectState (MouseFunction ps)

// no mouse input/overruled

| ControlKeyboard KeyboardStateFilter SelectState (KeyboardFunction ps)

// no keyboard input/overruled

// For CompoundControls only:

| ControlItemSpace Int Int // system dependent

| ControlHMargin Int Int // system dependent

| ControlVMargin Int Int // system dependent

| ControlLook Look // control is transparant

| ControlViewDomain ViewDomain // {zero,max range}

| ControlOrigin Point // Left top of ViewDomain

| ControlHScroll ScrollFunction // no horizontal scrolling

| ControlVScroll ScrollFunction // no vertical scrolling

:: ControlResizeFunction

:== Size -> // current control size

Size -> // old window size

Size -> // new window size

Size // new control size

:: ScrollFunction

:== ViewFrame -> // current view

SliderState -> // current state of scrollbar

SliderMove -> // action of the user

Int // new thumb value of scrollbar

:: ControlType

:== String

142 APPENDIX A. I/O LIBRARY

A.6 StdControlReceiver

definition module StdControlReceiver

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdControlReceiver defines Receiver(2) controls instances.

// **

import StdReceiverDef, StdControlClass

instance Controls (Receiver m)

instance Controls (Receiver2 m r)

A.7. STDFILESELECT 143

A.7 StdFileSelect

definition module StdFileSelect

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdFileSelect defines the standard file selector dialogue.

// **

import StdMaybe, StdString

class FileSelectEnv env where

selectInputFile :: !*env -> (!Maybe String,!*env)

selectOutputFile:: !String !String !*env -> (!Maybe String,!*env)

/* selectInputFile

opens a dialogue in which the user can browse the file system to select an

existing file.

If a file has been selected, the String result contains the complete

pathname of the selected file.

If the user has not selected a file, Nothing is returned.

selectOutputFile

opens a dialogue in which the user can browse the file system to save a

file.

The first argument is the prompt of the dialogue (default: "Save As:")

The second argument is the suggested filename.

If the indicated directory already contains a file with the indicated name,

selectOutputFile opens a new dialogue to confirm overwriting of the existing

file.

If either this dialogue is not confirmed or browsing is cancelled then

Nothing is returned, otherwise the String result is the complete pathname of

the selected file.

*/

instance FileSelectEnv World

144 APPENDIX A. I/O LIBRARY

A.8 StdFont

definition module StdFont

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdFont contains the font definitions.

// **

from osfont import Font

import StdFontDef

class FontEnv env where

openFont :: !FontDef !*env -> (!(!Bool,!Font),!*env)

openDefaultFont :: !*env -> (!Font, !*env)

openDialogFont :: !*env -> (!Font, !*env)

getFontNames :: !*env -> (![FontName], !*env)

getFontStyles :: !FontName !*env -> (![FontStyle], !*env)

getFontSizes :: !Int !Int !FontName !*env -> (![FontSize], !*env)

getFontCharWidth :: ! Char !Font !*env -> (!Int, !*env)

getFontCharWidths :: ![Char] !Font !*env -> (![Int], !*env)

getFontStringWidth :: ! String !Font !*env -> (!Int, !*env)

getFontStringWidths :: ![String] !Font !*env -> (![Int], !*env)

getFontMetrics :: !Font !*env -> (!FontMetrics, !*env)

/* openFont

creates the font as specified by the name, stylistic variations, and size.

The Boolean result is True only if the font is available and need not be

scaled.

In all other cases, an existing font is returned (depending on the system).

openDefaultFont

returns the font used by default by applications.

openDialogFont

returns the font used by default by the system.

getFontNames

returns the FontNames of all available fonts.

getFontStyles

returns the FontStyles of all available styles of a particular FontName.

getFontSizes

returns all FontSizes in increasing order of a particular FontName that are

available without scaling. The sizes inspected are inclusive between the two

Integer arguments. (Negative values are set to zero.)

In case the requested font is unavailable, the styles or sizes of the

default font are returned.

getFont(Char/String)Width(s)

return the width(s) in terms of pixels of given character(s) (string(s)) for

a particular Font.

getFontMetrics

returns the metrics of a given Font in terms of pixels.

*/

instance FontEnv World

getFontDef :: !Font -> FontDef

/* getFontDef returns the name, stylistic variations and size of the argument Font.

*/

A.9. STDFONTDEF 145

A.9 StdFontDef

definition module StdFontDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdFontDef contains the font definitions.

// **

import StdInt, StdString

:: FontDef

= { fName :: !FontName // Name of the font

, fStyles :: ![FontStyle] // Stylistic variations

, fSize :: !FontSize // Size in points

}

:: FontMetrics

= { fAscent :: !Int // Distance between top and base line

, fDescent :: !Int // Distance between bottom and base line

, fLeading :: !Int // Distance between two text lines

, fMaxWidth :: !Int // Maximum character width including spacing

}

:: FontName :== String

:: FontStyle :== String

:: FontSize :== Int

// Font constants:

SerifFontDef :== {fName="Times", fStyles=[],fSize=10}

SansSerifFontDef :== {fName="Arial", fStyles=[],fSize=10}

SmallFontDef :== {fName="Small Fonts",fStyles=[],fSize=7 }

NonProportionalFontDef :== {fName="Courier", fStyles=[],fSize=10}

SymbolFontDef :== {fName="Symbol", fStyles=[],fSize=10}

// Style constants:

ItalicsStyle :== "Italic"

BoldStyle :== "Bold"

UnderlinedStyle :== "Underline"

// Standard lineheight of a font is the sum of its leading, ascent and descent:

fontLineHeight fMetrics :== fMetrics.fLeading + fMetrics.fAscent + fMetrics.fDescent

146 APPENDIX A. I/O LIBRARY

A.10 StdId

definition module StdId

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdId specifies the generation functions for identification values.

// **

from id import Id, RId, R2Id, RIdtoId, R2IdtoId, toString, ==

from iostate import IOSt

class Ids env where

openId :: !*env -> (!Id, !*env)

openIds :: !Int !*env -> (![Id], !*env)

openRId :: !*env -> (!RId m, !*env)

openRIds :: !Int !*env -> (![RId m], !*env)

openR2Id :: !*env -> (!R2Id m r, !*env)

openR2Ids :: !Int !*env -> (![R2Id m r], !*env)

/* There are three types of identification values:

- RId m: for uni-directional message passing (see StdReceiver)

- R2Id m r: for bi-directional message passing (see StdReceiver)

- Id: for all other Object I/O library components

Of each generation function there are two variants:

- to create exactly one identification value.

- to create a number of identification values.

If the integer argument <=0, then an empty list of identification values

is generated.

*/

instance Ids World

instance Ids (IOSt .l .p)

A.11. STDIO 147

A.11 StdIO

definition module StdIO

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdIO contains all definition modules of the Object I/O library.

// **

import

StdId, // The operations that generate identification values

StdIOCommon, // Function and type definitions used in the library

StdMaybe, // The Maybe data type

StdPSt, // Operations on PSt that are not device related

StdSystem, // System dependent operations

StdFileSelect, // File selector dialogues

StdFontDef, // Type definitions for font handling

StdFont, // Font handling operations

StdPictureDef, // Type definitions for picture handling

StdPicture, // Picture handling operations

StdBitmap, // Defines an instance for drawing bitmaps

StdProcessDef, // Type definitions for process handling

StdProcess, // Process handling operations

StdClipboard, // Clipboard handling operations

StdControlDef, // Type definitions for controls

StdControlClass, // Standard controls class instances

StdControlReceiver, // Receiver controls class instances

StdControl, // Control handling operations

StdMenuDef, // Type definitions for menus

StdMenuElementClass, // Standard menus class instances

StdMenuReceiver, // Receiver menus class instances

StdMenuElement, // Menu element handling operations

StdMenu, // Menu handling operations

StdReceiverDef, // Type definitions for receivers

StdReceiver, // Receiver handling operations

StdTimerDef, // Type definitions for timers

StdTimerElementClass, // Standard timer class instances

StdTimerReceiver, // Receiver timer class instances

StdTimer, // Timer handling operations

StdTime, // Time related operations

StdWindowDef, // Type definitions for windows

StdWindow // Window handling operations

148 APPENDIX A. I/O LIBRARY

A.12 StdIOCommon

definition module StdIOCommon

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdIOCommon defines common types and access functions for the

// Object I/O library.

// **

import StdOverloaded

import StdString

from id import Id, RId, R2Id, RIdtoId, R2IdtoId, toString, ==

from key import SpecialKey,

BeginKey,

ClearKey,

DeleteKey, DownKey,

EndKey, EnterKey, EscapeKey,

F1Key, F2Key, F3Key, F4Key, F5Key,

F6Key, F7Key, F8Key, F9Key, F10Key,

F11Key, F12Key, F13Key, F14Key, F15Key,

HelpKey,

LeftKey,

PgDownKey, PgUpKey,

RightKey,

UpKey

/* General type constructors for composing context-independent data structures.

*/

:: :^: t1 t2 = (:^:) infixr 9 t1 t2

/* General type constructors for composing context-dependent data structures.

*/

:: :~: t1 t2 cs = (:~:) infixr 9 (t1 cs) (t2 cs)

:: ListCS t cs = ListCS [t cs]

:: NilCS cs = NilCS

/* General type constructors for composing local and context-dependent

data structures.

*/

:: :+: t1 t2 ls cs = (:+:) infixr 9 (t1 ls cs) (t2 ls cs)

:: ListLS t ls cs = ListLS [t ls cs]

:: NilLS ls cs = NilLS

:: NewLS t ls cs = E..new: {newLS::new, newDef:: t new cs}

:: AddLS t ls cs = E..add: {addLS::add, addDef:: t *(add,ls) cs}

noLS :: (.a->.b) (.c,.a) -> (.c,.b) // Lift function a -> b

// to (c,a)->(c,b)

noLS1:: (.x->.a->.b) .x (.c,.a) -> (.c,.b) // Lift function x-> a -> b

// to x->(c,a)->(c,b)

:: Index :== Int

:: Title :== String

:: Vector = {vx::!Int,vy::!Int}

instance == Vector // @1-@2==zero

instance + Vector // {vx=@1.vx+@2.vx,vy=@1.vy+@2.vy}

instance - Vector // {vx=@1.vx-@2.vx,vy=@1.vy-@2.vy}

instance zero Vector // {vx=0,vy=0}

A.12. STDIOCOMMON 149

instance ~ Vector // zero-@1

class toVector x :: !x -> Vector

:: Size = {w ::!Int,h ::!Int}

instance == Size // @1.w==@2.w && @1.h==@2.h

instance zero Size // {w=0,h=0}

instance toVector Size // {w,h}->{vx=w,vy=h}

:: SelectState = Able | Unable

:: MarkState = Mark | NoMark

enabled :: !SelectState -> Bool // @1 == Able

marked :: !MarkState -> Bool // @1 == Mark

instance == SelectState // Constructor equality

instance == MarkState // Constructor equality

instance ~ SelectState // Able <-> Unable

instance ~ MarkState // Mark <-> NoMark

:: KeyboardState

= CharKey Char KeyState // ASCII character input

| SpecialKey SpecialKey KeyState Modifiers

// Special key input

:: KeyState

= KeyDown IsRepeatKey // Key is down

| KeyUp // Key goes up

:: IsRepeatKey // Flag on key down:

:== Bool // True iff key is repeating

:: Key

= IsCharKey Char

| IsSpecialKey SpecialKey

:: KeyboardStateFilter // Predicate on KeyboardState:

:== KeyboardState -> Bool // evaluate KeyFunction only if True

getKeyboardStateKeyState:: !KeyboardState -> KeyState

getKeyboardStateKey :: !KeyboardState -> Key

instance == KeyState // Equality on KeyState

:: MouseState

= MouseMove Point Modifiers // Mouse is up (position,modifiers)

| MouseDown Point Modifiers Int // Mouse goes down (and nr down)

| MouseDrag Point Modifiers // Mouse is down (position,modifiers)

| MouseUp Point Modifiers // Mouse goes up (position,modifiers)

:: ButtonState

= ButtonStillUp // MouseMove

| ButtonDown // MouseDown _ _ 1

| ButtonDoubleDown // _ _ 2

| ButtonTripleDown // _ _ >2

| ButtonStillDown // MouseDrag

| ButtonUp // MouseUp

:: MouseStateFilter // Predicate on MouseState:

:== MouseState -> Bool // evaluate MouseFunction only if True

getMouseStatePos :: !MouseState -> Point

getMouseStateModifiers :: !MouseState -> Modifiers

getMouseStateButtonState:: !MouseState -> ButtonState

instance == ButtonState // Constructor equality

:: SliderState

= { sliderMin :: !Int

150 APPENDIX A. I/O LIBRARY

, sliderMax :: !Int

, sliderThumb :: !Int

}

instance == SliderState // @1.sliderMin == @2.sliderMin

// @1.sliderMax == @2.sliderMax

// @1.sliderThumb == @2.sliderThumb

:: UpdateState

= { oldFrame :: !ViewFrame

, newFrame :: !ViewFrame

, updArea :: !UpdateArea

}

:: ViewDomain :== Rectangle

:: ViewFrame :== Rectangle

:: UpdateArea :== [ViewFrame]

:: Point

= { x :: !Int

, y :: !Int

}

:: Rectangle

= { corner1 :: !Point

, corner2 :: !Point

}

instance == Point // @1-@2==zero

instance + Point // {x=@1.x+@2.x,y=@1.y+@2.y}

instance - Point // {x=@1.x-@2.x,y=@1.y-@2.y}

instance zero Point // {x=0,y=0}

instance toVector Point // {x,y}->{vx=x,vy=y}

instance == Rectangle // @1.corner1==@2.corner1

// && @1.corner2==@2.corner2

instance zero Rectangle // {corner1=zero,corner2=zero}

rectangleSize :: !Rectangle -> Size // {w=abs (@1.corner1-@1.corner2).x,

// h=abs (@1.corner1-@1.corner2).y}

:: Modifiers

= { shiftDown :: !Bool // True iff shift down

, optionDown :: !Bool // True iff option down

, commandDown :: !Bool // True iff command down

, controlDown :: !Bool // True iff control down

, altDown :: !Bool // True iff alt down

}

// Constants to check which of the Modifiers are down.

NoModifiers :== {shiftDown = False

,optionDown = False

,commandDown= False

,controlDown= False

,altDown = False

}

ShiftOnly :== {NoModifiers & shiftDown = True}

OptionOnly :== {NoModifiers & optionDown = True}

CommandOnly :== {NoModifiers & commandDown = True}

ControlOnly :== {NoModifiers & controlDown = True}

AltOnly :== {NoModifiers & altDown = True}

/* The layout language used for windows and controls.

*/

A.12. STDIOCOMMON 151

:: ItemPos

:== (ItemLoc

, ItemOffset

)

:: ItemLoc

// Absolute:

= Fix Point

// Relative to corner:

| LeftTop

| RightTop

| LeftBottom

| RightBottom

// Relative in next line:

| Left

| Center

| Right

// Relative to other item:

| LeftOf Id

| RightTo Id

| Above Id

| Below Id

// Relative to previous item:

| LeftOfPrev

| RightToPrev

| AbovePrev

| BelowPrev

:: ItemOffset

:== Vector

instance == ItemLoc // Constructor and value equality

/* The Direction type.

*/

:: Direction

= Horizontal

| Vertical

instance == Direction // Constructor equality

/* Document interface type of interactive processes.

*/

:: DocumentInterface

= NDI // No Document Interface

| SDI // Single Document Interface

| MDI // Multiple Document Interface

instance == DocumentInterface // Constructor equality

/* Process attributes.

*/

:: ProcessAttribute ps // Default:

= ProcessWindowPos ItemPos // Platform dependent

| ProcessWindowSize Size // Platform dependent

| ProcessWindowResize (ProcessWindowResizeFunction ps)

// Platform dependent

| ProcessHelp (IOFunction ps) // No Help facility

| ProcessAbout (IOFunction ps) // No About facility

| ProcessActivate (IOFunction ps) // No action on activate

| ProcessDeactivate (IOFunction ps) // No action on deactivate

| ProcessClose (IOFunction ps) // Process is closed

| ProcessShareGUI // Process does not share parent GUI

// Attributes for MDI processes only:

| ProcessNoWindowMenu // Process has WindowMenu

152 APPENDIX A. I/O LIBRARY

:: ProcessWindowResizeFunction ps

:== Size // Old ProcessWindow size

-> Size // New ProcessWindow size

-> ps -> ps

/* Frequently used function types.

*/

:: IdFun ps :== ps -> ps

:: IOFunction ps :== ps -> ps

:: ModsIOFunction ps :== Modifiers -> ps -> ps

:: MouseFunction ps :== MouseState -> ps -> ps

:: KeyboardFunction ps :== KeyboardState -> ps -> ps

/* Common error report types.

*/

:: ErrorReport // Usual cause:

= NoError // Everything went allright

| ErrorViolateDI // Violation against DocumentInterface

| ErrorIdsInUse // Object contains Ids that are bound

| ErrorUnknownObject // Object can not be found

instance == ErrorReport // Constructor equality

A.13. STDMAYBE 153

A.13 StdMaybe

definition module StdMaybe

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdMaybe defines the Maybe type.

// **

:: Maybe x

= Just x

| Nothing

isJust :: !(Maybe .x) -> Bool // case @1 of (Just _) -> True; _ -> False

isNothing :: !(Maybe .x) -> Bool // not o isNothing

fromJust :: !(Maybe .x) -> .x // \(Just x) -> x

154 APPENDIX A. I/O LIBRARY

A.14 StdMenu

definition module StdMenu

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdMenu defines functions on menus.

// **

import StdMenuDef, StdMenuElementClass

from iostate import PSt, IOSt

// Operations on unknown Ids are ignored.

class Menus mdef where

openMenu :: .ls !(mdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getMenuType :: (mdef .ls .ps) -> MenuType

/* Open the given menu definition for this interactive process.

openMenu may not be permitted to open a menu depending on its DocumentInterface

(see the comments at the shareProcesses instances in module StdProcess).

In case a menu with the same Id is already open then nothing happens. In case

the menu has the WindowMenuId Id then nothing happens. In case the menu does

not have an Id, it will obtain an Id which is fresh with respect to the

current set of menus. The Id can be reused after closing this menu. In case

menu elements are opened with duplicate Ids, the menu will not be opened.

In case the menu definition does not have a MenuIndex attribute (see StdMenuDef)

it will be opened behind the last menu. In case the menu definition has a

MenuIndex attribute it will be placed behind the menu indicated by the

integer index.

The index of a menu starts from one for the first present menu. If the index

is negative or zero, then the new menu is added before the first menu. If

the index exceeds the number of menus, then the new menu is added behind the

last menu.

*/

instance Menus (Menu m) | MenuElements m

closeMenu :: !Id !(IOSt .l .p) -> IOSt .l .p

/* closeMenu closes the indicated Menu and all of its elements.

The WindowMenu can not be closed by closeMenu (in case the Id argument equals

WindowMenuId).

*/

openMenuElements :: !Id !Index .ls (m .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| MenuElements m

openSubMenuElements :: !Id !Id !Index .ls (m .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| MenuElements m

openRadioMenuItems :: !Id !Id !Index ![MenuRadioItem (PSt .l .p)] !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

/* Add menu elements to the indicated Menu, SubMenu, or RadioMenu.

openMenuElements:

adds menu elements to the Menu identified by the Id argument.

openSubMenuElements:

adds menu elements to the SubMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

openRadioMenuItems:

adds menu radio items to the RadioMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

A.14. STDMENU 155

If the RadioMenu was empty, then the first item in the list will be checked.

Menu elements are added after the item with the specified index. The index of a

menu element starts from one for the first menu element in the indicated

menu.

If the index is negative or zero, then the new menu elements are added

before the first menu element of the indicated menu.

If the index exceeds the number of menu elements in the indicated menu, then

the new menu elements are added behind the last menu element of the

indicated menu.

No menu elements are added if the indicated menu does not exist.

open(Sub)MenuElements have no effect in case menu elements with duplicate Ids

are opened.

*/

closeMenuElements :: !Id ![Id] !(IOSt .l .p) -> IOSt .l .p

/* closeMenuElements

closes menu elements of the Menu identified by the first Id argument by

their Ids. The elements of (Sub/Radio)Menus will be removed first.

*/

closeMenuIndexElements :: !Id ![Index] !(IOSt .l .p) -> IOSt .l .p

closeSubMenuIndexElements :: !Id !Id ![Index] !(IOSt .l .p) -> IOSt .l .p

closeRadioMenuIndexElements :: !Id !Id ![Index] !(IOSt .l .p) -> IOSt .l .p

/* Close menu elements of the indicated Menu, SubMenu, or RadioMenu by their Index

position.

closeMenuIndexElements:

closes menu elements of the Menu identified by the Id argument.

closeSubMenuIndexElements:

closes menu elements of the SubMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

closeRadioMenuIndexElements:

closes menu items of the RadioMenu identified by the second Id argument,

which must be contained in the Menu identified by the first Id argument.

Analogous to openMenuElements and openRadioMenuItems indices range from one to

the number of menu elements in a menu. Invalid indices (less than one or

larger than the number of menu elements of the menu) are ignored.

If the currently checked element of a RadioMenu is closed, the first remaining

element of that RadioMenu will be checked.

Closing a (Sub/Radio)Menu closes the indicated (Sub/Radio)Menu and all of its

elements.

*/

enableMenuSystem :: !(IOSt .l .p) -> IOSt .l .p

disableMenuSystem:: !(IOSt .l .p) -> IOSt .l .p

/* Enable/disable the menu system of this interactive process. When the menu system

is re-enabled the previously selectable menus and elements will become

selectable again.

Enable/disable operations on the menu(element)s of a disabled menu system take

effect when the menu system is re-enabled.

enableMenuSystem has no effect in case the interactive process has a (number of)

modal dialogue(s).

*/

enableMenus :: ![Id] !(IOSt .l .p) -> IOSt .l .p

disableMenus:: ![Id] !(IOSt .l .p) -> IOSt .l .p

/* Enable/disable individual menus.

The WindowMenu can not be enabled/disabled.

Disabling a menu overrules the SelectStates of its elements, which become

unselectable.

Enabling a disabled menu re-establishes the SelectStates of its elements.

Enable/disable operations on the elements of a disabled menu take effect when

the menu is re-enabled.

*/

156 APPENDIX A. I/O LIBRARY

getMenuSelectState :: !Id !(IOSt .l .p) -> (!Maybe SelectState,!IOSt .l .p)

/* getMenuSelectState yields the current SelectState of the indicated menu. In case

the menu does not exist, Nothing is returned.

*/

getMenus :: !(IOSt .l .p) -> (![(Id,MenuType)],!IOSt .l .p)

/* getMenus yields the Ids and MenuTypes of the current set of menus of this

interactive process.

*/

getMenuPos :: !Id !(IOSt .l .p) -> (!Maybe Index,!IOSt .l .p)

/* getMenuPos yields the index position of the indicated menu in the current list

of menus.

In case the menu does not exist, Nothing is returned.

*/

setMenuTitle :: !Id !Title !(IOSt .l .p) -> IOSt .l .p

getMenuTitle :: !Id !(IOSt .l .p) -> (!Maybe Title,!IOSt .l .p)

/* setMenuTitle sets the title of the indicated menu.

In case the menu does not exist or refers to the WindowMenu, nothing

happens.

getMenuTitle retrieves the current title of the indicated menu.

In case the menu does not exist, Nothing is returned.

*/

A.15. STDMENUDEF 157

A.15 StdMenuDef

definition module StdMenuDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdMenu contains the types to define the standard set of menus and their

// elements.

// **

import StdIOCommon, StdMaybe

/* Menus: */

:: Menu m ls ps = Menu Title (m ls ps)

[MenuAttribute *(ls,ps)]

/* Menu elements: */

:: SubMenu m ls ps = SubMenu Title (m ls ps)

[MenuAttribute *(ls,ps)]

:: RadioMenu ls ps = RadioMenu [MenuRadioItem *(ls,ps)] Index

[MenuAttribute *(ls,ps)]

:: MenuItem ls ps = MenuItem Title

[MenuAttribute *(ls,ps)]

:: MenuSeparator ls ps = MenuSeparator [MenuAttribute *(ls,ps)]

:: MenuRadioItem ps :== (Title,Maybe Id,Maybe Char,IOFunction ps)

:: MenuAttribute ps // Default:

// Attributes for Menus and MenuElements:

= MenuId Id // no Id

| MenuSelectState SelectState // menu(item) Able

// Attributes only for Menus:

| MenuIndex Int // end of current menu list

// Attributes ignored by (Sub)Menus:

| MenuShortKey Char // no ShortKey

| MenuMarkState MarkState // NoMark

| MenuFunction (IOFunction ps) // \x->x

| MenuModsFunction (ModsIOFunction ps) // MenuFunction

:: MenuType :== String

:: MenuElementType :== String

158 APPENDIX A. I/O LIBRARY

A.16 StdMenuElement

definition module StdMenuElement

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdMenuElement specifies all functions on menu elements.

// Changing the status of menu elements requires a *MState.

// Reading the status of menu elements requires a MState.

// **

import StdMenuDef

from iostate import IOSt

:: MState

getMenu :: !Id !(IOSt .l .p) -> (!Maybe MState, !IOSt .l .p)

/* getMenu returns a read-only MState for the indicated menu.

In case the indicated menu does not exist Nothing is returned.

*/

setMenu :: !Id ![IdFun *MState] !(IOSt .l .p) -> IOSt .l .p

/* Apply the menu element changing functions to the current state of the indicated

menu.

In case the indicated menu does not exist nothing happens.

*/

/* Functions that change the state of menu elements.

When applied to unknown Ids none of these functions have effect.

*/

enableMenuElements :: ![Id] !*MState -> *MState

disableMenuElements :: ![Id] !*MState -> *MState

/* (en/dis)ableMenuElements set the SelectState of the indicated menu elements.

Disabling a (Sub/Radio)Menu overrules the SelectStates of its elements, which

become unselectable.

Enabling a disabled (Sub/Radio)Menu re-establishes the SelectStates of its

elements.

(En/Dis)able operations on the elements of a disabled (Sub/Radio)Menu take

effect when the (Sub/Radio)Menu is re-enabled.

*/

setMenuElementTitles :: ![(Id,Title)] !*MState -> *MState

/* setMenuElementTitles sets the titles of the indicated menu elements.

*/

markMenuItems :: ![Id] !*MState -> *MState

unmarkMenuItems :: ![Id] !*MState -> *MState

/* (un)markMenuItems sets the MarkState of the indicated MenuItems.

*/

selectRadioMenuItem :: !Id !Id !*MState -> *MState

selectRadioMenuIndexItem :: !Id !Index !*MState -> *MState

/* selectRadioMenu(Index)Item

selects the indicated MenuRadioItem of a RadioMenu, causing the mark of the

previously marked MenuRadioItem to disappear.

selectRadioMenuItem

indicates the MenuRadioItem by the Id of its parent RadioMenu and its Id.

selectRadioMenuIndexItem

indicates the MenuRadioItem by the Id of its parent RadioMenu and its index

A.16. STDMENUELEMENT 159

position (counted from 1).

*/

/* Functions that read the state of menu elements.

*/

getMenuElementTypes :: !MState -> [(MenuElementType,Maybe Id)]

getCompoundMenuElementTypes :: !Id !MState -> [(MenuElementType,Maybe Id)]

/* getMenuElementTypes

yields the list of MenuElementTypes of all menu elements of this menu.

getCompoundMenuElementTypes

yields the list of MenuElementTypes of all menu elements of this

(Sub/Radio)Menu.

Both functions return (Just id) if the element has a MenuId attribute, and

Nothing otherwise.

Ids are not collected recursively through (Sub/Radio)Menus.

*/

getSelectedRadioMenuItem :: !Id !MState -> (!Index,!Maybe Id)

/* getSelectedRadioMenuItem

returns the Index and Id, if any, of the currently selected MenuRadioItem of

the indicated RadioMenu.

If the RadioMenu does not exist or is empyt, the Index is zero and the Id is

Nothing.

*/

getMenuElementSelectStates :: ![Id] !MState -> [(Bool,SelectState)] // Able

getMenuElementMarkStates :: ![Id] !MState -> [(Bool,MarkState)] // NoMark

getMenuElementTitles :: ![Id] !MState -> [(Bool,Maybe String)] // Nothing

getMenuElementShortKey :: ![Id] !MState -> [(Bool,Maybe Char)] // Nothing

/* The result list is of equal length as the argument Id list.

Each result list element corresponds in order with the argument Id list.

Of each element the first Boolean result is False in case of invalid id

(if so dummy values are returned - see comment).

- getMenuElementSelectStates

yield the SelectState of the indicated elements.

- getMenuElementMarkStates

yield the MarkState of the indicated elements.

- getMenuElementTitles

yields (Just title) of the indicated (SubMenu/MenuItem),

Nothing otherwise.

- getMenuElementShortKey

yields (Just key) of the indicated MenuItem, Nothing otherwise.

*/

160 APPENDIX A. I/O LIBRARY

A.17 StdMenuElementClass

definition module StdMenuElementClass

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdMenuElementClass defines the standard set of menu element instances.

// **

import StdMenuDef

from menuhandle import MenuElementState

class MenuElements m

where

menuElementToHandles :: !(m .ls .ps) -> [MenuElementState .ls .ps]

getMenuElementType :: (m .ls .ps) -> MenuElementType

instance MenuElements (AddLS m) | MenuElements m // getMenuElementType==""

instance MenuElements (NewLS m) | MenuElements m // getMenuElementType==""

instance MenuElements (ListLS m) | MenuElements m // getMenuElementType==""

instance MenuElements NilLS // getMenuElementType==""

instance MenuElements ((:+:) m1 m2) | MenuElements m1

& MenuElements m2 // getMenuElementType==""

instance MenuElements (SubMenu m) | MenuElements m

instance MenuElements RadioMenu

instance MenuElements MenuItem

instance MenuElements MenuSeparator

A.18. STDMENURECEIVER 161

A.18 StdMenuReceiver

definition module StdMenuReceiver

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdMenuReceiver defines Receiver(2) menu element instances.

// **

import StdReceiverDef, StdMenuElementClass

// Receiver components:

instance MenuElements (Receiver m)

instance MenuElements (Receiver2 m r)

162 APPENDIX A. I/O LIBRARY

A.19 StdPicture

definition module StdPicture

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdPicture contains the drawing operations and access to Pictures.

// **

from ospicture import Picture

import StdPictureDef

// Attribute functions.

getPicture :: !*Picture -> (!Picture,!*Picture)

getPictureAttributes :: ! Picture -> [PictureAttribute]

setPictureAttributes :: ![PictureAttribute] !*Picture -> *Picture

// Pen position attributes:

setPenPos :: !Point !*Picture -> *Picture

getPenPos :: ! Picture -> Point

class movePenPos figure :: !figure !*Picture -> *Picture

// Move the pen position as much as when drawing the figure.

instance movePenPos Vector

instance movePenPos Curve

// PenSize attributes:

setPenSize :: !Int !*Picture -> *Picture

getPenSize :: ! Picture -> Int

setDefaultPenSize :: !*Picture -> *Picture

// setDefaultPenSize = setPenSize 1

// Colour attributes:

setPenColour :: !Colour !*Picture -> *Picture

getPenColour :: ! Picture -> Colour

setDefaultPenColour :: !*Picture -> *Picture

// setDefaultPenColour = setPenColour BlackColour

// Font attributes:

setPenFont :: !Font !*Picture -> *Picture

getPenFont :: ! Picture -> Font

setDefaultPenFont :: !*Picture -> *Picture

/* Picture is an environment instance of the FontEnv class. */

instance FontEnv Picture

// Drawing functions.

:: DrawFunction

:== *Picture -> *Picture

drawPicture :: ![DrawFunction] !*Picture -> *Picture

drawseqPicture :: ![DrawFunction] !*Picture -> *Picture

xorPicture :: ![DrawFunction] !*Picture -> *Picture

xorseqPicture :: ![DrawFunction] !*Picture -> *Picture

/* draw(seq)Picture

applies the list of drawing functions to the argument picture in left to

right order.

A.19. STDPICTURE 163

After drawing, drawPicture restores the picture attributes of the resulting

picture to those of the argument picture.

xor(seq)Picture

applies the list of drawing functions to the argument picture in left to

right order in the appropriate platform xor mode.

After drawing, xorPicture restores the picture attributes of the resulting

picture to those of the argument picture.

*/

// Drawing points:

drawPoint :: !*Picture -> *Picture

drawPointAt :: !Point !*Picture -> *Picture

/* drawPoint

plots a point at the current pen position p and moves to p+{vx=1,vy=0}

drawPointAt

plots a point at the argument pen position, but retains the pen position.

*/

// Drawing lines:

drawLineTo :: !Point !*Picture -> *Picture

drawLine :: !Point !Point !*Picture -> *Picture

/* drawLineTo

draws a line from the current pen position to the argument point which

becomes the new pen position.

drawLine

draws a line between the two argument points, but retains the pen position.

*/

// Hiliting figures:

class Hilites figure where

hilite :: !figure !*Picture -> *Picture

hiliteAt:: !Point !figure !*Picture -> *Picture

/* hilite

draws figures in the appropriate 'hilite' mode at the current pen position.

hiliteAt

draws figures in the appropriate 'hilite' mode at the argument pen position.

Both functions reset the 'hilite' mode after drawing.

*/

instance Hilites Box // Hilite a box

instance Hilites Rectangle // Hilite a rectangle (note: hiliteAt pos r = hilite r)

// Drawing within in a (list of) clipping area(s):

class Clips area where

clip :: !area ![DrawFunction] !*Picture -> *Picture

clipAt :: !Point !area ![DrawFunction] !*Picture -> *Picture

/* clip

takes the base point of the clipping area to be the current pen position.

clipAt

takes the base point of the clipping area to be the argument pen position.

*/

instance Clips Box // Clip within a box

instance Clips Rectangle // Clip within a rectangle

instance Clips Polygon // Clip within a polygon

instance Clips [figure] | Clips figure // Clip within the union of figures

/* Drawing and filling operations.

These functions are divided into the following classes:

164 APPENDIX A. I/O LIBRARY

Drawables: draw 'line-oriented' figures at the current pen position.

drawAt 'line-oriented' figures at the argument pen position.

Fillables: fill 'area-oriented' figures at the current pen position.

fillAt 'area-oriented' figures at the argument pen position.

*/

class Drawables figure where

draw :: !figure !*Picture -> *Picture

drawAt :: !Point !figure !*Picture -> *Picture

class Fillables figure where

fill :: !figure !*Picture -> *Picture

fillAt :: !Point !figure !*Picture -> *Picture

// Text drawing operations:

// Text is always drawn with the baseline at the y coordinate of the pen.

instance Drawables Char

instance Drawables {#Char}

/* draw text:

draws the text starting at the current pen position.

The new pen position is directly after the drawn text including spacing.

drawAt p text:

draws the text starting at p.

*/

// Vector drawing operations:

instance Drawables Vector

/* draw v:

draws a line from the current pen position pen to pen+v.

drawAt p v:

draws a line from p to p+v.

*/

/* Oval drawing operations:

An Oval o is a transformed unit circle

with horizontal radius rx o.oval_rx

vertical radius ry o.oval_ry

Let (x,y) be a point on the unit circle:

then (x`,y`) = (x*rx,y*ry) is a point on o.

Let (x,y) be a point on o:

then (x`,y`) = (x/rx,y/ry) is a point on the unit circle.

*/

instance Drawables Oval

instance Fillables Oval

/* draw o:

draws an oval with the current pen position being the center of the oval.

drawAt p o:

draws an oval with p being the center of the oval.

fill o:

fills an oval with the current pen position being the center of the oval.

fillAt p o:

fills an oval with p being the center of the oval.

None of these functions change the pen position.

*/

/* Curve drawing operations:

A Curve c is a slice of an oval o

with start angle a c.curve_from

end angle b c.curve_to

direction d c.curve_clockwise

The angles are taken in radians (counter-clockwise).

If d holds then the drawing direction is clockwise, otherwise drawing occurs

counter-clockwise.

A.19. STDPICTURE 165

*/

instance Drawables Curve

instance Fillables Curve

/* draw c:

draws a curve with the starting angle a at the current pen position.

The pen position ends at ending angle b.

drawAt p c:

draws a curve with the starting angle a at p.

fill c:

fills the figure obtained by connecting the endpoints of the drawn curve

(draw c) with the center of the curve oval.

The pen position ends at ending angle b.

fillAt p c:

fills the figure obtained by connecting the endpoints of the drawn curve

(drawAt p c) with the center of the curve oval.

*/

/* Box drawing operations:

A Box b is a horizontally oriented rectangle

with width w b.box_w

height h b.box_h

In case w==0 (h==0), the Box collapses to a vertical (horizontal) vector.

In case w==0 and h==0, the Box collapses to a point.

*/

instance Drawables Box

instance Fillables Box

/* draw b:

draws a box with left-top corner at the current pen position p and

right-bottom corner at p+(w,h).

drawAt p b:

draws a box with left-top corner at p and right-bottom corner at p+(w,h).

fill b:

fills a box with left-top corner at the current pen position p and

right-bottom corner at p+(w,h).

fillAt p b:

fills a box with left-top corner at p and right-bottom corner at p+(w,h).

None of these functions change the pen position.

*/

/* Rectangle drawing operations:

A Rectangle r is always horizontally oriented

with width w abs (r.corner1.x-r.corner2.x)

height h abs (r.corner1.y-r.corner2.y)

In case w==0 (h==0), the Rectangle collapses to a vertical (horizontal) vector.

In case w==0 and h==0, the Rectangle collapses to a point.

*/

instance Drawables Rectangle

instance Fillables Rectangle

/* draw r:

draws a rectangle with diagonal corners r.corner1 and r.corner2.

drawAt p r:

draw r

fill r:

fills a rectangle with diagonal corners r.corner1 and r.corner2.

fillAt p r:

fill r

None of these functions change the pen position.

*/

/* Polygon drawing operations:

A Polygon p is a figure

with shape p.polygon_shape

A polygon p at a point base is drawn as follows:

drawPicture [setPenPos base:map draw shape]++[drawToPoint base]

166 APPENDIX A. I/O LIBRARY

*/

instance Drawables Polygon

instance Fillables Polygon

/* None of these functions change the pen position.

*/

A.20. STDPICTUREDEF 167

A.20 StdPictureDef

definition module StdPictureDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdPictureDef contains the predefined figures that can be drawn.

// **

import StdIOCommon, StdFont

:: Box // A box is a rectangle

= { box_w :: !Int // The width of the box

, box_h :: !Int // The height of the box

}

:: Oval // An oval is a stretched unit circle

= { oval_rx :: !Int // The horizontal radius (stretch)

, oval_ry :: !Int // The vertical radius (stretch)

}

:: Curve // A curve is a slice of an oval

= { curve_oval :: !Oval // The source oval

, curve_from :: !Real // Starting angle (in radians)

, curve_to :: !Real // Ending angle (in radians)

, curve_clockwise :: !Bool // Direction: True iff clockwise

}

:: Polygon // A polygon is an outline shape

= { polygon_shape :: ![Vector] // The shape of the polygon

}

// The picture attributes:

:: PictureAttribute // Default:

= PicturePenSize Int // 1

| PicturePenPos Point // zero

| PicturePenColour Colour // Black

| PicturePenFont Font // DefaultFont

:: Colour

= RGB RGBColour

| Black | White

| DarkGrey | Grey | LightGrey // 75%, 50%, and 25% Black

| Red | Green | Blue

| Cyan | Magenta | Yellow

:: RGBColour

= { r :: !Int // The contribution of red

, g :: !Int // The contribution of green

, b :: !Int // The contribution of blue

}

BlackRGB :== {r=MinRGB,g=MinRGB,b=MinRGB}

WhiteRGB :== {r=MaxRGB,g=MaxRGB,b=MaxRGB}

MinRGB :== 0

MaxRGB :== 255

PI :== 3.1415926535898

168 APPENDIX A. I/O LIBRARY

A.21 StdProcess

definition module StdProcess

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdProcess contains the process creation and manipulation functions.

// **

import StdProcessDef, StdWindow

/* General process topology creation functions:

*/

class Processes pdef where

startProcesses :: !pdef !*World -> *World

openProcesses :: !pdef !(PSt .l .p) -> PSt .l .p

class shareProcesses pdef :: !(pdef .p) !(PSt .l .p) -> PSt .l .p

/* (start/open/share)Processes creates an interactive process topology specified by

the pdef argument.

All interactive processes can communicate with each other by means of the

file system or by message passing.

By default, processes obtain a private ProcessWindow. However, if a process

has the ProcessShareGUI attribute, then the process will share the

ProcessWindow of the current interactive process. Every interactive process

can create processes in this way. This results in a tree of processes (see

also the notes of termination at closeProcess).

startProcesses aborts the application if the argument world does not contain a

file system.

startProcesses terminates as soon as all interactive processes that are

created by startProcesses and their child processes have terminated. It

returns the final world, consisting of the final file system and event

stream.

shareProcesses adds the interactive processes specified by the pdef argument to

the process group of the current interactive process. The new interactive

processes can communicate with all interactive processes of the current

process group by means of the public process state component.

*/

instance Processes (ProcessGroup pdef) | shareProcesses pdef

instance Processes [pdef] | Processes pdef

instance Processes (:^: pdef1 pdef2) | Processes pdef1

& Processes pdef2

instance shareProcesses NDIProcess

instance shareProcesses (SDIProcess wdef) | Windows wdef

instance shareProcesses MDIProcess

instance shareProcesses (ListCS pdef) | shareProcesses pdef

instance shareProcesses (:~: pdef1 pdef2) | shareProcesses pdef1

& shareProcesses pdef2

// Convenience process creation functions:

startIO :: !.l !.p !(ProcessInit (PSt .l .p)) ![ProcessAttribute (PSt .l .p)]

!*World -> *World

/* startIO creates one process group of one interactive MDI process which is

initialised with the ProcessInit argument.

*/

A.21. STDPROCESS 169

// Process access operations:

closeProcess :: !(PSt .l .p) -> PSt .l .p

/* closeProcess removes all abstract devices that are held in the interactive

process.

If the interactive process has processes that share its GUI then these will also

be closed recursively. As a result evaluation of this interactive process

including GUI sharing processes will terminate.

*/

hideProcess :: !(IOSt .l .p) -> IOSt .l .p

showProcess :: !(IOSt .l .p) -> IOSt .l .p

/* If the interactive process is active, hideProcess hides the interactive process,

and showProcess makes it visible. Note that hiding an interactive process does

NOT disable the process but simply makes it invisible.

*/

getProcessWindowPos :: !(IOSt .l .p) -> (!Point,!IOSt .l .p)

/* getProcessWindowPos returns the current position of the ProcessWindow.

*/

getProcessWindowSize:: !(IOSt .l .p) -> (!Size,!IOSt .l .p)

/* getProcessWindowSize returns the current size of the ProcessWindow.

*/

170 APPENDIX A. I/O LIBRARY

A.22 StdProcessDef

definition module StdProcessDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdProcessDef contains the types to define interactive processes.

// **

import StdIOCommon

from iostate import PSt, IOSt

:: ProcessGroup pdef

= E..p:ProcessGroup p (pdef p)

:: NDIProcess p // DocumentInterface: NDI

= E..l: NDIProcess l

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

:: SDIProcess wdef p // DocumentInterface: SDI

= E..l ls:SDIProcess l ls

(wdef ls (PSt l p))

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

:: MDIProcess p // DocumentInterface: MDI

= E..l: MDIProcess l

(ProcessInit (PSt l p))

[ProcessAttribute (PSt l p)]

/* NDIProcesses can't open windows and menus.

SDIProcesses can't open windows, except for their argument window.

MDIProcesses can open an arbitrary number of device instances.

*/

:: ProcessInit ps

:== [IdFun ps]

A.23. STDPST 171

A.23 StdPSt

definition module StdPSt

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdPSt defines operations on PSt and IOSt that are not abstract device related.

// **

import StdFunc, StdFile

import StdFileSelect, StdFont, StdIOCommon, StdTime

from iostate import PSt, IOSt

/* PSt is an environment instance of the following classes:

- FileEnv (see StdFile)

- FileSelectEnv (see StdFileSelect)

- FontEnv (see StdFont)

- TimeEnv (see StdTime)

*/

instance FileEnv (PSt .l .p)

instance FileSelectEnv (PSt .l .p)

instance FontEnv (PSt .l .p)

instance TimeEnv (PSt .l .p)

beep :: !(IOSt .l .p) -> IOSt .l .p

/* beep emits the alert sound.

*/

// Operations on the global cursor:

/* RWS ---

setCursor :: !CursorShape !(IOSt .l .p) -> IOSt .l .p

resetCursor :: !(IOSt .l .p) -> IOSt .l .p

obscureCursor :: !(IOSt .l .p) -> IOSt .l .p

/* setCursor overrules the shape of the cursor of all windows.

resetCursor removes the overruled cursor shape of all windows.

obscureCursor hides the cursor until the mouse is moved.

*/

// Operations on the DoubleDownDistance:

setDoubleDownDistance :: !Int !(IOSt .l .p) -> IOSt .l .p

/* setDoubleDownDistance sets the maximum distance the mouse is allowed to move to

generate a ButtonDouble(Triple)Down button state. Negative values are set to

zero.

*/

--- RWS */

// Operations on the DocumentInterface of an interactive process:

getDocumentInterface :: !(IOSt .l .p) -> (!DocumentInterface, !IOSt .l .p)

/* getDocumentInterface returns the DocumentInterface of the interactive process.

*/

// Operations on the attributes of an interactive process:

setProcessActivate :: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

setProcessDeactivate:: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

setProcessHelp :: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

172 APPENDIX A. I/O LIBRARY

setProcessAbout :: !(IdFun (PSt .l .p)) !(IOSt .l .p) -> IOSt .l .p

/* These functions set the ProcessActivate, ProcessDeactivate, ProcessHelp, and

ProcessAbout attribute of the interactive process respectively.

*/

// Coercing PSt component operations to PSt operations.

appListPIO :: ![.IdFun (IOSt .l .p)] !(PSt .l .p) -> PSt .l .p

appListPLoc :: ![.IdFun .l] !(PSt .l .p) -> PSt .l .p

appListPPub :: ![.IdFun .p] !(PSt .l .p) -> PSt .l .p

appPIO :: !.(IdFun (IOSt .l .p)) !(PSt .l .p) -> PSt .l .p

appPLoc :: !.(IdFun .l) !(PSt .l .p) -> PSt .l .p

appPPub :: !.(IdFun .p) !(PSt .l .p) -> PSt .l .p

// Accessing PSt component operations.

accListPIO :: ![.St (IOSt .l .p) .x] !(PSt .l .p) -> (![.x], !PSt .l .p)

accListPLoc :: ![.St .l .x] !(PSt .l .p) -> (![.x], !PSt .l .p)

accListPPub :: ![.St .p .x] !(PSt .l .p) -> (![.x], !PSt .l .p)

accPIO :: !.(St (IOSt .l .p) .x) !(PSt .l .p) -> (!.x, !PSt .l .p)

accPLoc :: !.(St .l .x) !(PSt .l .p) -> (!.x, !PSt .l .p)

accPPub :: !.(St .p .x) !(PSt .l .p) -> (!.x, !PSt .l .p)

A.24. STDRECEIVER 173

A.24 StdReceiver

definition module StdReceiver

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdReceiver specifies all receiver operations.

// **

import StdReceiverDef, StdMaybe

from iostate import PSt, IOSt

from id import RId, R2Id, RIdtoId, R2IdtoId, ==

// Operations on the ReceiverDevice.

// Open uni- and bi-directional receivers:

class Receivers rdef where

openReceiver :: .ls !(rdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

reopenReceiver :: .ls !(rdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getReceiverType :: .(rdef .ls .ps) -> ReceiverType

/* openReceiver

opens the given receiver if no receiver currently exists with the given

R(2)Id. The R(2)Id has to be used to send messages to this receiver.

reopenReceiver

first closes the receiver with the same R(2)Id if present, and then opens a

new receiver with the given receiver definition. The R(2)Id has to be used

to send messages to the new receiver.

getReceiverType

returns the type of the receiver (see also getReceivers).

*/

instance Receivers (Receiver msg)

instance Receivers (Receiver2 msg resp)

closeReceiver :: !Id !(IOSt .l .p) -> IOSt .l .p

/* closeReceiver closes the indicated uni- or bi-directional receiver.

Invalid Ids have no effect.

*/

getReceivers :: !(IOSt .l .p) -> (![(Id,ReceiverType)], !IOSt .l .p)

/* getReceivers returns the Ids and ReceiverTypes of all currently open uni- or

bi-directional receivers of this interactive process.

*/

enableReceivers :: ![Id] !(IOSt .l .p) -> IOSt .l .p

disableReceivers :: ![Id] !(IOSt .l .p) -> IOSt .l .p

getReceiverSelectState :: ! Id !(IOSt .l .p) -> (!Maybe SelectState,!IOSt .l .p)

/* (en/dis)ableReceivers

(en/dis)able the indicated uni- or bi-directional receivers.

Note that this implies that in case of synchronous message passing messages

can fail (see the comments of syncSend and syncSend2 below). Invalid Ids

have no effect.

getReceiverSelectState

yields the current SelectState of the indicated receiver. In case the

receiver does not exist, Nothing is returned.

*/

174 APPENDIX A. I/O LIBRARY

// Inter-process communication:

// Message passing status report:

:: SendReport

= SendOk

| SendUnknownProcess

| SendUnknownReceiver

| SendUnableReceiver

| SendDeadlock

instance toString SendReport

asyncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport, !PSt .l .p)

/* asyncSend posts a message to the receiver indicated by the argument RId. In case

the indicated receiver belongs to this process, the message is simply buffered.

asyncSend is asynchronous: the message will at some point be received by the

indicated receiver.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent.

Note that even though the message has been sent, it cannot be

guaranteed that the message will actually be handled by the

indicated receiver because it might become closed, forever disabled,

or flooded with synchronous messages.

- SendUnknownProcess:

The indicated interactive process does not exist, therefore the

receiver also does not exist.

- SendUnknownReceiver:

The indicated receiver does not exist, although the interactive

process that created it does exist.

- SendUnableReceiver:

Does not occur: the message is always buffered, regardless whether

the indicated receiver is Able or Unable. Note that in case the

receiver never becomes Able, the message will not be handled.

- SendDeadlock:

Does not occur.

*/

syncSend :: !(RId msg) msg !(PSt .l .p) -> (!SendReport, !PSt .l .p)

/* syncSend posts a message to the receiver indicated by the argument RId. In case

the indicated receiver belongs to the current process, the corresponding

ReceiverFunction is applied directly to the message argument and current process

state.

syncSend is synchronous: this interactive process blocks evaluation until the

indicated receiver has received the message.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent and

handled by the indicated receiver.

- SendUnknownProcess:

The indicated interactive process does not exist, therefore the

receiver also does not exist.

- SendUnknownReceiver:

The indicated receiver does not exist, although the interactive

process that created it does exist.

- SendUnableReceiver:

The addressee exists, but its ReceiverSelect attribute is Unable.

Message passing is halted. The message is not sent.

- SendDeadlock:

The addressee is involved in a synchronous, cyclic communication

with the current process. Blocking the current process would result

in a deadlock situation. Message passing is halted to circumvent the

deadlock. The message is not sent.

*/

syncSend2 :: !(R2Id msg resp) msg !(PSt .l .p)

-> (!(!SendReport,!Maybe resp), !PSt .l .p)

/* syncSend2 posts a message to the receiver indicated by the argument R2Id. In

A.24. STDRECEIVER 175

case the indicated receiver belongs to the current process, the corresponding

Receiver2Function is applied directly to the message argument and current

process state.

syncSend2 is synchronous: this interactive process blocks until the indicated

receiver has received the message.

The SendReport can be one of the following alternatives:

- SendOk: No exceptional situation has occurred. The message has been sent and

handled by the indicated receiver. The response of the receiver is

returned as well as (Just response).

- SendUnknownProcess:

The indicated interactive process does not exist, therefore the

receiver also does not exist.

- SendUnknownReceiver:

The indicated receiver does not exist, although the interactive

process that created it does exist.

- SendUnableReceiver:

The addressee exists, but its ReceiverSelect attribute is Unable.

Message passing is halted. The message is not sent.

- SendDeadlock:

The addressee is involved in a synchronous, cyclic communication

with the current process. Blocking the current process would result

in a deadlock situation. Message passing is halted to circumvent the

deadlock. The message is not sent.

In all other cases than SendOk, the optional response is Nothing.

*/

176 APPENDIX A. I/O LIBRARY

A.25 StdReceiverDef

definition module StdReceiverDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdReceiverDef contains the types to define the standard set of receivers.

// **

import StdIOCommon

:: Receiver m ls ps = Receiver (RId m) (ReceiverFunction m *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: Receiver2 m r ls ps = Receiver2 (R2Id m r) (Receiver2Function m r *(ls,ps))

[ReceiverAttribute *(ls,ps)]

:: ReceiverFunction m ps :== m -> ps -> ps

:: Receiver2Function m r ps :== m -> ps -> (r,ps)

:: ReceiverAttribute ps // Default:

= ReceiverSelectState SelectState // receiver Able

:: ReceiverType

:== String

A.26. STDSYSTEM 177

A.26 StdSystem

definition module StdSystem

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdSystem defines platform dependent constants and functions.

// **

import StdIOCommon

// System dependencies concerning the file system.

dirseparator :: Char // Separator between folder- and filenames in a pathname

homepath :: !String -> String

applicationpath :: !String -> String

/* dirseparator

is the separator symbol used between folder- and filenames in a file path.

homepath

prefixes the 'home' directory file path to the given file name.

applicationpath

prefixes the 'application' directory file path to the given file name.

Use these directories to store preference/options/help files of an application.

*/

// System dependencies concerning the time resolution

ticksPerSecond :: Int

/* ticksPerSecond returns the maximum timer resolution per second.

*/

// System dependencies concerning the screen resolution.

mmperinch :== 25.4

hmm :: !Real -> Int

vmm :: !Real -> Int

hinch :: !Real -> Int

vinch :: !Real -> Int

/* h(mm/inch) convert millimeters/inches into pixels, horizontally.

v(mm/inch) convert millimeters/inches into pixels, vertically.

*/

maxScrollWindowSize :: Size

maxFixedWindowSize :: Size

/* maxScrollWindowSize

yields the range at which scrollbars are inactive.

maxFixedWindowSize

yields the range at which a window still fits on the screen.

*/

178 APPENDIX A. I/O LIBRARY

A.27 StdTime

definition module StdTime

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdTime contains time related operations.

// **

:: Time

= { hours :: !Int // hours (0-23)

, minutes :: !Int // minutes (0-59)

, seconds :: !Int // seconds (0-59)

}

:: Date

= { year :: !Int // year

, month :: !Int // month (1-12)

, day :: !Int // day (1-31)

, dayNr :: !Int // day of week (1-7, Sunday=1, Saturday=7)

}

wait :: !Int .x -> .x

/* wait n x suspends the evaluation of x modally for n ticks.

If n<=0, then x is evaluated immediately.

*/

class TimeEnv env where

getBlinkInterval:: !*env -> (!Int, !*env)

getCurrentTime :: !*env -> (!Time, !*env)

getCurrentDate :: !*env -> (!Date, !*env)

/* getBlinkInterval

returns the time interval in ticks that should elapse between blinks of

e.g. a cursor. This interval may be changed by the user while the

interactive process is running!

getCurrentTime

returns the current Time.

getCurrentDate

returns the current Date.

*/

instance TimeEnv World

A.28. STDTIMER 179

A.28 StdTimer

definition module StdTimer

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdTimer specifies all timer operations.

// **

import StdTimerDef, StdTimerElementClass, StdMaybe

from StdSystem import ticksPerSecond

from iostate import PSt, IOSt

class Timers tdef where

openTimer :: .ls !(tdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getTimerType:: (tdef .ls .ps) -> TimerType

/* Open a new timer.

This function has no effect in case the interactive process already contains a

timer with the same Id. In case TimerElements are opened with duplicate Ids, the

timer will not be opened. Negative TimerIntervals are set to zero.

In case the timer does not have an Id, it will obtain an Id which is fresh with

respect to the current set of timers. The Id can be reused after closing this

timer.

*/

instance Timers (Timer t) | TimerElements t

closeTimer :: !Id !(IOSt .l .p) -> IOSt .l .p

/* closeTimer closes the timer with the indicated Id.

*/

getTimers :: !(IOSt .l .p) -> ([(Id,TimerType)],!IOSt .l .p)

/* getTimers returns the Ids and TimerTypes of all currently open timers.

*/

enableTimer :: !Id !(IOSt .l .p) -> IOSt .l .p

disableTimer :: !Id !(IOSt .l .p) -> IOSt .l .p

getTimerSelectState :: !Id !(IOSt .l .p) -> (!Maybe SelectState,!IOSt .l .p)

/* (en/dis)ableTimer (en/dis)ables the indicated timer.

getTimerSelectState yields the SelectState of the indicated timer. If the timer

does not exist, then Nothing is yielded.

*/

setTimerInterval :: !Id !TimerInterval !(IOSt .l .p) -> IOSt .l .p

getTimerInterval :: !Id !(IOSt .l .p)

-> (!Maybe TimerInterval,!IOSt .l .p)

/* setTimerInterval

sets the TimerInterval of the indicated timer.

Negative TimerIntervals are set to zero.

getTimerInterval

yields the TimerInterval of the indicated timer.

If the timer does not exist, then Nothing is yielded.

*/

180 APPENDIX A. I/O LIBRARY

A.29 StdTimerDef

definition module StdTimerDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdTimerDef contains the types to define the standard set of timers.

// **

import StdIOCommon

:: Timer t ls ps = Timer TimerInterval (t ls ps) [TimerAttribute *(ls,ps)]

:: TimerInterval

:== Int

:: TimerAttribute ps // Default:

= TimerId Id // no Id

| TimerSelectState SelectState // timer Able

| TimerFunction (TimerFunction ps) // _ x->x

:: TimerFunction ps :== NrOfIntervals->ps->ps

:: NrOfIntervals :== Int

:: TimerType :== String

:: TimerElementType :== String

A.30. STDTIMERELEMENTCLASS 181

A.30 StdTimerElementclass

definition module StdTimerElementClass

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdTimerElementClass define the standard set of timer element instances.

// **

import StdIOCommon, StdTimerDef

from timerhandle import TimerElementState

class TimerElements t where

timerElementToHandles :: !(t .ls .ps) -> [TimerElementState .ls .ps]

getTimerElementType :: (t .ls .ps) -> TimerElementType

instance TimerElements (NewLS t) | TimerElements t // getTimerElementType==""

instance TimerElements (AddLS t) | TimerElements t // getTimerElementType==""

instance TimerElements (ListLS t) | TimerElements t // getTimerElementType==""

instance TimerElements NilLS // getTimerElementType==""

instance TimerElements ((:+:) t1 t2) | TimerElements t1

& TimerElements t2 // getTimerElementType==""

182 APPENDIX A. I/O LIBRARY

A.31 StdTimerReceiver

definition module StdTimerReceiver

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdTimerReceiver defines Receiver(2) timer element instances.

// **

import StdReceiverDef, StdTimerElementClass

// Receiver components for timers:

instance TimerElements (Receiver m)

instance TimerElements (Receiver2 m r)

A.32. STDWINDOW 183

A.32 StdWindow

definition module StdWindow

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdWindow defines functions on windows and dialogues.

// **

import StdMaybe, StdWindowDef

from StdPSt import PSt, IOSt

from StdControlClass import Controls, ControlState

// Functions applied to non-existent windows or unknown ids have no effect.

class Windows wdef

where

openWindow :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getWindowType :: (wdef .ls .ps) -> WindowType

class Dialogs wdef

where

openDialog :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

openModalDialog :: .ls !(wdef .ls (PSt .l .p)) !(PSt .l .p)

-> (!ErrorReport,!PSt .l .p)

getDialogType :: (wdef .ls .ps) -> WindowType

/* open(Window/Dialog) opens the given window(dialog).

If the Window(Dialog) has no WindowIndex attribute (see StdWindowDef), then the

new window is opened frontmost.

If the Window(Dialog) has a WindowIndex attribute, then the new window is

opened behind the window indicated by the integer index:

Index value 1 indicates the top-most window.

Index value M indicates the bottom-most modal window, if there are M modal

windows.

Index value N indicates the bottom-most window, if there are N windows.

If index<M, then the new window is added behind the bottom-most modal window

(at index M).

If index>N, then the new window is added behind the bottom-most window

(at index N).

openModalDialog always opens a window at the front-most position.

openWindow may not be permitted to open a window depending on its

DocumentInterface (see the comments at the ShareProcesses instances in

module StdProcess).

In case the window does not have an Id, it will obtain an Id which is fresh with

respect to the current set of windows. The Id can be reused after closing this

window.

In case a window with the same Id is already open the window will not be opened.

In case controls are opened with duplicate Ids, the window will not be opened.

openModalDialog terminates when:

the window has been closed (by means of closeWindow), or the process has

been terminated (by means of closeProcess).

*/

instance Windows (Window c) | Controls c

instance Dialogs (Dialog c) | Controls c

closeWindow :: !Id !(PSt .l .p) -> PSt .l .p

/* If the indicated window is not an inactive modal window, then closeWindow closes

the window.

In case the Id of the window was generated by open(Window/Dialog), it will

184 APPENDIX A. I/O LIBRARY

become reusable for new windows/dialogues.

In case of unknown Id, closeWindow does nothing.

*/

closeControls :: !Id [Id] !Bool !(IOSt .l .p) -> IOSt .l .p

/* closeControls removes the indicated controls (second argument) from the

indicated window (first argument) and recalculates the layout iff the Boolean

argument is True.

*/

openControls :: !Id .ls (cdef .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| Controls cdef

openCompoundControls:: !Id !Id .ls (cdef .ls (PSt .l .p)) !(IOSt .l .p)

-> (!ErrorReport,!IOSt .l .p)

| Controls cdef

/* openControls

adds the given controls argument to the indicated window.

openCompoundControls

adds the given controls argument to the indicated compound control.

Both functions have no effect in case the indicated window/dialog/compound

control could not be found (ErrorUnknownObject) or if controls are opened with

duplicate Ids (ErrorIdsInUse).

*/

setControlPos :: !Id !Id !ItemPos !(IOSt .l .p) -> (!Bool,!IOSt .l .p)

/* setControlPos changes the current layout position of the indicated control to

the new position.

If there are relatively laynout controls, then their layout also changes. The

window is not resized.

The Boolean result is False iff the window or control id are unknown, or if the

new ItemPos refers to an unknown control.

*/

controlSize :: !(cdef .ls (PSt .l .p))

!(Maybe (Int,Int)) !(Maybe (Int,Int)) !(Maybe (Int,Int))

!(IOSt .l .p)

-> (!Size,!IOSt .l .p)

| Controls cdef

/* controlSize calculates the size of the given control definition as it would be

opened as an element of a window/dialog.

The Maybe arguments are the prefered horizontal margins, vertical margins, and

item spaces (see also the (Window/Control)(H/V)Margin and

(Window/Control)ItemSpace attributes). If Nothing is specified, their default

values are used.

*/

hideWindows :: ![Id] !(IOSt .l .p) -> IOSt .l .p

showWindows :: ![Id] !(IOSt .l .p) -> IOSt .l .p

getHiddenWindows:: !(IOSt .l .p) -> (![Id],!IOSt .l .p)

getShownWindows :: !(IOSt .l .p) -> (![Id],!IOSt .l .p)

/* (hide/show)Windows hides/shows the indicated modeless windows (modal dialogues

can not be hidden).

get(Hidden/Shown)Windows yields the list of currently visible/invisible windows.

*/

activateWindow :: !Id !(IOSt .l .p) -> IOSt .l .p

/* activateWindow makes the indicated window the active window.

If the window was hidden, then it will become shown.

If there are modal dialogues, then the window will be placed behind the last

modal dialog.

activateWindow has no effect in case the window is unknown or is a modal dialog.

A.32. STDWINDOW 185

*/

getActiveWindow :: !(IOSt .l .p) -> (!Maybe Id,!IOSt .l .p)

/* getActiveWindow returns the Id of the window that currently has the input focus

of the interactive process.

Nothing is returned if there is no such window.

Note that hidden windows never are active windows, and that modal windows never

are hidden.

*/

stackWindow :: !Id !Id !(IOSt .l .p) -> IOSt .l .p

/* stackWindow id1 id2 places the window with id1 behind the window with id2.

If id1 or id2 is unknown, or id1 indicates a modal window, stackWindow does

nothing.

If id2 indicates a modal window, then the window with id1 is placed behind the

last modal window.

*/

getWindowStack :: !(IOSt .l .p) -> (![(Id,WindowType)],!IOSt .l .p)

getWindowsStack :: !(IOSt .l .p) -> (![Id], !IOSt .l .p)

getDialogsStack :: !(IOSt .l .p) -> (![Id], !IOSt .l .p)

/* getWindowStack returns the Ids and WindowTypes of all currently open windows

(including the hidden windows), in the current stacking order starting with the

active window.

get(Windows/Dialogs)Stack is equal to getWindowStack, restricted to Windows

instances and Dialogs instances respectively.

*/

getDefaultHMargin :: !(IOSt .l .p) -> ((Int,Int), !IOSt .l .p)

getDefaultVMargin :: !(IOSt .l .p) -> ((Int,Int), !IOSt .l .p)

getDefaultItemSpace :: !(IOSt .l .p) -> ((Int,Int), !IOSt .l .p)

getWindowHMargin :: !Id !(IOSt .l .p) -> (!Maybe (Int,Int), !IOSt .l .p)

getWindowVMargin :: !Id !(IOSt .l .p) -> (!Maybe (Int,Int), !IOSt .l .p)

getWindowItemSpace :: !Id !(IOSt .l .p) -> (!Maybe (Int,Int), !IOSt .l .p)

/* getDefault((H/V)Margin)/ItemSpace) return the default values for the horizontal

and vertical window/dialogue margins and item spaces.

getWindow((H/V)Margin/ItemSpace) return the current horizontal and vertical

margins and item spaces of the indicated window. These will have the default

values in case they are not specified.

In case the window does not exist, Nothing is yielded.

*/

enableWindow :: !Id !(IOSt .l .p) -> IOSt .l .p

disableWindow :: !Id !(IOSt .l .p) -> IOSt .l .p

enableWindowMouse :: !Id !(IOSt .l .p) -> IOSt .l .p

disableWindowMouse :: !Id !(IOSt .l .p) -> IOSt .l .p

enableWindowKeyboard :: !Id !(IOSt .l .p) -> IOSt .l .p

disableWindowKeyboard :: !Id !(IOSt .l .p) -> IOSt .l .p

/* (en/dis)ableWindow

(en/dis)ables the indicated window.

(en/dis)ableWindowMouse

(en/dis)ables mouse handling of the indicated window.

(en/dis)ableWindowKeyboard

(en/dis)ables keyboard handling of the indicated window.

Disabling a window overrules the SelectStates of its elements, which all become

Unable.

Reenabling the window reestablishes the SelectStates of its elements.

The functions have no effect in case of invalid Ids or Dialogs instances.

The latter four functions also have no effect in case the Window does not have

the indicated attribute.

*/

getWindowSelectState :: !Id !(IOSt .l .p) ->(!Maybe SelectState,!IOSt .l .p)

186 APPENDIX A. I/O LIBRARY

getWindowMouseSelectState :: !Id !(IOSt .l .p) ->(!Maybe SelectState,!IOSt .l .p)

getWindowKeyboardSelectState:: !Id !(IOSt .l .p) ->(!Maybe SelectState,!IOSt .l .p)

/* getWindowSelectState

yields the current SelectState of the indicated window.

getWindow(Mouse/Keyboard)SelectState

yields the current SelectState of the mouse/keyboard of the indicated

window.

The functions return Nothing in case of invalid Ids or Dialogs instances or if

the Window does not have the indicated attribute.

*/

getWindowMouseStateFilter :: !Id !(IOSt .l .p)

-> (!Maybe MouseStateFilter, ! IOSt .l .p)

getWindowKeyboardStateFilter:: !Id !(IOSt .l .p)

-> (!Maybe KeyboardStateFilter, ! IOSt .l .p)

setWindowMouseStateFilter :: !Id !MouseStateFilter !(IOSt .l .p)

-> IOSt .l .p

setWindowKeyboardStateFilter:: !Id !KeyboardStateFilter !(IOSt .l .p)

-> IOSt .l .p

/* getWindow(Mouse/Keyboard)StateFilter yields the current

(Mouse/Keyboard)StateFilter of the indicated window. Nothing is yielded in

case the window does not exist or has no Window(Mouse/Keyboard) attribute.

setWindow(Mouse/Keyboard)StateFilter replaces the current

(Mouse/Keyboard)StateFilter of the indicated window. If the indicated window

does not exist the function has no effect.

*/

drawInWindow :: !Id ![DrawFunction] !(IOSt .l .p) -> IOSt .l .p

/* drawInWindow applies the list of drawing functions in left-to-right order to the

picture of the indicated window (behind all controls).

drawInWindow has no effect in case the window is unknown or is a Dialog.

*/

updateWindow :: !Id !(Maybe ViewFrame) !(IOSt .l .p) -> IOSt .l .p

/* updateWindow applies the WindowLook attribute function of the indicated window.

The SelectState argument of the Look attribute is the current SelectState of the

window.

The UpdateState argument of the Look attribute is

{oldFrame=frame,newFrame=frame,updArea=[frame]}

where frame depends on the optional ViewFrame argument:

in case of (Just rectangle):

the intersection of the current ViewFrame of the window and rectangle.

in case of Nothing:

the current ViewFrame of the window.

updateWindow has no effect in case of unknown windows, or if the indicated

window is a Dialog, or the window has no WindowLook attribute, or the optional

viewframe argument is empty.

*/

setWindowLook :: !Id !Bool !Look !(IOSt .l .p) -> IOSt .l .p

getWindowLook :: !Id !(IOSt .l .p) -> (!Maybe Look,!IOSt .l .p)

/* setWindowLook sets the Look of the indicated window.

The window is redrawn only if the Boolean argument is True.

setWindowLook has no effect in case the window does not exist, or is a

Dialog.

getWindowLook returns the (Just Look) of the indicated window.

In case the window does not exist, or is a Dialog, or has no WindowLook

attribute, the result is Nothing.

*/

setWindowPos :: !Id !ItemPos !(IOSt .l .p) -> IOSt .l .p

getWindowPos :: !Id !(IOSt .l .p) -> (!Maybe ItemOffset,!IOSt .l .p)

/* setWindowPos places the window at the indicated position.

If the ItemPos argument refers to the Id of an unknown window (in case of

A.32. STDWINDOW 187

LeftOf/RightTo/Above/Below), setWindowPos has no effect.

If the ItemPos argument is one of (LeftOf/RightTo/Above/Below)Prev, then the

previous window is the window that is before the window in the current

stacking order.

If the window is frontmost, setWindowPos has no effect. setWindowPos also

has no effect if the window would be moved outside the screen, or if the Id

is unknown or refers to a modal Dialog.

getWindowPos returns the current item offset position of the indicated window.

The corresponding ItemPos is (LeftTop,offset). Nothing is returned in case

the window does not exist.

*/

moveWindowViewFrame :: !Id Vector !(IOSt .l .p) -> IOSt .l .p

/* moveWindowViewFrame moves the orientation of the view frame of the indicated

window over the given vector, and updates the window if necessary. The view

frame is not moved outside the ViewDomain of the window.

In case of unknown Id, or of Dialogs, moveWindowViewFrame has no effect.

*/

getWindowViewFrame :: !Id !(IOSt .l .p) -> (!ViewFrame,!IOSt .l .p)

/* getWindowViewFrame returns the current view frame of the window in terms of the

ViewDomain. Note that in case of a Dialog, getWindowViewFrame returns

{zero,size}.

In case of unknown windows, the ViewFrame result is zero.

*/

setWindowViewSize :: !Id Size !(IOSt .l .p) -> IOSt .l .p

getWindowViewSize :: !Id !(IOSt .l .p) -> (!Size,!IOSt .l .p)

/* setWindowViewSize

sets the size of the view frame of the indicated window as given, and

updates the window if necessary. The size is fit between the minimum size

and the screen dimensions.

In case of unknown Ids, or of Dialogs, setWindowViewSize has no effect.

getWindowViewSize yields the current size of the view frame of the indicated

window. If the window does not exist, zero is returned.

*/

setWindowViewDomain :: !Id ViewDomain !(IOSt .l .p) -> IOSt .l .p

getWindowViewDomain :: !Id !(IOSt .l .p)

-> (!Maybe ViewDomain,!IOSt .l .p)

/* setWindowViewDomain

sets the view domain of the indicated window as given. The window view frame

is moved such that a maximum portion of the view domain is visible. The

window is not resized.

In case of unknown Ids, or of Dialogs, setWindowViewDomain has no effect.

getWindowViewDomain

returns the current ViewDomain of the indicated window.

Nothing is returned in case the window does not exist or is a Dialog.

*/

setWindowTitle :: !Id Title !(IOSt .l .p) -> IOSt .l .p

setWindowOk :: !Id Id !(IOSt .l .p) -> IOSt .l .p

setWindowCancel :: !Id Id !(IOSt .l .p) -> IOSt .l .p

setWindowCursor :: !Id CursorShape !(IOSt .l .p) -> IOSt .l .p

getWindowTitle :: !Id !(IOSt .l .p) -> (!Maybe Title, !IOSt .l .p)

getWindowOk :: !Id !(IOSt .l .p) -> (!Maybe Id, !IOSt .l .p)

getWindowCancel :: !Id !(IOSt .l .p) -> (!Maybe Id, !IOSt .l .p)

getWindowCursor :: !Id !(IOSt .l .p) -> (!Maybe CursorShape,!IOSt .l .p)

/* setWindow(Title/Ok/Cancel/Cursor) set the indicated window attributes.

In case of unknown Ids, these functions have no effect.

getWindow(Title/Ok/Cancel/Cursor) get the indicated window attributes.

In case of unknown Ids, the result is Nothing.

*/

188 APPENDIX A. I/O LIBRARY

A.33 StdWindowDef

definition module StdWindowDef

// **

// Clean Standard Object I/O library, version 1.0.1

//

// StdWindowDef contains the types to define the standard set of windows and

// dialogues.

// **

import StdControlDef

:: Window c ls ps = Window Title (c ls ps) [WindowAttribute *(ls,ps)]

:: Dialog c ls ps = Dialog Title (c ls ps) [WindowAttribute *(ls,ps)]

:: WindowAttribute ps // Default:

// Attributes for Windows and Dialogs:

= WindowId Id // system defined id

| WindowPos ItemPos // system dependent

| WindowIndex Int // open front-most

| WindowSize Size // screen size

| WindowHMargin Int Int // system dependent

| WindowVMargin Int Int // system dependent

| WindowItemSpace Int Int // system dependent

| WindowOk Id // no default (Custom)ButtonControl

| WindowCancel Id // no cancel (Custom)ButtonControl

| WindowHide // initially visible

| WindowClose (IOFunction ps) // user can't close window

| WindowInit [IdFun ps] // no actions after opening window

// Attributes for Windows only:

| WindowSelectState SelectState // Able

| WindowLook Look // show system dependent background

| WindowViewDomain ViewDomain // {zero,max range}

| WindowOrigin Point // left top of picture domain

| WindowHScroll ScrollFunction // no horizontal scrolling

| WindowVScroll ScrollFunction // no vertical scrolling

| WindowMinimumSize Size // system dependent

| WindowResize // fixed size

| WindowActivate (IOFunction ps) // id

| WindowDeactivate (IOFunction ps) // id

| WindowMouse MouseStateFilter SelectState (MouseFunction ps)

// no mouse input

| WindowKeyboard KeyboardStateFilter SelectState (KeyboardFunction ps)

// no keyboard input

| WindowCursor CursorShape // no change of cursor

:: CursorShape

= StandardCursor

| BusyCursor

| IBeamCursor

| CrossCursor

| FatCrossCursor

| ArrowCursor

| HiddenCursor

:: WindowType

:== String

