
Green Computing for the Internet of Things
Lecture 7

Mart Lubbers Pieter Koopman
mart@cs.ru.nl pieter@cs.ru.nl

Sustrainable 2022 summer school
Rijeka, Croatia
July 7th, 2022

1

Part I

Internet of Things

Internet of Things

IoT edge devices

Programming IoT devices using C++

2

Internet of Things

0https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/
3

https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/

Internet of Things

0https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/
4

https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/

IoT Architecture

Presentation layer

Application layer

Network layer

Perception layer

Web browsers, mobile/desktop apps, javascript,
html, css. . .

Servers, databases, caches, storage, high level
languages. . .

MQTT, Zigbee, Bluetooth, WiFi, LoRa, . . .

Microprocessors, SBCs, sensors, C/C++ code,
. . .

5

Types of IoT edge devices

Single board computers

Photo by Micheal H. (“LaserLicht”) (CC BY-SA 4.0)

▶ 30×65mm
▶ 0.5–8GiB RAM
▶ 32GiB storage
▶ 1–1.5GHz clock
▶ 70d
▶ Raspbian OS (Linux)
▶ 4–6W

Microprocessors

Photo by Tpkull (CC BY-SA 4.0)

▶ 34×25mm (14×25mm)
▶ 50KiB (0.00005 GiB) RAM
▶ 4MiB (0.004 GiB) storage
▶ 80MHz (0.08GHz) clock
▶ 5€
▶ no OS (sometimes FreeRTOS)
▶ 0–0.4W

6

Power consumption of IoT edge devices

Why lower energy?

▶ Battery powered nodes

▶ Sustainability: no 5W 70d board in a 10W LED light bulb.

▶ Sheer number of devices. . .
▶ If all IoT devices were raspberry pi’s: 5W×24×356×40 · 109 = 1.7PWh/year.
▶ Annual worldwide electrical production: 27 PWh/year (IoT needs 6%).
▶ Dutch nuclear power plant: 3.3TWh/year

(IoT needs 515 of those).

Use microprocessors
7

Sleeping modes of microprocessors
ESP8266

item active modem sleep light sleep deep sleep

WiFi radio on off off off
CPU on on pending off
RAM on on on off

current used 100–240mA 15mA 0.5mA 0.002mA

deep sleep erases
the current state
of the RAM

8

Sleeping modes of microprocessors
Adafruit Feather M0 Wifi

Photo by Adafruit industries (CC BY-NC-SA)

item active modem sleep idle deep sleep

WiFi radio on off off off
CPU on on idle idle
RAM on on on low power

current used 90–300mA 5mA 2mA 0.002mA

RAM is saved in
deep sleep on this
microprocessor

Highly model specific
Sleep more → consume less
Easier said than done9

Sleep in practice

1. The dogs have to be fed
▶ WiFi needs periodic execution time
▶ No threading support

2. Some tasks may not be interrupted
▶ Some task rely on timing
▶ 1-Wire, I2C, SPI, USB, WiFi, PWM, . . .

3. We do not know the other tasks
▶ Tasks scheduling may depend on runtime
▶ Tasks may be uploaded dynamically

10

Hello world!
Blinking an LEDtwo LEDS

const int ledPin = D4;
const int interval = 500;

void setup() {

pinMode(ledPin, OUTPUT);
}

void loop() {

digitalWrite(ledPin, HIGH);
delay(interval);
digitalWrite(ledPin, LOW);

delay(interval);
}

void setup() {

pinMode(ledPin, OUTPUT);
pinMode(otherPin, OUTPUT);

}

void blink(int pin, int interval) {

digitalWrite(pin, HIGH);
delay(interval);
digitalWrite(pin, LOW);

delay(interval);
}

void loop() {

blink(ledPin, interval);

blink(otherPin, 2500);

}

11

Solve scheduling
Manual interleaving

.

long *lr1 = 0; long *lr2 = 0;

bool *st1 = false; bool *st2 = false;

void setup() { ... }

void blink(int pin, int interval, long *lastrun, bool *state) {

i f (mil l i s() - *lastrun > interval) {

digitalWrite(pin, *state);

*st = !(*state);

*lastrun += interval;

}

}

void loop() {

blink(ledPin1, 500, &lr1, &st1);

blink(ledPin2, 2500, &lr2, &st2);

}

12

Interrupts

Polling

const int pir = D3;
const int led = D4;

void setup() {

pinMode(pir, INPUTPULLUP);
pinMode(led, OUTPUT);
digitalWrite(led, HIGH);

}

void loop() {

digitalWrite(led,
digitalRead(pir));

delay(100);
}

Interrupts

volat i le bool changed = false;
IRAM_ATTR void isr() { ... }

void setup() {

...

attachInterrupt(..., isr, ...);

}

void loop() {

delay(60000); // or even light/deep sleep
i f (changed) {

changed = false;
digitalWrite(led, digitalRead(pir));

}

}13

Solve scheduling
Compiler/OS support

▶ A sufficiently smart compiler™1 can generate this interleaving.
Difficult to determine when it’s safe.
Impossible to do if the scheduling depends on runtime values.

▶ Use OS that supports preemptive multithreading
Requires multithreading annotations (wait, yield, mutex, lock).
Requires library support.
Increases the hardware requirements.

▶ . . .

Task-oriented programming!

1https://wiki.c2.com/?SufficientlySmartCompiler
14

https://wiki.c2.com/?SufficientlySmartCompiler

Part II

Task-oriented programming

Task-oriented programming

Programming in iTasks

Task-oriented programming for the IoT

Programming in mTask

15

Task-oriented programming (TOP)

Coordinate collaboration between people and machines to reach common goal.

Components

▶ Basic tasks: input/output (e.g. web editors, sensors)

▶ Composition: sequential, parallel

▶ Communication: task results, shared data sources

Implementations

iTask Generates a multi-user web application from the TOP specification
to do the work.

T̂OP Formal calculus for tasks including several semantics.
mTask TOP language and ecosystem for microcontrollers.

16

Tasks

▶ Represent the actual work

▶ Observable value during evaluation, or no value

▶ Value may change over time

▶ Event based rewriting
▶ Task combinators

▶ Parallel
▶ Sequential
▶ Conditional

▶ Collaboration and interaction

Task1

17

Shared Data Source (SDS)

▶ Read/write interface over arbitrary data

▶ Memory, databases, files, time, etc. . .

▶ Share combinators
SDS1

18

Task-oriented software development (TOSD)
Tierless programming

Presentation layer

Business layer

Resource access layer

UI

Tasks

UoD

SDS
Types

19

Tierless Architectures
What is a tierless architecture?

Presentation LayerPresentation Layer

Network LayerNetwork Layer

Application LayerApplication Layer

Perception LayerPerception Layer

Single Source
Tiered architecture

▶ Layered architecture

▶ Separate sources per layer

▶ Differences between layers

▶ Semantic friction

Tierless architecture

▶ Layered architecture

▶ Separate sources per layer

▶ Generated from a single source

▶ Hop/Links/Haskino/Potato. . .
iTask/mTask.

20

Tierless Architectures
Example architecture

21

Tierless Architectures
What is a tierless architecture?

Presentation LayerPresentation Layer

Network LayerNetwork Layer

Application LayerApplication Layer

Perception LayerPerception Layer

Single Source
Tiered architecture

▶ Layered architecture

▶ Separate sources per layer

▶ Differences between layers

▶ Semantic friction

Tierless architecture

▶ Layered architecture

▶ Separate sources per layer

▶ Generated from a single source

▶ Hop/Links/Haskino/Potato. . .
iTask/mTask.

22

The iTask system

▶ Long history

▶ Clean server

▶ Javascript client

▶ Client-side
execution

▶ Distributed
execution

▶ Automatic UI
generation

▶ Used in industry

23

Programming in iTasks

Basic tasks

▶ enter typed data: enterInformation

▶ update given data: updateInformation

▶ display data: viewInformation

See cloogle.org for all definitions in Clean.

module itask1

import iTasks

Start world = doTasks nameTask world

nameTask :: Task String

nameTask = enterInformation []

<<@ Label ”Your name please”

24

cloogle.org

Task Values

nameTask :: Task String

nameTask = enterInformation [] <<@ Label ”Your name please”

We can update the value in the editor as long as we have it
▶ Empty editor NoValue
▶ Data entered UnStable value

>>? makes Continue button to progress when left-hand side has a value

helloTask :: Task String

helloTask =

nameTask >>? \name �
viewInformation [] (”Hello ” +++ name)

25

Programming in iTasks

Conditional step >>*: add a list of continuations
greeter :: Task String

greeter =

nameTask >>*

[OnAction (Action ”Done”) (ifValue (\n � size n > 2) (\n � return n))

,OnAction (Action ”Clear”) (always greeter)

,OnValue (ifValue (\name�size name > 9) \n � return n)

]

>>- \name � viewInformation [] (”Hello ” +++ name)

26

Programming in iTasks

User defined datatypes

:: Gender = Male | Female | Other

derive class iTask Gender

The derive class iTask makes all iTask
magic available for type Gender

Combining values

nameAndGender :: Task (String, Gender)

nameAndGender =

nameTask >>? \name �
(enterInformation [] <<@

Label (”Your gender ” +++ name)) >>?

\gender �
viewInformation [] (name, gender)

27

Programming in iTasks

Running tasks in parallel

▶ Need both tasks -&&-

▶ Waits until subtasks are Stable, yields Stable result

nameAndGender2 :: Task (String, Gender)

nameAndGender2 = (enterInformation [] -&&- enterInformation []) >>?

viewInformation []

28

Programming in iTasks

Running tasks in parallel

▶ First task finished determines result -||-

▶ Waits until first subtask is Stable, yields Stable result
nameTask2 :: Task String

nameTask2 =

(nameTask -||-

(editChoice [] [”Mart”,”Pieter”] ?None <<@ Label ”Select name”)) >>? \name �
viewInformation [] name

29

Programming in iTasks

Shared Data Sources
▶ Task communication via SDS
▶ Automatic update on changes of SDS

sharedNames :: Task [String]

sharedNames =

withShared [] \sds �
(updateSharedInformation [] sds <<@ Label ”Enter names”) -||

(viewSharedInformation [ViewAs length] sds <<@ Label ”Count”)

30

Programming in iTasks

Persistent Shared Data Sources
nameGenderSDS :: SimpleSDSLens [(String, Gender)]

nameGenderSDS = sharedStore ”sds Identf ie r” initialValue

where initialValue = []

31

Programming in iTasks

Reading combinator types

type behaviour

return :: a�Task a Lifts a value to a task value
(-&&-) infixr :: (Task a) (Task b)�Task (a,b) Task results are combined
(-||-) infixr :: (Task a) (Task a)�Task a Disjunction of parallel subtasks
(-||) infixr :: (Task a) (Task b)�Task a Returns left result
(||-) infixr :: (Task a) (Task b)�Task b Returns right result
(>>?) infix :: (Task a) (a�Task b)�Task b Sequentially, rhs takes result of task

There are many more useful operators
cloogle.org knows them all by name and type!

32

cloogle.org

Programming in iTasks

Recap

▶ iTasks enables consize specification of tierless web-systems
▶ Generates web-server and all communication

▶ Code can run in the browser (web assembly)
▶ We can specify a multi-user program in iTasks
▶ Program can even be multi server

▶ A web-server is too big and heavy for an IoT node
Such a web-server is not needed for an IoT node

▶ We made a TOP language for the IoT embedded in iTask

33

mTask
Tasks on tiny computers

Restrictions

▶ General purpose tasks are too heavy

▶ First order bounded data and
functions

▶ Strict evaluation

▶ Restrictions on shared data sources

Properties

▶ Tagless final embedding

▶ Type-safe, task-oriented

▶ Abstractions for peripherals

▶ RTS for many microprocessors

▶ Tailor-made at runtime

▶ Interpreted on the device

▶ Multi tasking support

▶ Integrated in iTasks

34

mTask/iTask Interface

▶ Interact with the device

▶ Language

▶ Lift SDSs

▶ Lift tasks

35

iTasks Interface
Interact with the device

Definition

withDevice :: a � (MTDevice � Task b) � Task b | iTask b & channelSync a

:: MTDevice //Opaque

Example

main :: Task t

main = enterTCPInfo

>>= \x�withDevice x (\dev � · · ·)
where

enterTCPInfo :: Task TCPSettings

enterTCPInfo = enterInformation []

<<@ Label ”Enter TCP sett ings”

36

mTask/iTask Interface
Language (1)

blink :: Int � Main (MTask v Bool) | mtask v

blink wait = declarePin D4 PMOutput \d4�
fun \blinkfun=(\x�

delay (lit wait)

>>|. writeD d4 x

>>|. blinkfun (Not x))

In {main=blinkfun true}

Clean source code
mTask expression

Symbolic simulation

Pretty printer

Bytecode compiler

Resource analysis†

. . .

37

mTask/iTask Interface
Structuro of a task

Language

someTask :: MTask v Int | mtask v

someTask =

sensor1 config1 \sns1�
sensor2 config2 \sns2�

fun \fun1= (· · ·)
In fun \fun2= (· · ·)
In {main=mainexpr}

Classes

class mtask v | expr v & sds v & pinMode v & · · ·

class expr v where
lit :: t � v t | ..

(+.) i n f i x l 6 :: (v t) (v t) � v t | · · ·
· · ·

More on this later

38

iTasks Interface
Lifting SDSs

Definition

class liftsds v where
liftsds :: ((v (Sds t)) � In (Shared sds t) (Main (MTask v u)))

� Main (MTask v u) | · · · & RWShared sds & · · ·

Example

sdsI :: SimpleSDSLens Int

sdsI = sharedStore ”some iden t i f i e r ” 42

someTask :: MTask v Int | mtask, liftsds v

someTask = · · ·
l i f t s d s \sdsM�
In {main= getSds sdsM >>=. \x� · · · }

39

iTasks Interface
Lifting tasks (1)

Definition

liftmTask :: (Main (MTask BCInterpret u)) MTDevice � Task u | · · ·

Example

taskI :: Task t

taskI = enterTCPInfo >>= \x�withDevice x (\dev � liftmTask taskM dev)

where
enterTCPInfo :: Task TCPSettings

enterTCPInfo = enterInformation [] <<@ Label ”Enter TCP sett ings”

taskM :: Main (MTask v t) | mtask v

taskM =

· · ·
In {main=mainexpr}

40

iTasks Interface
Lifting tasks (2)

. . .
Source

Bytecode compiler
0x45

0xab

0x0f

0xc2

...

Bytecode

liftmTask

itask task

41

mTask/iTask Interface
Language (3): Expressions

Definition

class arith v where
lit :: · · ·
(+) :: · · ·
· · · :: · · ·

Examples

c42 :: v Int | mtask v

c42 = lit 6 *. lit 7

cond :: v Int | mtask v

cond = If (lit 42 ==. c42) (lit 38) (lit 2 *. (lit 18 +. lit 1))

42

mTask/iTask Interface
Language (3): Data types

mTask C/C++ stack cells

Bool bool 1
Char char 1
Int int16_t 1
Long int32_t 2
Real float 2
(a, b) struct ? a+ b
(a, b, c) struct ? a+ b + c
:: T = A | B | C enum 1

:: DPin = D0 | D1 | · · ·
:: APin = A0 | A1 | · · ·
:: PinMode = PMOutput | PMInput | · · ·

43

mTask/iTask Interface
Language (3): Functions

Definition
class fun a v where
fun :: · · ·

Examples

add42 :: v Int | mtask v

add42 =

fun \add= (\(x, y)�x +. y)

In {main = add (lit 38, lit 4) }

fib10 :: Main (v Int) | mtask v

fib10 =

fun \fibacc= (\(n, acc)�
If (n ==. lit 0)

(acc)

(fibacc (n -. lit 1, acc *. n)))

In fun \fib = (\n�fibacc n (lit 1))

In {main = fib (lit 10)}

44

mTask/iTask Interface
Language (3): Basic tasks

Definition
class rtrn v where
rtrn :: · · ·

Examples

return42 :: MTask v Int | mtask v

return42 = rtrn (lit 6 *. lit 7)

Definition
class delay v where
delay :: · · ·

Examples

wtsecond :: MTask v Int | mtask v

wtsecond = delay (lit 500 *. lit 2)

45

mTask/iTask Interface
Language (3): Sensors

Definition
class dht v where
DHT :: · · ·
temperature :: · · ·
humidity :: · · ·

Examples

readTemp :: Main (MTask v Real) | mtask, dht v

readTemp =

DHT (DHT SHT (i2c 0x45)) \dht�
{main=temperature dht}

46

mTask/iTask Interface
Language (3): GPIO tasks

Definition
class dio p v | pin p where
writeD :: (v p) (v Bool) � MTask v Bool

readD :: · · ·

class aio v where
writeA :: · · ·
readA :: · · ·

class pinMode v

pinMode :: · · ·
declarePin :: · · ·

Examples

blinkTask :: Main (MTask v Real) | mtask v

blinkTask = declarePin D4 PMOutput \ledPin�
{main = writeD ledPin true} // or (lit True)

47

mTask/iTask Interface
Language (3): Sequential task combinators

Definition
class step v where
(>>*.) :: (MTask v t) [Step v t u] � MTask v u

:: Step v t u

= IfValue ((v t) � v Bool) ((v t) � MTask v u)

| IfStable ((v t) � v Bool) ((v t) � MTask v u)

| · · ·

aover42 :: Main (MTask v Int) | mtask v

aover42 = declarePin A3 \apin�
{main=readA apin >>*. [IfValue (\x�x >. lit 42) (\x�rtrn x)]}

(>>=.) l r = l >>*. [IfStable (\ �true) (\x�r x)]

(>>|.) l r = l >>*. [IfStable (\ �true) (\ �r)]

(>>~.) l r = l >>*. [IfValue (\ �true) (\x�r x)]

(>>..) l r = l >>*. [IfValue (\ �true) (\ �r)]

48

mTask/iTask Interface
Language (3): Parallel task combinators

Definition
class .||. v where
(.||.) :: (MTask v a) (MTask v a) � MTask v a

class .&&. v where
(.&&.) :: (MTask v a) (MTask v b) � MTask v (a, b)

Or example

waitorst :: Main (MTask v Int) | mtask v

waitorst = declarePin A3 PMInput \ain�
{main= wait -||- step }

where wait = delay (lit 60000)

>>|. rtrn (lit 0)

step = readA ain >>*. [IfValue

(\x�x >. lit 42)

(\x�rtrn x)]

And example

readAD :: Main (MTask v (Bool, Int))

| mtask v

readAD

= declarePin A3 PMInput \ain�
declarePin D3 PMInput \din�

{ main= readD din -&&- readA ain }

49

mTask/iTask Interface
Language (3): Shared data sources

Definition
class sds v where
sds :: · · ·
getSds :: · · ·
setSds :: · · ·
updSds :: · · ·

class liftsds v where
liftsds :: · · ·

Local example

lcl :: Main (MTask v Int)

lcl = sds \share=42

In {main=getSds share}

Lifted example

someShareI :: SimpleSDSLens Bool // from iTask

task :: MTask v Int | mtask, liftsds v

task = liftsds \someShareM=someShareI

In { main=getSds someShareM >>*. [· · ·] }

50

mTask/iTask Interface
Language (3): Green computing

Scheduling frequency

:: TimingInterval v

= Default

| BeforeMs (v Int) | BeforeSec (v Int)

| ExactMs (v Int) | ExactSec (v Int)

| RangeMs (v Int) (v Int)

| RangeSec (v Int) (v Int)

Examples

//temperature‘, readA‘, readD‘, ...
tmin = temperature` (BeforeSec (lit 60))

>>*. [· · ·]

Interrupts

class interrupt v where
interrupt :: · · ·

:: InterruptMode

= Change | Rising

| Falling | Low

| High

Examples

pir = declarePin D3 \pir�
{main=interrupt pir high >>=. \ � · · · }

// or (lit High)

51

Arduino examples in mTask
Blink

const int ledPin = D4;
const int interval = 500;

void setup() {

pinMode(ledPin, OUTPUT);
}

void loop() {

digitalWrite(ledPin, HIGH);
delay(interval);
digitalWrite(ledPin, LOW);

delay(interval);
}

interval :: Int

interval = 500

blinktask :: Main (MTask v Int) | mtask v

blinktask = declarePin D5 \ledPin�
fun \blink= (\st�

writeD ledPin st

>>|. delay (lit interval)

>>|. blink (not st))

{main=blink false}

52

Arduino examples in mTask
Blink multiple LEDs

Arduino

void setup() {

pinMode(ledPin, OUTPUT);
}

void blink(int pin, int interval) {

...

}

void loop() {

blink(ledPin, interval);

blink(otherPin, 2500);

}

mTask

interval = 500

blinktask :: Main (MTask v Int) | mtask v

blinktask =

declarePin D5 \ledPin�
declarePin D9 \otherPin�
fun \blink= (\(pin, int, st�

writeD pin st

>>|. delay int

>>|. blink (not st))

{main = blink (ledPin, lit 500, false)

-||- blink (otherPin, lit 2500, false)

}

53

Arduino examples in mTask
Interrupts

Arduino

const int pir = D3;
const int led = D4;

volat i le bool changed = false;
IRAM_ATTR void isr() { ... }

void setup() { ...

attachInterrupt(..., isr, ...)

}

void loop() {

delay(60000); // or even light/deep sleep
i f (changed) {

changed = false;
digitalWrite(led, digitalRead(pir));

}

}

mTask

pir = PIR D3 \pir�
declarePin D4 \led�
fun \mdec = (\()�

interrupt change pir

>>=. \x�writeD led x

>>|. mdec ()

) In {main = mdec () }

54

Wrap up

▶ Sleep more: use less power

▶ Programming IoT stacks is difficult

▶ Using a tierless language simplifies it greatly

We are hiring:
pieter@cs.ru.nl

55

pieter@cs.ru.nl

Exercises

Go to this url for all the files:
https://tinyurl.com/greeniot
File What to do with it

exercises.zip The exercise skeletons2

exercises.pdf The exercise handout
slides.pdf The slides

Remember:

▶ https://cloogle.org for all the language documentation

▶ Make sure you are on the same wifi network as the device:

ssid: sustrainable22-{almere,nijmegen}, password: greeniot
2Also includes setup instructions for Clean/iTask/mTask

56

https://tinyurl.com/greeniot
https://cloogle.org

	Internet of Things
	Internet of Things
	IoT edge devices
	Programming IoT devices using C++

	Task-oriented programming
	Task-oriented programming
	Programming in iTasks
	Task-oriented programming for the IoT
	Programming in mTask

	Exercises

