9 SUS
«alralnable

Green Computing for the Internet of Things

Lecture 7

Mart Lubbers Pieter Koopman
mart@cs.ru.nl pieter@cs.ru.nl

Sustrainable 2022 summer school
Rijeka, Croatia
July 7th, 2022

Radboud University %3

“omNes®

Part | «alrainable

Internet of Things

Internet of Things

loT edge devices

Programming loT devices using C++

Internet of Things \;ﬁUﬁ‘ ole

WHAT THE WORLD IS MAQ;gFf

®https://statinvestor.com/data/33967 /iot-number-of-connected-devices-worldwide /

https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/

Internet of Things

billion's of loT devices

0
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

mmmm— billion’s of loT devices
+eeeennee Exponential (billion's of 10T devices)

®https://statinvestor.com/data/33967 /iot-number-of-connected-devices-worldwide /

https://statinvestor.com/data/33967/iot-number-of-connected-devices-worldwide/

loT Architecture

| Presentation layer |

)

| Application layer |
)

| Network layer |
!

Perception layer

Web browsers, mobile/desktop apps, javascript,

html, css. ..
Servers, databases, caches, storage, high level
languages. . .

MQTT, Zigbee, Bluetooth, WiFi, LoRa, ...

Microprocessors, SBCs, sensors, C/C++ code,

4

in

\ (

us

2l

ineble

Types of loT edge devices \\;SHUﬁW ble

Single board computers Microprocessors
Photo by Micheal H. (“LaserLicht”) (CC BY-SA 4.0) Photo by Tpkull (CC BY-SA 4.0)
> 30x65mm > 34x25mm (14x25mm)
> 0.5-8GiB RAM » 50KiB (0.00005 GiB) RAM
> 32GiB storage > 4MiB (0.004 GiB) storage
» 1-1.5GHz clock » 80MHz (0.08GHz) clock
> 70€ > b€
» Raspbian OS (Linux) » no OS (sometimes FreeRTOS)
> 4-6W > 0-0.4W

Power consumption of loT edge devices \\;S\Uﬁ‘ e

Why lower energy?

> Battery powered nodes
» Sustainability: no 5W 70€ board in a 10W LED light bulb.

» Sheer number of devices. ..
> If all 1oT devices were raspberry pi's: 5Wx24x356x40 - 10° = 1.7PWh /year.
> Annual worldwide electrical production: 27 PWh/year (loT needs 6%).
» Dutch nuclear power plant: 3.3TWh /year

R IR R R R R R 1 R 5 5 R R 0 R 5 5 5 5 0 5 5 5 R R R R R R R R O R
Yy Y Y g

B B Bt Bt B B I It B Ittt Ittt B Ittt It Ittt B Ittt Ittt B It I I B B

(loT needs 515 of those).

Use microprocessors

Sleepi q i @ SUS
€eping modes OT MICroprocessors «alrainable

ESP8266

item active modem sleep light sleep deep sleep
WiFi radio on off off off

CPU on on pending off

RAM on on on off

current used 100-240mA 15mA 0.5mA 0.002mA

Adafruit Feather MO Wifi

Sleeping modes of microprocessors

Photo by Adafruit industries (CC BY-NC-SA)

»-SUS

= s frana f(a
salralhaole

item active modem sleep idle deep slee
WiFi radio on off off off

CPU on on idle idle

RAM on on on low power
current used 90-300mA 5mA 2mA 0.002mA

RAM is saved
deep sleep on
microprocess

Highly model specific

Sleep more — consume less

Easier said than done

: : @ SUS
Sleep in practice <alrainable

1. The dogs have to be fed

» WiFi needs periodic execution time

» No threading support
2. Some tasks may not be interrupted

> Some task rely on timing

> 1-Wire, 12C, SPI, USB, WiFi, PWM, ...
3. We do not know the other tasks

» Tasks scheduling may depend on runtime
» Tasks may be uploaded dynamically

10

Hello world!
Blinking an LEDtwo LEDS

const int ledPin = D4;
const int interval = 500;

void setup() {
pinMode(1ledPin, OUTPUT) ;
}

void loop() {
digitalWrite (ledPin, HIGH);
delay (interval);
digitalWrite (1edPin, LOW);
delay (interval);

}

11

void setup() {
pinMode(1edPin, OUTPUT) ;
pinMode(otherPin, OUTPUT);
}

void blink(int pin, int interval) {

digitalWrite (pin, HIGH) ;
delay (interval);
digitalWrite (pin, LOW) ;
delay (interval) ;

}

void loop() {
blink(ledPin, interval);
blink(otherPin, 2500);
}

: @ SUS
Solve scheduling <alralnab

a
(
&

Manual interleaving

|
o

long *1r1 = 0; long *1r2 =
bool *st1 = false; bool *st2 = false;

void setup() { ... }

void blink(int pin, int interval, long *lastrun, bool *state) {
if (millis() - xlastrun > interval) {
digitalWrite (pin, *state);
*st = ! (xstate);
*lastrun += interval;
}
}

void loop() {
blink(ledPinl, 500, &lril, &stl);
blink(ledPin2, 2500, &lr2, &st2);
}

12

Interrupts

Polling Interrupts
const int pir = D3; volatile bool changed = false;
const int led = D4; IRAM_ATTR void isr(O) { ... }

void setup() { .
pinMode(pir, INPUT PULLUP) ; void setup() {
pinMode(1led, OUTPUD) ;
digitalWrite (led, HIGH) ;

}

attachInterrupt(..., isr, ...);

}

void loop() {
delay (60000); // or even light/deep sleep
if (changed) {
changed = false;

void loop() {
digitalWrite (led,
digitalRead (pir));
delay (100) ; .. . - .
} digitalWrite (1ed, digitalRead (pir));
}
13 1

salrainable

Solve scheduling ¢ SUS

Compiler/OS support

> A sufficiently smart compiler”! can generate this interleaving.
Difficult to determine when it's safe.

Impossible to do if the scheduling depends on runtime values.

» Use OS that supports preemptive multithreading
Requires multithreading annotations (wait, yield, mutex, lock).
Requires library support.
Increases the hardware requirements.

> ..

Task-oriented programming!

https: / /wiki.c2.com/?SufficientlySmartCompiler

14

https://wiki.c2.com/?SufficientlySmartCompiler

Part |l

Task-oriented programming

Task-oriented programming

Programming in iTasks

Task-oriented programming for the loT

Programming in mTask

15

9 SUS
<l rainable

Task-oriented programming (TOP) \\;‘%U‘S

Coordinate collaboration between people and machines to reach common goal.

Components

> Basic tasks: input/output (e.g. web editors, sensors)
» Composition: sequential, parallel
» Communication: task results, shared data sources

Implementations
iTask Generates a multi-user web application from the TOP specification
to do the work.

TOP Formal calculus for tasks including several semantics.
mTask TOP language and ecosystem for microcontrollers.

16

@ SUS
Tasks <«alrainable

Represent the actual work

Observable value during evaluation, or no value
Value may change over time

Event based rewriting

Task combinators

» Parallel
> Sequential
» Conditional

» Collaboration and interaction

17

Shared Data Source (SDS) \‘:‘P‘T?Jl%ﬁﬂ]dj”@

> Read/write interface over arbitrary data
> Memory, databases, files, time, etc. ..

» Share combinators

18

Task-oriented software development (TOSD) \:-.S\Uﬁ able

Tierless programming

Presentation layer

Business layer

Resource access layer

19

@ SUS

What is a tierless architecture?

Single Source ([}«
\

Tiered architecture

""""""""" | > Layered architecture
| Presentation Layer ”}‘
T 1|

> Separate sources per layer

» Differences between layers

» Semantic friction

Tierless architecture

> Layered architecture

| Application Layer m
= ! » Separate sources per layer

! .
! » Generated from a single source
I

| Perception Layer [» Hop/Links/Haskino/Potato. ..

>’-.-—— == | iTask/mTask.

20

Tierless Architectures <aTrainable

: : @ SUS
Tierless Architectures ireinable

&l

Example architecture

Presentation Layer { HTML Webpages }

Application Layer

Network Layer TCP/MQTT/Protobuf

|)1Pyt||nn che:mr|

e SEEE SEER |

Python Collector

21

@ SUS

What is a tierless architecture?

Single Source ([}«
\

Tiered architecture

""""""""" | > Layered architecture
| Presentation Layer ”}‘
T 1|

> Separate sources per layer

» Differences between layers

» Semantic friction

Tierless architecture

> Layered architecture

| Application Layer m
= ! » Separate sources per layer

! .
! » Generated from a single source
I

| Perception Layer [» Hop/Links/Haskino/Potato. ..

>’-.-—— == | iTask/mTask.

22

Tierless Architectures <aTrainable

The iTask system

Long history

Clean server

20161128

Gaisra

) Untties 5 bob 20161118 aice
Gasnaz

Javascript client
Client-side
execution
Distributed
execution

» Automatic Ul
generation

| 2

©

Send | picture | stop

» Used in industry

23

S @ SUS
Programming in iTasks <l raine

Basic tasks
» enter typed data: enterInformation
» update given data: updateInformation

» display data: viewInformation

See cloogle.org for all definitions in Clean.
module itaski

import iTasks o0 @ () localnost:8080/ x|+

Start world = doTasks nameTask world

« > C o U [localhost:8080
nameTask :: Task String

Your name please: | pieter ©

nameTask = enterInformation []
<<@ Label "Your name please”

24

cloogle.org

(9)

Task Values s raln

nameTask :: Task String
nameTask = enterInformation [] <<@ Label "Your name please”

We can update the value in the editor as long as we have it
» Empty editor NoValue
» Data entered UnStable value
>>7 makes Continue button to progress when left-hand side has a value

helloTask :: Task String -

nameTask >>? \name —
viewInformation [] (”Hello

Continue

7 b+ name) 5 Cuntinue‘

Hello Pieter

25

. @0 SUS
Programming in iTasks irainab

J

a
(
&

Conditional step >»x*: add a list of continuations

greeter :: Task String

greeter =

nameTask >>*

[OnAction (Action "Done”) (ifValue (\n — size n > 2) (\n — return n))
,OnAction (Action "Clear”) (always greeter)
,0nValue (ifValue (\name—size name > 9) \n — return n)
]

>» - \name — viewInformation [] (”Hello

”

+++ name)

Your name please: | pj | ©

Done | Clear ‘
-

26

L @ SUS
Programming in iTasks \\:.‘ Train:

User defined datatypes

;. Gender = Male | Female | Other
derive class iTask Gender

The derive class iTask makes all iTask
magic available for type Gender

Continue

Combining values - -
Your gender |« Select...
nameAndGender :: Task (String, Gender) pieter: L
nameAndGender = | other |
nameTask >>7 \name — PR
(enterInformation [] <<@ = =
Label (”Your gender " +++ name)) >»>7? :::r

\gender —
viewInformation [] (name, gender)

27

. @ SUS
Programming in iTasks «alralnable

Running tasks in parallel
» Need both tasks -&&-

» Waits until subtasks are Stable, yields Stable result

nameAndGender2 :: Task (String, Gender)
nameAndGender2 = (enterInformation [] -&&- enterInformation []) »>7
viewInformation []

| Pieter] ©

Male v

‘ Conﬁnue‘
- d

28

Programming in iTasks

Running tasks in parallel
» First task finished determines result -| |-

» Waits until first subtask is Stable, yields Stable result

nameTask2 :: Task String

nameTask2 =
(nameTask -| |-
(editChoice []1 ["Mart”,” Pieter”] 7None <<@ Label "Select name”)) >? \name -
viewInformation [] name

‘Your name please: ‘ ‘ @

Select name: | v Select...
. Pieter |

‘ Continue ‘

29

. - SUS
Programming in iTasks <l ralnable

Shared Data Sources
» Task communication via SDS

» Automatic update on changes of SDS
sharedNames :: Task [String]
sharedNames =
withShared [] \sds —
(updateSharedInformation [] sds <<@ Label "Enter names”) -||
(viewSharedInformation [ViewAs length] sds <<@ Label "Count”)

Enter names: Pieter ‘ @ @§|§|
Mart] | © E@@
- °

Count: 2

30

31

Programming in iTasks

Persistent Shared Data Sources
nameGenderSDS :: SimpleSDSLens [(String, Gender)]
nameGenderSDS = sharedStore "sds/dentfier” initialValue

where initialValue = []

9 SUS
«alralnable

32

Programming in iTasks

Reading combinator types

@ SUS

<alrainabl

type

behaviour

return :: a—Task a

(-&&-) infixr :: (Task a) (Task b) —»Task (a,b)
(=11-) infixr : (Task a) (Task a)—>Task a
(=11) infixr : (Task a) (Task b) —»Task a

C I'l-) infixr : (Task a) (Task b) »>Task b
(»7) infix :: (Task a) (a—Task b) »Task b

Lifts a value to a task value

Task results are combined
Disjunction of parallel subtasks
Returns left result

Returns right result

Sequentially, rhs takes result of task

There are many more useful operators
cloogle.org knows them all by name and type!

cloogle.org

L. @ SUS
Programming in iTasks salrainable

Recap
> iTasks enables consize specification of tierless web-systems

» Generates web-server and all communication

» Code can run in the browser (web assembly)
» We can specify a multi-user program in iTasks
» Program can even be multi server

> A web-server is too big and heavy for an loT node
Such a web-server is not needed for an loT node

» We made a TOP language for the loT embedded in iTask

33

@ SUS
mTask «alrajnable

Tasks on tiny computers

: Properties
Presentation Layer iTask [Webpages]
x > Tagless final embedding
// / » Type-safe, task-oriented
Application Layer . .
T 1 A ..@ » Abstractions for peripherals
» RTS for many microprocessors
Netwark Layer » Tailor-made at runtime
> Interpreted on the device
e “" '““ » Multi tasking support
R I Bl N » Integrated in iTasks

34

mTask/iTask Interface &%{%}@ﬁsﬁﬂ@@ﬂ

» Interact with the device

» Language
» Lift SDSs
> Lift tasks

35

) @ SUS
iTasks Interface <«alrainable

Interact with the device

Definition

withDevice :: a — (MTDevice — Task b) — Task b | iTask b & channelSync a
:: MTDevice //Opaque

Example

main :: Task t

main = enterTCPInfo Device Host: @
»= \x—withDevice x (\dev —---) formatin: °
where i
.. . Ping timeout: ~|®
enterTCPInfo :: Task TCPSettings

enterTCPInfo = enterInformation []
<<@ Label "Enter TCP settings”

| Continue ‘

36

mTask/iTask Interface ;‘?H?“ ble

el

Language (1)

Bytecode compiler

mTask expression

Clean source code

Pretty printer
blink :: Int — Main (MTask v Bool) | mtask v
blink wait = declarePin D4 PMOutput \d4—
fun \blinkfun=(\x—
delay (lit wait)
> |. writeD d4 x
>|. blinkfun (Not x))
In {main=blinkfun true}

Symbolic simulation

Resource analysis!

37

mTask/iTask Interface Jﬂsryaﬁu@ ble

Structuro of a task

Language Classes
someTask :: MTask v Int | mtask v class mtask v | expr v & sds v & pinMode v &---
someTask =
sensorl configl \snsl-—
sensor2 config2 \sns2- class expr v where
fun \funi= (---) lit =t - v t |

In fun \fun2= (---) (+.) infixl 6 & (vt) (vt) = vt |-
In {main=mainexpr}

More on this later

38

#SUS

iTasks Interface «alrainable
Lifting SDSs
Definition

class liftsds v where
liftsds :: ((v (S8ds t)) — In (Shared sds t) (Main (MTask v u)))
— Main (MTask v u) |--- & RWShared sds & ---

Example

sdsI :: SimpleSDSLens Int
sdsI = sharedStore "some identifier” 42

someTask :: MTask v Int | mtask, liftsds v

someTask = ---
liftsds \sdsM—
In {main= getSds sdsM >»>=. \x—---}

39

_ @ SUS
i Tasks Interface salrainable

Lifting tasks (1)
Definition

liftmTask :: (Main (MTask BCInterpret u)) MIDevice — Task u |---

Example

taskI :: Task t
taskl = enterTCPInfo >»>= \x—withDevice x (\dev — liftmTask taskM dev)

where
enterTCPInfo :: Task TCPSettings
enterTCPInfo = enterInformation [] <<@ Label "Enter TCP settings”

taskM :: Main (MTask v t) | mtask v
taskM =

In {main=mainexpr}

40

_ @ SUS
i Tasks Interface salrainable
Lifting tasks (2)

itask task

Bytecode
Bytecode compiler
0x45
Source Oxab
EXEE— A — 0xOf liftmTask
" 0xc2

41

mTask/iTask Interface Jﬂsryaﬁu@ ble

Language (3): Expressions
Definition
class arith v where

lit 0 ---
+) o -

Examples
c42 :: v Int | mtask v
c42 = 1it 6 *. 1lit 7

cond :: v Int | mtask v
cond = If (lit 42 ==. c42) (lit 38) (lit 2 *. (1lit 18 +. 1lit 1))

42

43

mTask/iTask Interface

Language (3): Data types

% 8US

«alrainable

mTask C/C++ stack cells
Bool bool 1

Char char 1

Int int16_t 1

Long int32_t 2

Real float 2

(a, b) struct?7 a4+ b

(a, b, ¢) struct? a4+ b+c
:T=A]B|C enum 1

2 DPin = DO | D1 |---
;2 APin = AO | A1 |---
:: PinMode = PMOutput | PMInput |---

. #8US
mTask/iTask Interface ATrainable

Language (3): Functions

Definition
class fun a v where
fun ;-
Examples
add42 :: v Int | mtask v fib10 :: Main (v Int) | mtask v
add42 = fib10 =
fun \add= (\(x, y)—x +. y) fun \fibacc= (\(n, acc)—
In {main = add (1it 38, 1it 4) } If (n ==. 1lit 0)
(acc)
(fibacc (n -. 1lit 1, acc *. n)))
In fun \fib = (\n—fibacc n (1it 1))

In {main = fib (1it 10)}

44

mTask/iTask Interface Q?H?m ble

Language (3): Basic tasks

Definition Definition

class rtrn v where class delay v where
rtrn @ --- delay :: ---
Examples Examples
return42 :: MTask v Int | mtask v wtsecond :: MTask v Int | mtask v

return42 = rtrn (lit 6 *. 1lit 7) wtsecond = delay (1it 500 *. 1lit 2)

45

mTask/iTask Interface Jﬂsﬂ%?md ble

Language (3): Sensors

Definition
class dht v where
DHT 5

temperature : ---
humidity

Examples

readTemp :: Main (MTask v Real) | mtask, dht v
readTemp =
DHT (DHT-SHT (i2c 0x45)) \dht—
{main=temperature dht}

46

: 9 SUS
mTask/iTask Interface aTrainable

Language (3): GPIO tasks

Definition

class dio p v | pin p where
writeD @ (v p) (v Bool) — MTask v Bool
readD

class aio v where
writeA :: ---
readA

class pinMode v
pinMode
declarePin :: ---

Examples

blinkTask :: Main (MTask v Real) | mtask v
blinkTask = declarePin D4 PMOutput \ledPin—
{main = writeD ledPin true} //or (lit True)

47

mTask/iTask Interface

Language (3): Sequential task combinators

Definition
class step v where
(»*.) :: (MTask v t) [Step v t ul — MTask v u

D Stepvitu
= IfValue ((v t) — v Bool) ((v t) — MTask v u)
| IfStable ((v t) — v Bool) ((v t) — MTask v u)
[

aover4?2 :: Main (MTask v Int) | mtask v
aover42 = declarePin A3 \apin—
{main=readA apin »*. [IfValue (\x—x >. lit 42) (\x—rtrn x)]1}

(»=.) 1 r =1 »*, [IfStable (\-—true) (\x—-r x)]
(>].) 1 r =1 »*. [IfStable (\-—true) (\-—=r)]
(»~.) 1 r =1 »*. [IfValue (\-—true) (\x—r x)]
(>»..) 1 r =1 >»*, [IfValue (\-—true) (\-—=r)]

48

mTask/iTask Interface 9 SUS

alraln:

Language (3): Parallel task combinators
Definition

class .||. v where

C.11.) :: (MTask v a) (MTask v a)
class .&&. v where

(.&&.) :: (MTask v a) (MTask v b) — MTask v (a, b)

— MTask v a

Or example And example

waitorst :: Main (MTask v Int)

| mtask v readAD :: Main (MTask v (Bool, Int))
waitorst = declarePin A3 PMInput \ain-— | mtask v
{main= wait -||- step } readAD
where wait = delay (lit 60000) = declarePin A3 PMInput \ain—
>|. rtrn (1it 0)

declarePin D3 PMInput \din-—

step = readA ain »*. [IfValue { main= readD din -&&- readA ain }

(\x—x >. lit 42)
(\x—rtrn x)]

49

_ »SUS
mTask/iTask Interface \:-;Slwnm

Language (3): Shared data sources

Definition
class sds v where
sds e
getSds 1 -
setSds 1 ---
updSds :: ---
class liftsds v where
liftsds :: ---

Local example Lifted example
lcl :: Main (MTask v Int) someShareI :: SimpleSDSLens Bool // from iTask

lcl = sd hare=42
Cln {;ainise:;:s share} task :: MTask v Int | mtask, liftsds v
g task = liftsds \someShareM=someSharel
In { main=getSds someShareM >»>*. [---] }

50

mTask/iTask Interface

Language (3): Green computing

Scheduling frequency

:: TimingInterval v
= Default
| BeforeMs (v Int) | BeforeSec (v Int)
| ExactMs (v Int) | ExactSec (v Int)
| RangeMs (v Int) (v Int)
| RangeSec (v Int) (v Int)

Examples

//temperature’, readA’, readD’, ...
tmin = temperature” (BeforeSec (1lit 60))
»>*, [---]

51

@ SUS

alrain

Interrupts

class interrupt v where
interrupt : ---

;2 InterruptMode
= Change | Rising
| Falling | Low
| High

Examples

pir = declarePin D3 \pir—
{main=interrupt pir high >»>=. _-...
// or (1it High)

Arduino examples in mTask

Blink

D4;
500;

const int ledPin
const int interval

void setup() {
pinMode(1edPin, OUTPUT);
}

void loop() {
digitalWrite (1edPin, HIGH);
delay (interval);
digitalWrite (ledPin, LOW);
delay (interval);

52

% SUS

alrain

interval :: Int
interval = 500

blinktask :: Main (MTask v Int) | mtask v
blinktask = declarePin D5 \ledPin-—
fun \blink= (\st—
writeD ledPin st
> |. delay (1it interval)
> |. blink (not st))
{main=blink false}

Arduino examples in mTask
Blink multiple LEDs

Arduino

void setup() {
pinMode(1edPin, OUTPUT);
}
void blink(int pin, int interval) {

}

void loop() {
blink(ledPin, interval);
blink (otherPin, 2500);

}

53

@ SUS

«alralne

m Task

interval = 500

blinktask :: Main (MTask v Int) | mtask v
blinktask =
declarePin D5 \ledPin—
declarePin D9 \otherPin—
fun \blink= (\(pin, int, st—
writeD pin st
> |. delay int
> |. blink (not st))
{main = blink (ledPin, 1it 500, false)
-| |- blink (otherPin, 1lit 2500, false)
}

Arduino examples in mTask

Interrupts
Arduino mTask
const int pir = D3; pir = PIR D3 \pir—
const int led = D4; declarePin D4 \led—

fun \mdec = (\(Q) —

volatile bool changed = false; . .
interrupt change pir

IRI.&M_ATTR void isr() { ... } »>=. \x—writeD led x
void setup() { ...

attachInterrupt(isr) ol smaee O
. pt(..., PRI) In {main = mdec () }

void loop() {
delay (60000) ; // or even light/deep sleep
if (changed) {
changed = false;
digitalWrite (led, digitalRead (pir));
}
¥

54

W o SUS
rap up salrainable

» Sleep more: use less power

» Programming loT stacks is difficult

» Using a tierless language simplifies it greatly

We are hiring:
pieter@cs.ru.nl

55

pieter@cs.ru.nl

@ SUS

=}

Exercises salrainabl

Go to this url for all the files:

https://tinyurl.com/greeniot
File What to do with it

exercises.zip The exercise skeletons?
exercises.pdf The exercise handout
slides.pdf The slides

Remember:

> https://cloogle.org for all the language documentation

» Make sure you are on the same wifi network as the device:
ssid: sustrainable22-{almere,nijmegen}, password: greeniot

2Also includes setup instructions for Clean/iTask/mTask

56

https://tinyurl.com/greeniot
https://cloogle.org

	Internet of Things
	Internet of Things
	IoT edge devices
	Programming IoT devices using C++

	Task-oriented programming
	Task-oriented programming
	Programming in iTasks
	Task-oriented programming for the IoT
	Programming in mTask

	Exercises

