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Task Oriented Programming (TOP)

Concept

Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:
» Basic tasks: input/output (e.g. web editors)
» Composition: sequential, parallel

» Communication: task results, shared data

Implementations
iTasks  Generates a multi-user web application from the TOP specification to
do the work.

TOP  Formally calculus for tasks including operational semantics.
mTask TOP language and ecosystem for microcontrollers.
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Model collaboration and interaction
Represents the actual work
Observable value during evaluation
Task can emit no value

Event based rewriting

Automatically divide up work in slices:

{i,m}Tasks use an optional stability to model side effects:

NoValue +—— Unstable —— Stable
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Shared Data Sources

» Share data between tasks
» Models — possibly impure — data
> Files
» Memory
» Randomness
» Introspection in the host
> Time

P> Lean and mean publish subscribe system
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What is iTasks

v

DSL in Clean

» TOP for the web
Heavily depends on:

> Polytypic functions (generics)
» Dynamic typing (dynamics)

v

» Generates a multi-user web application from the specification
» Support for distributed operation
» Limited support for peripherals



Basic Tasks

return :: a — Task a | iTask a

enterInformation :: d [EnterOption m]
updateInformation :: d [UpdateOption m m] m — Task m | toPrompt d & iTask m
viewInformation :: d [ViewOption m]

:: ViewOption a =dv:
| Jv:
:: EnterOption a =dv:
| Jv:

:: UpdateOption a b

ViewAs (a— v) & iTask v
ViewUsing (a — v) (Editor v) & iTask v
EnterAs v - a) & iTask v

EnterUsing (v — a) (Editor v) & iTask v

=dv: UpdateAs (a—v) (av - b) & iTask v
| 3v: UpdateUsing (a — v) (a v — b) (Editor v) & iTask v

— Task m | toPrompt d & iTask m

m — Task m | toPrompt d & iTask m



Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" [] NoValue <—— Unstable — Stable
>>= viewInformation "Hello" []
>>= return
Enter details
Name* @

Age*: ®
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derive class iTask Person

personTask :: Task Person
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Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" []
>>= viewInformation "Hello" []
>>= return

Hello

Name frobnicator

Age 42

NoValue <—— Unstable — Stable

Continue



Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

— —_—
personTask = enterInformation "Enter details" [] NoValue Unstable Stable

>>= viewInformation "Hello" []
>>= return



Combinators

Parallel Combinators

(-&&-) infixr 4 :: (Task a) (Task b) — Task (a,b) | iTask a & iTask b
-1l ) infixl 3 :: (Task a) (Task b) — Task a | iTask a & iTask b
C I1-) infixr 3 :: (Task a) (Task b) — Task b | iTask a & iTask b
(=11-) infixr 3 :: (Task a) (Task a) — Task a | iTask a

10
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t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []
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Parallel Combinators

t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

Left

<>

Right

<>

10

Continue
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Parallel Combinators

t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

Left

¥

Right

>

42

€

10

Continue
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Parallel Combinators

t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

Result

42

10



Combinators

Parallel Combinators

t :: Task Int

t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

t :: Task (Int, Int)

t = enterInformation "Left" [] -&&- enterInformation "Right []
>>= viewInformation "Result" []

10



Combinators

Parallel Combinators

t :: Task (Int, Int)
t = enterInformation "Left" [] -&&- enterInformation "Right []
>>= viewInformation "Result" []

Left

42

Right

10

Continue
P



Combinators

Parallel Combinators

t :: Task (Int, Int)
t = enterInformation "Left" [] -&&- enterInformation "Right []
>>= viewInformation "Result" []

Left

42

Right

37|

10

Continue |



11



Combinators

Sequential

(>>+) infixl 1 :: (Task a) [TaskCont a (Task b)] — Task b | iTask a & iTask b
:: TaskCont a b

= OnValue ((TaskValue a) — Maybe b)

| OnAction Action ((TaskValue a) — Maybe b)

:: Action = Action String //button

11



Combinators

Sequential

11

always
never
hasValue
ifStable
ifUnstable
ifValue
ifCond

withoutValue ::

withValue
withStable

: b

: b
ro(a -
:: (@ — b)
r(a -
:: (@ —» Bool) (a — b)
:: Bool b

b)

b)

(Maybe b)

:: (@ — Maybe b)
:: (a — Maybe b)
withUnstable ::

(a — Maybe b)

(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue

a)
a)
a)
a)
a)
a)
a)
a)
a)
a)
a)

R A A A

Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b



Combinators

Sequential

palindrome :: Task (Maybe String)
palindrome = enterInformation "Enter a palindrome" []
>>+ [ OnAction (Action "Ok") (ifValue palindrome (\v — return (Just v)))
, OnAction (Action "Cancel") (always (return Nothing))]
>>= viewInformation "Result is:" []
where
palindrome s = s == reverse s

11
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Combinators

Sequential

palindrome :: Task (Maybe String)
palindrome = enterInformation "Enter a palindrome" []
>>+ [ OnAction (Action "Ok") (ifValue palindrome (\v — return (Just v)))
, OnAction (Action "Cancel") (always (return Nothing))]
>>= viewInformation "Result is:" []
where
palindrome s = s == reverse s

Resultis:

legovogel

11



Combinators

Derived Sequential Combinators

(>>=) infixl 1 :: (Task a) (a — Task b) — Task b | iTask a & iTask b
>>1) infixl 2 :: (Task a) (a2 — Task b) — Task b | iTask a & iTask b
(>>-) infixl 1 :: (Task a) (a — Task b) — Task b | iTask a & iTask b
¢-1) infixl 1

> infixl 1 :: (Task a) (a2 — Task b) — Task b | iTask a & iTask b
(>>7) infixl 1 :: (Task a) (Task b) — Task a| iTask a & iTask b

sequence :: [Task a]l — Task [a] | iTask a

12



SDSs

Defining SDSs

sharedStore
withShared

13

:: String a — SimpleSDSLens a | JSONEncode{|*|} a & JSONDecode{|*|} a & TC a
:: b ((SimpleSDSLens b) — Task a) — Task a | iTask a & iTask b



SDSs

Access Tasks

get :: (sds ) aw) — Task a | iTask a & Readable sds & TC w

set :: a (sds ) ra) — Task a | iTask a & TC r & Writeable sds

upd :: (r - w) (sds ) r w) — Task w | iTask r & iTask w & RWShared sds
watch :: (sds () r w) — Task r | iTask r & TC w & Readable, Registrable sds

14



SDSs

Shared Editors

15

updateSharedInformation :: d [UpdateOption r w] (sds ) r w) — Taskr | ...

viewSharedInformation :: d [ViewOption r]

sharedUpdate :: Task Int
sharedUpdate = withShared 42 AsharedInt—
updateSharedInformation () [] sharedInt
-| |- updateSharedInformation () [] sharedInt

(sds O rw) — Taskr | ...



Example SDS usage

shareTask :: Task Int
shareTask = withShared 42 \si—
updateSharedInformation "Updater" [] si
-|| viewSharedInformation "Viewer" [] si

Updater

42

Viewer
42

16

Continue
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Example SDS usage

shareTask :: Task Int
shareTask = withShared 42 \si—
updateSharedInformation "Updater" [] si
-|| viewSharedInformation "Viewer" [] si

Updater

37

Viewer
37

16

Continue
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mTask design

Brings TOP to the IOT

Tasks are intuitive for IOT

TOP abstractions, IOT needs abstraction
Class based shallow EDSL

Embedded in Clean

Integration with iTasks
Multiple backends:

P pretty printing

» symbolic simulation
» resource analysis
| 4
>

vVvvyVvVvVvyyvyy

C code generation
bytecode generation.

18
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i Tasks

//ask/és&/é&%

20

> Javascript
» Clean
» Shared Stores
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» Events



Architecture

browser
i Tasks
%_g& /és& A » Devices
» Tasks
- - - » Shared Stores

» RTS/Interpreter

i Tasks

mTasks

Auln's I VA\s ulu BVA e u(w

m Taskj m Tasko m Task,
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Architecture

browser

i Tasks

liftmTas

i Tasks

mTasks /
/oad |/oad |/oee
m Taskj m Tasko m Task,

20

» iTasks task as mTask
task

» Rewrite task

» Synchronize task
value



Architecture

browser

i Tasks

i Tasks

itaskssds

mTasks

/N6

m Taskj

/\O00

m Tasko

/\O00

m Task,

20

» Synchronize Shared
Store

» Publish Subscribe



i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice
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i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

Literally a single parallel

Create Channels (withShared)

Setup the connection by running the channel sync

Ask for a specification (embedded in the MTDevice)

Monitor the channels

Run the device task

Play some trickery to clean up when the argument task is destroyed

vVvvyvyVvYvVYyyvyy

Close the connection when done
21



i Tasks interface
Lifting SDSs: 1iftSds

class liftsds v where

liftsds :: ((v (Sds t))—In (Shared t) (Main (MTask v u))) — Main (MTask vu) | ...

22



i Tasks interface
Lifting SDSs: 1iftSds

22

class liftsds v where
liftsds :: ((v (Sds t))—In (Shared t) (Main (MTask v u))) — Main (MTask v u) |

:: MILens sds :== Shared sds String255
lens :: ((Shared sl a) — MILens s2) | type, iTask a & RWShared s1 & RWShared s2
lens = mapReadWriteError

(Ar—0k (fromString (toByteCode{|*|} r))

, Aw r—Just <$> iTasksDecode (toString w)

) Nothing

iTasksDecode :: String — MaybeError TaskException a | type a



i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u
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i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

Literally a sequence

Compile the task

Retrieve all SDS values

Ask the device to prepare (slow comm, small buffers)
Send the task

Wait for it to return

Watch all linked SDSs both ways

Relay the task value to the task itself

vVvVvvyVvYVvyVvyVvyy

23



Thermostat



Example: Thermostat
The iTasks part
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Example: Thermostat
The iTasks part

main :: Task (O, )
main = enterDevice

Selecta preset Update the preset

+ | Host:

Demo device Windows Bluetooth (HC-06) TCP localhost (]

Demo device Linux Bluetooth (HC-06) Port*
8123 @

Arduino UNO

Chinese UNO

Arduino UNO with Bluetooth (ltead)

25 Continue



Example: Thermostat
The iTasks part

>>= yithDevice Adev—

» Connect to the device
» Start the synchronization task
» Ask for a specification

» Wait for the specification to return

25



Example: Thermostat
The iTasks part

withShared (160,220) Atargets—
withShared 420 \temp—

25



Example: Thermostat
The iTasks part

updateSharedInformation "Targets" [targetUpdater] targets
| |- viewSharedInformation "Current" [ViewAs targetView] temp

Targets
Low*:
16 ]
High*:
g 22 (]
Current

439

25



Example: Thermostat
The iTasks part

| |- 1liftmTask dev (mTask targets temp)

» Compile the task

» Send the task

» Wait for acknowledgement
» Synchronize lifted SDSs

25



Example: Thermostat
The 10T part
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Example: Thermostat
The IOT part

mTask targetShare tempShare =
DHT DHTPIN DHT22 Adht—
liftsds \target = targetShare In
liftsds A\temp = tempShare In
{main
= ever (temperature dht >>. setSds temp >>|. delay (1it 2000))
.&&. ever (getSds temp .&&. getSds target >>. tupopen (temp, target) -Av—
writeD FANPIN (temp <. second target)
.&&. writeD HEATPIN (temp >. first target)
)}

26
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Example: Thermostat
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Example: Thermostat
The 10T part

writeD FANPIN (temp <. second target)
.&&. writeD HEATPIN (temp >. first target)
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Seminar

28

» Questions?

» Write your own mTask applications

» Use Cloogle

» Download the material https://cloo.gl/0DY4
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