
mTask

Mart Lubbers & Pieter Koopman
{mart,pieter}@cs.ru.nl

17th June 2019

1

Schedule

TOP

iTasks

mTask

Architecture

Thermostat

2

Task Oriented Programming (TOP)

Concept

Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:

I Basic tasks: input/output (e.g. web editors)

I Composition: sequential, parallel

I Communication: task results, shared data

3

Task Oriented Programming (TOP)

Concept

Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:

I Basic tasks: input/output (e.g. web editors)

I Composition: sequential, parallel

I Communication: task results, shared data

3

Task Oriented Programming (TOP)

Concept

Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:

I Basic tasks: input/output (e.g. web editors)

I Composition: sequential, parallel

I Communication: task results, shared data

Implementation

iTasks Generates a multi-user web application from the TOP specification to
do the work.

3

Task Oriented Programming (TOP)

Concept

Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:

I Basic tasks: input/output (e.g. web editors)

I Composition: sequential, parallel

I Communication: task results, shared data

Implementations

iTasks Generates a multi-user web application from the TOP specification to
do the work.

T̂OP Formally calculus for tasks including operational semantics.
mTask TOP language and ecosystem for microcontrollers.

3

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Tasks

I Model collaboration and interaction

I Represents the actual work

I Observable value during evaluation

I Task can emit no value

I Event based rewriting

I Automatically divide up work in slices:

I {i,m}Tasks use an optional stability to model side effects:

NoValue Unstable Stable

4

Shared Data Sources

I Share data between tasks

I Models — possibly impure — data
I Files
I Memory
I Randomness
I Introspection in the host
I Time

I Lean and mean publish subscribe system

5

Shared Data Sources

I Share data between tasks
I Models — possibly impure — data

I Files
I Memory
I Randomness
I Introspection in the host
I Time

I Lean and mean publish subscribe system

5

Shared Data Sources

I Share data between tasks
I Models — possibly impure — data

I Files
I Memory
I Randomness
I Introspection in the host
I Time

I Lean and mean publish subscribe system

5

Shared Data Sources

I Share data between tasks
I Models — possibly impure — data

I Files
I Memory
I Randomness
I Introspection in the host
I Time

I Lean and mean publish subscribe system

5

iTasks

6

What is iTasks

I DSL in Clean

I TOP for the web
I Heavily depends on:

I Polytypic functions (generics)
I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

What is iTasks

I DSL in Clean

I TOP for the web

I Heavily depends on:

I Polytypic functions (generics)
I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

What is iTasks

I DSL in Clean

I TOP for the web
I Heavily depends on:

I Polytypic functions (generics)
I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

What is iTasks

I DSL in Clean

I TOP for the web
I Heavily depends on:

I Polytypic functions (generics)

I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

What is iTasks

I DSL in Clean

I TOP for the web
I Heavily depends on:

I Polytypic functions (generics)
I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

What is iTasks

I DSL in Clean

I TOP for the web
I Heavily depends on:

I Polytypic functions (generics)
I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

What is iTasks

I DSL in Clean

I TOP for the web
I Heavily depends on:

I Polytypic functions (generics)
I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

What is iTasks

I DSL in Clean

I TOP for the web
I Heavily depends on:

I Polytypic functions (generics)
I Dynamic typing (dynamics)

I Generates a multi-user web application from the specification

I Support for distributed operation

I Limited support for peripherals

7

Basic Tasks

return :: a � Task a | iTask a

enterInformation :: d [EnterOption m] � Task m | toPrompt d & iTask m

updateInformation :: d [UpdateOption m m] m � Task m | toPrompt d & iTask m

viewInformation :: d [ViewOption m] m � Task m | toPrompt d & iTask m

:: ViewOption a =∃v: ViewAs (a � v) & iTask v

|∃v: ViewUsing (a � v) (Editor v) & iTask v

:: EnterOption a =∃v: EnterAs (v � a) & iTask v

|∃v: EnterUsing (v � a) (Editor v) & iTask v

:: UpdateOption a b

=∃v: UpdateAs (a � v) (a v � b) & iTask v

|∃v: UpdateUsing (a � v) (a v � b) (Editor v) & iTask v

8

Example Task

:: Person = {name :: String, age :: Int}

derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" []

>>= viewInformation "Hello" []

>>= return

NoValue Unstable Stable

9

Example Task

:: Person = {name :: String, age :: Int}

derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" []

>>= viewInformation "Hello" []

>>= return

NoValue Unstable Stable

9

Example Task

:: Person = {name :: String, age :: Int}

derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" []

>>= viewInformation "Hello" []

>>= return

NoValue Unstable Stable

9

Example Task

:: Person = {name :: String, age :: Int}

derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" []

>>= viewInformation "Hello" []

>>= return

NoValue Unstable Stable

9

Example Task

:: Person = {name :: String, age :: Int}

derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" []

>>= viewInformation "Hello" []

>>= return

NoValue Unstable Stable

9

Combinators
Parallel Combinators

(-&&-) infixr 4 :: (Task a) (Task b) � Task (a,b) | iTask a & iTask b

(-||) infixl 3 :: (Task a) (Task b) � Task a | iTask a & iTask b

(||-) infixr 3 :: (Task a) (Task b) � Task b | iTask a & iTask b

(-||-) infixr 3 :: (Task a) (Task a) � Task a | iTask a

10

Combinators
Parallel Combinators

t :: Task Int

t = enterInformation "Left" [] -||- enterInformation "Right []

>>= viewInformation "Result" []

10

Combinators
Parallel Combinators

t :: Task Int

t = enterInformation "Left" [] -||- enterInformation "Right []

>>= viewInformation "Result" []

10

Combinators
Parallel Combinators

t :: Task Int

t = enterInformation "Left" [] -||- enterInformation "Right []

>>= viewInformation "Result" []

10

Combinators
Parallel Combinators

t :: Task Int

t = enterInformation "Left" [] -||- enterInformation "Right []

>>= viewInformation "Result" []

10

Combinators
Parallel Combinators

t :: Task Int

t = enterInformation "Left" [] -||- enterInformation "Right []

>>= viewInformation "Result" []

t :: Task (Int, Int)

t = enterInformation "Left" [] -&&- enterInformation "Right []

>>= viewInformation "Result" []

10

Combinators
Parallel Combinators

t :: Task (Int, Int)

t = enterInformation "Left" [] -&&- enterInformation "Right []

>>= viewInformation "Result" []

10

Combinators
Parallel Combinators

t :: Task (Int, Int)

t = enterInformation "Left" [] -&&- enterInformation "Right []

>>= viewInformation "Result" []

10

‘

11

Combinators
Sequential

(>>*) infixl 1 :: (Task a) [TaskCont a (Task b)] � Task b | iTask a & iTask b

:: TaskCont a b

= OnValue ((TaskValue a) � Maybe b)

| OnAction Action ((TaskValue a) � Maybe b)

:: Action = Action String //button

11

Combinators
Sequential

always :: b (TaskValue a) � Maybe b

never :: b (TaskValue a) � Maybe b

hasValue :: (a � b) (TaskValue a) � Maybe b

ifStable :: (a � b) (TaskValue a) � Maybe b

ifUnstable :: (a � b) (TaskValue a) � Maybe b

ifValue :: (a � Bool) (a � b) (TaskValue a) � Maybe b

ifCond :: Bool b (TaskValue a) � Maybe b

withoutValue :: (Maybe b) (TaskValue a) � Maybe b

withValue :: (a � Maybe b) (TaskValue a) � Maybe b

withStable :: (a � Maybe b) (TaskValue a) � Maybe b

withUnstable :: (a � Maybe b) (TaskValue a) � Maybe b

11

Combinators
Sequential

palindrome :: Task (Maybe String)

palindrome = enterInformation "Enter a palindrome" []

>>* [OnAction (Action "Ok") (ifValue palindrome (λv � return (Just v)))

, OnAction (Action "Cancel") (always (return Nothing))]

>>= viewInformation "Result is:" []

where
palindrome s = s == reverse s

11

Combinators
Sequential

palindrome :: Task (Maybe String)

palindrome = enterInformation "Enter a palindrome" []

>>* [OnAction (Action "Ok") (ifValue palindrome (λv � return (Just v)))

, OnAction (Action "Cancel") (always (return Nothing))]

>>= viewInformation "Result is:" []

where
palindrome s = s == reverse s

11

Combinators
Sequential

palindrome :: Task (Maybe String)

palindrome = enterInformation "Enter a palindrome" []

>>* [OnAction (Action "Ok") (ifValue palindrome (λv � return (Just v)))

, OnAction (Action "Cancel") (always (return Nothing))]

>>= viewInformation "Result is:" []

where
palindrome s = s == reverse s

11

Combinators
Sequential

palindrome :: Task (Maybe String)

palindrome = enterInformation "Enter a palindrome" []

>>* [OnAction (Action "Ok") (ifValue palindrome (λv � return (Just v)))

, OnAction (Action "Cancel") (always (return Nothing))]

>>= viewInformation "Result is:" []

where
palindrome s = s == reverse s

11

Combinators
Derived Sequential Combinators

(>>=) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(>>!) infixl 2 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(>>-) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(>-|) infixl 1
(>>∼) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(>>)̂ infixl 1 :: (Task a) (Task b) � Task a| iTask a & iTask b

sequence :: [Task a] � Task [a] | iTask a

12

SDSs
Defining SDSs

sharedStore :: String a � SimpleSDSLens a | JSONEncode{|*|} a & JSONDecode{|*|} a & TC a

withShared :: b ((SimpleSDSLens b) � Task a) � Task a | iTask a & iTask b

13

SDSs
Access Tasks

get :: (sds () a w) � Task a | iTask a & Readable sds & TC w

set :: a (sds () r a) � Task a | iTask a & TC r & Writeable sds

upd :: (r � w) (sds () r w) � Task w | iTask r & iTask w & RWShared sds

watch :: (sds () r w) � Task r | iTask r & TC w & Readable, Registrable sds

14

SDSs
Shared Editors

updateSharedInformation :: d [UpdateOption r w] (sds () r w) � Task r | ...

viewSharedInformation :: d [ViewOption r] (sds () r w) � Task r | ...

sharedUpdate :: Task Int

sharedUpdate = withShared 42 λsharedInt�
updateSharedInformation () [] sharedInt

-||- updateSharedInformation () [] sharedInt

15

Example SDS usage

shareTask :: Task Int

shareTask = withShared 42 λsi�
updateSharedInformation "Updater" [] si

-|| viewSharedInformation "Viewer" [] si

16

Example SDS usage

shareTask :: Task Int

shareTask = withShared 42 λsi�
updateSharedInformation "Updater" [] si

-|| viewSharedInformation "Viewer" [] si

16

Example SDS usage

shareTask :: Task Int

shareTask = withShared 42 λsi�
updateSharedInformation "Updater" [] si

-|| viewSharedInformation "Viewer" [] si

16

mTask

17

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks

I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing

I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation

I resource analysis
I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis

I C code generation
I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation

I bytecode generation.

18

mTask design

I Brings TOP to the IOT

I Tasks are intuitive for IOT

I TOP abstractions, IOT needs abstraction

I Class based shallow EDSL

I Embedded in Clean

I Integration with iTasks
I Multiple backends:

I pretty printing
I symbolic simulation
I resource analysis
I C code generation
I bytecode generation.

18

Architecture

19

Architecture

browser

iTasks

20

Architecture

Client1 Client2 Clientn

browser

iTasks

Task1 Task2 Taskn

SDS1 SDS2 SDSn

I Javascript

I Clean

I Shared Stores

20

Architecture

Client1 Client2 Clientn

browser

iTasks

Task1 Task2 Taskn

SDS1 SDS2 SDSn

I Type driven UI

20

Architecture

Client1 Client2 Clientn

browser

iTasks

Task1 Task2 Taskn

SDS1 SDS2 SDSn

I Synchronization

I Events

20

Architecture

Client1 Client2 Clientn

browser

iTasks

Task1 Task2 Taskn

SDS1 SDS2 SDSn

iTasks

mTasks

mTask1 mTask2 mTaskn

I Devices

I Tasks

I Shared Stores

I RTS/Interpreter

20

Architecture

Client1 Client2 Clientn

browser

iTasks

Task1 Task2 Taskn

SDS1 SDS2 SDSn

iTasks

mTasks

mTask1 mTask2 mTaskn

liftmTask

Task1
I iTasks task as mTask

task

I Rewrite task

I Synchronize task
value

20

Architecture

Client1 Client2 Clientn

browser

iTasks

Task1 Task2 Taskn

SDS1 SDS2 SDSn

iTasks

mTasks

mTask1 mTask2 mTaskn

itaskssds

SDS1

I Synchronize Shared
Store

I Publish Subscribe

20

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done

21

iTasks interface
Connecting a device: withDevice

:: MTDevice

withDevice :: (MTDevice � Task b) a � Task b | channelSync a & ...

instance channelSync TCPDevice

instance channelSync TTYDevice

I Literally a single parallel

I Create Channels (withShared)

I Setup the connection by running the channel sync

I Ask for a specification (embedded in the MTDevice)

I Monitor the channels

I Run the device task

I Play some trickery to clean up when the argument task is destroyed

I Close the connection when done
21

iTasks interface
Lifting SDSs: liftSds

class liftsds v where
liftsds :: ((v (Sds t))�In (Shared t) (Main (MTask v u))) � Main (MTask v u) | ...

:: MTLens sds :== Shared sds String255

lens :: ((Shared s1 a) � MTLens s2) | type, iTask a & RWShared s1 & RWShared s2

lens = mapReadWriteError

(λr�Ok (fromString (toByteCode{|*|} r))

, λw r�Just <$> iTasksDecode (toString w)

) Nothing

iTasksDecode :: String � MaybeError TaskException a | type a

22

iTasks interface
Lifting SDSs: liftSds

class liftsds v where
liftsds :: ((v (Sds t))�In (Shared t) (Main (MTask v u))) � Main (MTask v u) | ...

:: MTLens sds :== Shared sds String255

lens :: ((Shared s1 a) � MTLens s2) | type, iTask a & RWShared s1 & RWShared s2

lens = mapReadWriteError

(λr�Ok (fromString (toByteCode{|*|} r))

, λw r�Just <$> iTasksDecode (toString w)

) Nothing

iTasksDecode :: String � MaybeError TaskException a | type a

22

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

iTasks interface
Lifting an mTask to iTasks: liftmTask

liftmTask :: MTDevice (Main (MTask BCInterpret u)) � Task u | iTask, type u

I Literally a sequence

I Compile the task

I Retrieve all SDS values

I Ask the device to prepare (slow comm, small buffers)

I Send the task

I Wait for it to return

I Watch all linked SDSs both ways

I Relay the task value to the task itself

23

Thermostat

24

Example: Thermostat
The iTasks part

25

Example: Thermostat
The iTasks part

main :: Task ((), ())

main = enterDevice

>>= withDevice λdev�
withShared (160,220) λtargets�
withShared 420 λtemp�

updateSharedInformation "Targets" [targetUpdater] targets

||- viewSharedInformation "Current" [ViewAs targetView] temp

||- liftmTask dev (mTask targets temp)

25

Example: Thermostat
The iTasks part

main :: Task ((), ())

main = enterDevice

>>= withDevice λdev�
withShared (160,220) λtargets�
withShared 420 λtemp�

updateSharedInformation "Targets" [targetUpdater] targets

||- viewSharedInformation "Current" [ViewAs targetView] temp

||- liftmTask dev (mTask targets temp)

I Connect to the device

I Start the synchronization task

I Ask for a specification

I Wait for the specification to return

25

Example: Thermostat
The iTasks part

main :: Task ((), ())

main = enterDevice

>>= withDevice λdev�
withShared (160,220) λtargets�
withShared 420 λtemp�

updateSharedInformation "Targets" [targetUpdater] targets

||- viewSharedInformation "Current" [ViewAs targetView] temp

||- liftmTask dev (mTask targets temp)

25

Example: Thermostat
The iTasks part

main :: Task ((), ())

main = enterDevice

>>= withDevice λdev�
withShared (160,220) λtargets�
withShared 420 λtemp�

updateSharedInformation "Targets" [targetUpdater] targets

||- viewSharedInformation "Current" [ViewAs targetView] temp

||- liftmTask dev (mTask targets temp)

25

Example: Thermostat
The iTasks part

main :: Task ((), ())

main = enterDevice

>>= withDevice λdev�
withShared (160,220) λtargets�
withShared 420 λtemp�

updateSharedInformation "Targets" [targetUpdater] targets

||- viewSharedInformation "Current" [ViewAs targetView] temp

||- liftmTask dev (mTask targets temp)

I Compile the task

I Send the task

I Wait for acknowledgement

I Synchronize lifted SDSs

25

Example: Thermostat
The IOT part

26

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

26

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

26

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

26

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

26

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

26

Example: Thermostat
The IOT part

27

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

27

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

27

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

27

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

27

Example: Thermostat
The IOT part

mTask targetShare tempShare =

DHT DHTPIN DHT22 λdht�
liftsds λtarget = targetShare In
liftsds λtemp = tempShare In
{main

= ever (temperature dht >>∼. setSds temp >>|. delay (lit 2000))

.&&. ever (getSds temp .&&. getSds target >>∼. tupopen (temp, target)�λv�
writeD FANPIN (temp <. second target)

.&&. writeD HEATPIN (temp >. first target)

)}

27

Seminar

I Questions?

I Write your own mTask applications

I Use Cloogle

I Download the material https://cloo.gl/ODY4

28

https://cloo.gl/ODY4

Seminar

I Questions?

I Write your own mTask applications

I Use Cloogle

I Download the material https://cloo.gl/ODY4

28

https://cloo.gl/ODY4

Seminar

I Questions?

I Write your own mTask applications

I Use Cloogle

I Download the material https://cloo.gl/ODY4

28

https://cloo.gl/ODY4

Seminar

I Questions?

I Write your own mTask applications

I Use Cloogle

I Download the material https://cloo.gl/ODY4

28

https://cloo.gl/ODY4

Future work

I Exceptions/interrupts

I Event based rewriting

I Unified peripheral interface

I Remote monad

I . . .

I Collaborate?

29

Future work

I Exceptions/interrupts

I Event based rewriting

I Unified peripheral interface

I Remote monad

I . . .

I Collaborate?

29

Future work

I Exceptions/interrupts

I Event based rewriting

I Unified peripheral interface

I Remote monad

I . . .

I Collaborate?

29

Future work

I Exceptions/interrupts

I Event based rewriting

I Unified peripheral interface

I Remote monad

I . . .

I Collaborate?

29

Future work

I Exceptions/interrupts

I Event based rewriting

I Unified peripheral interface

I Remote monad

I . . .

I Collaborate?

29

Future work

I Exceptions/interrupts

I Event based rewriting

I Unified peripheral interface

I Remote monad

I . . .

I Collaborate?

29

	TOP
	iTasks
	mTask
	Architecture
	Thermostat

