m Task

Mart Lubbers & Pieter Koopman

{mart,pieter}@cs.ru.nl

Radboud University § %’

MiNe s

17th June 2019

Schedule

TOP

iTasks
mTask
Architecture

Thermostat

Task Oriented Programming (TOP)

Concept
Coordinate collaboration between people and machines to reach common goal.

Task Oriented Programming (TOP)

Concept
Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:
» Basic tasks: input/output (e.g. web editors)
» Composition: sequential, parallel

» Communication: task results, shared data

Task Oriented Programming (TOP)

Concept

Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:
» Basic tasks: input/output (e.g. web editors)
» Composition: sequential, parallel

» Communication: task results, shared data

Implementation

iTasks Generates a multi-user web application from the TOP specification to
do the work.

Task Oriented Programming (TOP)

Concept

Coordinate collaboration between people and machines to reach common goal.

Components

Declarative paradigm:
» Basic tasks: input/output (e.g. web editors)
» Composition: sequential, parallel

» Communication: task results, shared data

Implementations
iTasks Generates a multi-user web application from the TOP specification to
do the work.

TOP Formally calculus for tasks including operational semantics.
mTask TOP language and ecosystem for microcontrollers.

Tasks

» Model collaboration and interaction

Tasks

» Model collaboration and interaction

» Represents the actual work

Tasks

» Model collaboration and interaction
» Represents the actual work

» Observable value during evaluation

Tasks

» Model collaboration and interaction
» Represents the actual work
» Observable value during evaluation

» Task can emit no value

Model collaboration and interaction
Represents the actual work
Observable value during evaluation
Task can emit no value

Event based rewriting

Model collaboration and interaction
Represents the actual work
Observable value during evaluation
Task can emit no value

Event based rewriting

Automatically divide up work in slices:

Model collaboration and interaction
Represents the actual work
Observable value during evaluation
Task can emit no value

Event based rewriting

Automatically divide up work in slices:

{i,m}Tasks use an optional stability to model side effects:

Model collaboration and interaction
Represents the actual work
Observable value during evaluation
Task can emit no value

Event based rewriting

Automatically divide up work in slices:

{i,m}Tasks use an optional stability to model side effects:

Model collaboration and interaction
Represents the actual work
Observable value during evaluation
Task can emit no value

Event based rewriting

Automatically divide up work in slices:

{i,m}Tasks use an optional stability to model side effects:

NoValue +—— Unstable —— Stable

Shared Data Sources

» Share data between tasks

Shared Data Sources

» Share data between tasks
» Models — possibly impure — data

Shared Data Sources

» Share data between tasks
» Models — possibly impure — data
> Files
» Memory
» Randomness
» Introspection in the host
> Time

Shared Data Sources

» Share data between tasks
» Models — possibly impure — data
> Files
» Memory
» Randomness
» Introspection in the host
> Time

P> Lean and mean publish subscribe system

i Tasks

What is iTasks

» DSL in Clean

What is iTasks

» DSL in Clean
» TOP for the web

What is iTasks

» DSL in Clean

» TOP for the web
» Heavily depends on:

What is iTasks

» DSL in Clean

» TOP for the web
» Heavily depends on:
> Polytypic functions (generics)

What is iTasks

» DSL in Clean

» TOP for the web
» Heavily depends on:

> Polytypic functions (generics)
» Dynamic typing (dynamics)

What is iTasks

» DSL in Clean

» TOP for the web
» Heavily depends on:

> Polytypic functions (generics)
» Dynamic typing (dynamics)

» Generates a multi-user web application from the specification

What is iTasks

v

DSL in Clean

» TOP for the web
Heavily depends on:

> Polytypic functions (generics)
» Dynamic typing (dynamics)

v

» Generates a multi-user web application from the specification

v

Support for distributed operation

What is iTasks

v

DSL in Clean

» TOP for the web
Heavily depends on:

> Polytypic functions (generics)
» Dynamic typing (dynamics)

v

» Generates a multi-user web application from the specification
» Support for distributed operation
» Limited support for peripherals

Basic Tasks

return :: a — Task a | iTask a

enterInformation :: d [EnterOption m]
updateInformation :: d [UpdateOption m m] m — Task m | toPrompt d & iTask m
viewInformation :: d [ViewOption m]

:: ViewOption a =dv:
| Jv:
:: EnterOption a =dv:
| Jv:

:: UpdateOption a b

ViewAs (a— v) & iTask v
ViewUsing (a — v) (Editor v) & iTask v
EnterAs v - a) & iTask v

EnterUsing (v — a) (Editor v) & iTask v

=dv: UpdateAs (a—v) (av - b) & iTask v
| 3v: UpdateUsing (a — v) (a v — b) (Editor v) & iTask v

— Task m | toPrompt d & iTask m

m — Task m | toPrompt d & iTask m

Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" [] NoValue <—— Unstable — Stable
>>= viewInformation "Hello" []
>>= return
Enter details
Name* @

Age*: ®

Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" [] NoValue <—— Unstable — Stable
>>= viewInformation "Hello" []
>>= return
Enter details
Name* frobnicator @

Age*: @

Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" [] NoValue <—— Unstable — Stable
>>= viewInformation "Hello" []
>>= return
Enter details
Name* frobnicater @

T a2 @

Continue

Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

personTask = enterInformation "Enter details" []
>>= viewInformation "Hello" []
>>= return

Hello

Name frobnicator

Age 42

NoValue <—— Unstable — Stable

Continue

Example Task

:: Person = {name :: String, age :: Int}
derive class iTask Person

personTask :: Task Person

— —_—
personTask = enterInformation "Enter details" [] NoValue Unstable Stable

>>= viewInformation "Hello" []
>>= return

Combinators

Parallel Combinators

(-&&-) infixr 4 :: (Task a) (Task b) — Task (a,b) | iTask a & iTask b
-1l) infixl 3 :: (Task a) (Task b) — Task a | iTask a & iTask b
C I1-) infixr 3 :: (Task a) (Task b) — Task b | iTask a & iTask b
(=11-) infixr 3 :: (Task a) (Task a) — Task a | iTask a

10

Combinators

Parallel Combinators

t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

10

Combinators

Parallel Combinators

t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

Left

<>

Right

<>

10

Continue

Combinators

Parallel Combinators

t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

Left

¥

Right

>

42

€

10

Continue

Combinators

Parallel Combinators

t :: Task Int
t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

Result

42

10

Combinators

Parallel Combinators

t :: Task Int

t = enterInformation "Left" [] -||- enterInformation "Right []
>>= viewInformation "Result" []

t :: Task (Int, Int)

t = enterInformation "Left" [] -&&- enterInformation "Right []
>>= viewInformation "Result" []

10

Combinators

Parallel Combinators

t :: Task (Int, Int)
t = enterInformation "Left" [] -&&- enterInformation "Right []
>>= viewInformation "Result" []

Left

42

Right

10

Continue
P

Combinators

Parallel Combinators

t :: Task (Int, Int)
t = enterInformation "Left" [] -&&- enterInformation "Right []
>>= viewInformation "Result" []

Left

42

Right

37|

10

Continue |

11

Combinators

Sequential

(>>+) infixl 1 :: (Task a) [TaskCont a (Task b)] — Task b | iTask a & iTask b
:: TaskCont a b

= OnValue ((TaskValue a) — Maybe b)

| OnAction Action ((TaskValue a) — Maybe b)

:: Action = Action String //button

11

Combinators

Sequential

11

always
never
hasValue
ifStable
ifUnstable
ifValue
ifCond

withoutValue ::

withValue
withStable

: b

: b
ro(a -
:: (@ — b)
r(a -
:: (@ —» Bool) (a — b)
:: Bool b

b)

b)

(Maybe b)

:: (@ — Maybe b)
:: (a — Maybe b)
withUnstable ::

(a — Maybe b)

(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue
(TaskValue

a)
a)
a)
a)
a)
a)
a)
a)
a)
a)
a)

R A A A

Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b
Maybe b

Combinators

Sequential

palindrome :: Task (Maybe String)
palindrome = enterInformation "Enter a palindrome" []
>>+ [OnAction (Action "Ok") (ifValue palindrome (\v — return (Just v)))
, OnAction (Action "Cancel") (always (return Nothing))]
>>= viewInformation "Result is:" []
where
palindrome s = s == reverse s

11

Combinators

Sequential

palindrome :: Task (Maybe String)
palindrome = enterInformation "Enter a palindrome" []
>>+ [OnAction (Action "Ok") (ifValue palindrome (\v — return (Just v)))
, OnAction (Action "Cancel") (always (return Nothing))]
>>= viewInformation "Result is:" []
where
palindrome s = s == reverse s

Enter a palindrome

lego|

Ok | Cancel
11

Combinators

Sequential

palindrome :: Task (Maybe String)
palindrome = enterInformation "Enter a palindrome" []
>>+ [OnAction (Action "Ok") (ifValue palindrome (\v — return (Just v)))
, OnAction (Action "Cancel") (always (return Nothing))]
>>= viewInformation "Result is:" []
where
palindrome s = s == reverse s

Enter a palindrome

legovogel

Ok | Cancel
11

Combinators

Sequential

palindrome :: Task (Maybe String)
palindrome = enterInformation "Enter a palindrome" []
>>+ [OnAction (Action "Ok") (ifValue palindrome (\v — return (Just v)))
, OnAction (Action "Cancel") (always (return Nothing))]
>>= viewInformation "Result is:" []
where
palindrome s = s == reverse s

Resultis:

legovogel

11

Combinators

Derived Sequential Combinators

(>>=) infixl 1 :: (Task a) (a — Task b) — Task b | iTask a & iTask b
>>1) infixl 2 :: (Task a) (a2 — Task b) — Task b | iTask a & iTask b
(>>-) infixl 1 :: (Task a) (a — Task b) — Task b | iTask a & iTask b
¢-1) infixl 1

> infixl 1 :: (Task a) (a2 — Task b) — Task b | iTask a & iTask b
(>>7) infixl 1 :: (Task a) (Task b) — Task a| iTask a & iTask b

sequence :: [Task a]l — Task [a] | iTask a

12

SDSs

Defining SDSs

sharedStore
withShared

13

:: String a — SimpleSDSLens a | JSONEncode{|*|} a & JSONDecode{|*|} a & TC a
:: b ((SimpleSDSLens b) — Task a) — Task a | iTask a & iTask b

SDSs

Access Tasks

get :: (sds) aw) — Task a | iTask a & Readable sds & TC w

set :: a (sds) ra) — Task a | iTask a & TC r & Writeable sds

upd :: (r - w) (sds) r w) — Task w | iTask r & iTask w & RWShared sds
watch :: (sds () r w) — Task r | iTask r & TC w & Readable, Registrable sds

14

SDSs

Shared Editors

15

updateSharedInformation :: d [UpdateOption r w] (sds) r w) — Taskr | ...

viewSharedInformation :: d [ViewOption r]

sharedUpdate :: Task Int
sharedUpdate = withShared 42 AsharedInt—
updateSharedInformation () [] sharedInt
-| |- updateSharedInformation () [] sharedInt

(sds O rw) — Taskr | ...

Example SDS usage

shareTask :: Task Int
shareTask = withShared 42 \si—
updateSharedInformation "Updater" [] si
-|| viewSharedInformation "Viewer" [] si

Updater

42

Viewer
42

16

Continue

Example SDS usage

shareTask :: Task Int
shareTask = withShared 42 \si—
updateSharedInformation "Updater" [] si
-|| viewSharedInformation "Viewer" [] si

Updater

37a

Viewer
42

16

Example SDS usage

shareTask :: Task Int
shareTask = withShared 42 \si—
updateSharedInformation "Updater" [] si
-|| viewSharedInformation "Viewer" [] si

Updater

37

Viewer
37

16

Continue

m Task

mTask design

» Brings TOP to the IOT

18

mTask design

» Brings TOP to the IOT
» Tasks are intuitive for 10T

18

mTask design

» Brings TOP to the IOT
» Tasks are intuitive for 10T
» TOP abstractions, |IOT needs abstraction

18

mTask design

18

» Brings TOP to the IOT

» Tasks are intuitive for IOT

» TOP abstractions, |IOT needs abstraction
» Class based shallow EDSL

mTask design

» Brings TOP to the IOT

» Tasks are intuitive for IOT

» TOP abstractions, |IOT needs abstraction
» Class based shallow EDSL

» Embedded in Clean

18

mTask design

» Brings TOP to the IOT

» Tasks are intuitive for IOT

» TOP abstractions, |IOT needs abstraction
» Class based shallow EDSL

» Embedded in Clean

>

Integration with iTasks

18

mTask design

18

vVvvyVvVvVvyyvyy

Brings TOP to the IOT

Tasks are intuitive for IOT

TOP abstractions, IOT needs abstraction
Class based shallow EDSL

Embedded in Clean

Integration with iTasks
Multiple backends:

mTask design

18

vVvvyVvVvVvyyvyy

Brings TOP to the IOT

Tasks are intuitive for IOT

TOP abstractions, IOT needs abstraction
Class based shallow EDSL

Embedded in Clean

Integration with iTasks
Multiple backends:
P pretty printing

mTask design

18

vVvvyVvVvVvyyvyy

Brings TOP to the IOT

Tasks are intuitive for IOT

TOP abstractions, IOT needs abstraction
Class based shallow EDSL

Embedded in Clean

Integration with iTasks
Multiple backends:

P pretty printing

» symbolic simulation

mTask design

18

vVvvyVvVvVvyyvyy

Brings TOP to the IOT

Tasks are intuitive for IOT

TOP abstractions, IOT needs abstraction
Class based shallow EDSL

Embedded in Clean

Integration with iTasks
Multiple backends:
P pretty printing
» symbolic simulation
» resource analysis

mTask design

18

vVvvyVvVvVvyyvyy

Brings TOP to the IOT
Tasks are intuitive for IOT
TOP abstractions, IOT needs abstraction
Class based shallow EDSL
Embedded in Clean
Integration with iTasks
Multiple backends:
P pretty printing
» symbolic simulation

» resource analysis
» C code generation

mTask design

Brings TOP to the IOT

Tasks are intuitive for IOT

TOP abstractions, IOT needs abstraction
Class based shallow EDSL

Embedded in Clean

Integration with iTasks
Multiple backends:

P pretty printing

» symbolic simulation
» resource analysis
| 4
>

vVvvyVvVvVvyyvyy

C code generation
bytecode generation.

18

Architecture

Architecture

browser

i Tasks

20

Architecture

browser

i Tasks

//ask/és&/é&%

20

> Javascript
» Clean
» Shared Stores

Architecture

(G (o) G

browser

i Tasks

asky asko ask,

20

» Type driven Ul

Architecture

browser

i Tasks

20

» Synchronization
» Events

Architecture

browser
i Tasks
%_g& /és& A » Devices
» Tasks
- - - » Shared Stores

» RTS/Interpreter

i Tasks

mTasks

Auln's I VA\s ulu BVA e u(w

m Taskj m Tasko m Task,

20

Architecture

browser

i Tasks

liftmTas

i Tasks

mTasks /
/oad |/oad |/oee
m Taskj m Tasko m Task,

20

» iTasks task as mTask
task

» Rewrite task

» Synchronize task
value

Architecture

browser

i Tasks

i Tasks

itaskssds

mTasks

/N6

m Taskj

/\O00

m Tasko

/\O00

m Task,

20

» Synchronize Shared
Store

» Publish Subscribe

i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

> Literally a single parallel

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

> Literally a single parallel
» Create Channels (withShared)

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice

instance charmelSync TTYDevice

> Literally a single parallel
» Create Channels (withShared)
» Setup the connection by running the channel sync

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

> Literally a single parallel

» Create Channels (withShared)

» Setup the connection by running the channel sync
» Ask for a specification (embedded in the MTDevice)

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice

withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

Literally a single parallel
Create Channels (withShared)

>
>
» Setup the connection by running the channel sync
» Ask for a specification (embedded in the MTDevice)
>

Monitor the channels

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice

withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

Literally a single parallel
Create Channels (withShared)

Ask for a specification (embedded in the MTDevice)

>
>
» Setup the connection by running the channel sync
>
» Monitor the channels

>

Run the device task

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

Literally a single parallel

Create Channels (withShared)

Setup the connection by running the channel sync
Ask for a specification (embedded in the MTDevice)
Monitor the channels

Run the device task

VvVvvyVvyVvyYvyy

Play some trickery to clean up when the argument task is destroyed

21

i Tasks interface

Connecting a device: withDevice

:: MIDevice
withDevice :: (MIDevice — Task b) a — Task b | channelSync a & ...

instance channelSync TCPDevice
instance charmelSync TTYDevice

Literally a single parallel

Create Channels (withShared)

Setup the connection by running the channel sync

Ask for a specification (embedded in the MTDevice)

Monitor the channels

Run the device task

Play some trickery to clean up when the argument task is destroyed

vVvvyvyVvYvVYyyvyy

Close the connection when done
21

i Tasks interface
Lifting SDSs: 1iftSds

class liftsds v where

liftsds :: ((v (Sds t))—In (Shared t) (Main (MTask v u))) — Main (MTask vu) | ...

22

i Tasks interface
Lifting SDSs: 1iftSds

22

class liftsds v where
liftsds :: ((v (Sds t))—In (Shared t) (Main (MTask v u))) — Main (MTask v u) |

:: MILens sds :== Shared sds String255
lens :: ((Shared sl a) — MILens s2) | type, iTask a & RWShared s1 & RWShared s2
lens = mapReadWriteError

(Ar—0k (fromString (toByteCode{|*|} r))

, Aw r—Just <$> iTasksDecode (toString w)

) Nothing

iTasksDecode :: String — MaybeError TaskException a | type a

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

> Literally a sequence

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

> Literally a sequence
> Compile the task

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u
> Literally a sequence

> Compile the task
» Retrieve all SDS values

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

> Literally a sequence
> Compile the task
» Retrieve all SDS values

» Ask the device to prepare (slow comm, small buffers)

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

> Literally a sequence

> Compile the task

» Retrieve all SDS values

» Ask the device to prepare (slow comm, small buffers)
» Send the task

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

Literally a sequence
Compile the task

Retrieve all SDS values

Send the task

>
>
>
» Ask the device to prepare (slow comm, small buffers)
>
» Wait for it to return

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

Literally a sequence

Compile the task

Retrieve all SDS values

Ask the device to prepare (slow comm, small buffers)
Send the task

Wait for it to return

Watch all linked SDSs both ways

vVvvyVvVvVvyyypy

23

i Tasks interface
Lifting an mTask to iTasks: 1liftmTask

liftmTask :: MIDevice (Main (MTask BCInterpret uw)) — Task u | iTask, type u

Literally a sequence

Compile the task

Retrieve all SDS values

Ask the device to prepare (slow comm, small buffers)
Send the task

Wait for it to return

Watch all linked SDSs both ways

Relay the task value to the task itself

vVvVvvyVvYVvyVvyVvyy

23

Thermostat

Example: Thermostat
The iTasks part

25

Example: Thermostat
The iTasks part

main :: Task (O,)
main = enterDevice

Selecta preset Update the preset

+ | Host:

Demo device Windows Bluetooth (HC-06) TCP localhost (]

Demo device Linux Bluetooth (HC-06) Port*
8123 @

Arduino UNO

Chinese UNO

Arduino UNO with Bluetooth (ltead)

25 Continue

Example: Thermostat
The iTasks part

>>= yithDevice Adev—

» Connect to the device
» Start the synchronization task
» Ask for a specification

» Wait for the specification to return

25

Example: Thermostat
The iTasks part

withShared (160,220) Atargets—
withShared 420 \temp—

25

Example: Thermostat
The iTasks part

updateSharedInformation "Targets" [targetUpdater] targets
| |- viewSharedInformation "Current" [ViewAs targetView] temp

Targets
Low*:
16]
High*:
g 22 (]
Current

439

25

Example: Thermostat
The iTasks part

| |- 1liftmTask dev (mTask targets temp)

» Compile the task

» Send the task

» Wait for acknowledgement
» Synchronize lifted SDSs

25

Example: Thermostat
The 10T part

26

Example: Thermostat
The IOT part

mTask targetShare tempShare =
DHT DHTPIN DHT22 Adht—
liftsds \target = targetShare In
liftsds A\temp = tempShare In
{main
= ever (temperature dht >>. setSds temp >>|. delay (1it 2000))
.&&. ever (getSds temp .&&. getSds target >>. tupopen (temp, target) -Av—
writeD FANPIN (temp <. second target)
.&&. writeD HEATPIN (temp >. first target)
)}

26

Example: Thermostat
The 10T part

liftsds Atarget = targetShare In
liftsds Atemp = tempShare In

26

Example: Thermostat
The 10T part

= ever (temperature dht >>. setSds temp >>|. delay (1it 2000))

26

Example: Thermostat
The 10T part

.&&. ever (getSds temp .&&. getSds target >>. tupopen (temp, target) -Av—

26

Example: Thermostat
The 10T part

writeD FANPIN (temp <. second target)
.&&. writeD HEATPIN (temp >. first target)

26

Example: Thermostat
The 10T part

27

Example: Thermostat
The IOT part

mTask targetShare tempShare =
DHT DHTPIN DHT22 Adht—
liftsds \target = targetShare In
liftsds A\temp = tempShare In
{main
= ever (temperature dht >>. setSds temp >>|. delay (1it 2000))
.&&. ever (getSds temp .&&. getSds target >>. tupopen (temp, target) -Av—
writeD FANPIN (temp <. second target)
.&&. writeD HEATPIN (temp >. first target)
)}

27

Example: Thermostat
The 10T part

liftsds Atarget = targetShare In
liftsds Atemp = tempShare In

27

Example: Thermostat
The 10T part

= ever (temperature dht >>. setSds temp >>|. delay (1it 2000))

27

Example: Thermostat
The 10T part

.&&. ever (getSds temp .&&. getSds target >>. tupopen (temp, target) -Av—

27

Example: Thermostat
The 10T part

writeD FANPIN (temp <. second target)
.&&. writeD HEATPIN (temp >. first target)

27

Seminar

» Questions?

28

https://cloo.gl/ODY4

Seminar

» Questions?

» Write your own mTask applications

28

https://cloo.gl/ODY4

Seminar

» Questions?
» Write your own mTask applications

» Use Cloogle

28

https://cloo.gl/ODY4

Seminar

28

» Questions?

» Write your own mTask applications

» Use Cloogle

» Download the material https://cloo.gl/0DY4

https://cloo.gl/ODY4

Future work

» Exceptions/interrupts

29

Future work

» Exceptions/interrupts

> Event based rewriting

29

Future work

» Exceptions/interrupts
> Event based rewriting
» Unified peripheral interface

29

Future work

» Exceptions/interrupts
> Event based rewriting
» Unified peripheral interface

» Remote monad

29

Future work

Exceptions/interrupts

Event based rewriting

| 2
>
» Unified peripheral interface
> Remote monad

>

29

Future work

Exceptions/interrupts

Event based rewriting

| 2
>
» Unified peripheral interface
> Remote monad

>

>

Collaborate?

29

	TOP
	iTasks
	mTask
	Architecture
	Thermostat

