Proofs of Correctness
in Mathematics and Industry

Henk Barendregt
Radboud University
Nijmegen, The Netherlands

July 11, 2007

Abstract

Quality of a product needs verification. If the product is complex, this
verification cannot be done “by hand”, but one needs tools. How then
are those tools being checked? Eventually quality comes from a careful
specification and design methodology. Warranty is based on a mathemat-
ical proof that the design meets its specification. As mathematical proofs
become long and complex themselves, we also need a tool to verify proofs.
In order to prevent an infinite regress, this last tool must have a basic
simplicity. Indeed, mathematical assistants that help users to develop and
verify proofs are build on the current foundational logical systems that
can be described in a couple of pages.

It is expected that within a couple of decades, the use of reliable mathe-
matical assistants will be widespread and will help the human user to learn,
develop, teach, communicate, referee, and apply mathematics. Computer-
verified correctness will probably become one of the most important ap-
plications of mathematics and computer science.

Keywords: quality, design, specification, mathematical assistant, proof-
object, computer-verification

1. The quality problem

Buying a product from a craftsman requires some care. For example, in the
Stone Age an arrow, used for hunting and hence for survival, needed to be
inspected for its sharpness and proper fixation of the stone head to the wood.
Complex products of more modern times cannot be checked in such a simple way
and the idea of warranty was born: a nonsatisfactory product will be repaired
or replaced, or else you get your money back. This puts the responsibility for
quality on the shoulders of the manufacturer, who has to test the product before
selling. In contemporary IT products, however, testing for proper functioning
in general becomes impossible. If we have an array of 17 x 17 switches in a
device, the number of possible positions is 217% — 9289 1087, more than the
estimated number of elementary particles in the universe. Modern chips have
billions of switches on them, hence a state space of a size that is truly dwarfing
astronomical numbers. Therefore, in most cases, simple-minded testing is out

of the question because the required time would surpass by far the lifetime
expectancy of the universe. As these chips are used in strategic applications,
like airplanes, medical equipment, and banking systems, there is a problem with
how to warrant correct functioning.

Therefore, the need for special attention to the quality of complex products
is obvious, both from a user’s point of view and that of a producer. This concern
is not just academic. In 1994 the computational number theorist T. R. Nicely
discovered by chance a bug' in a widely distributed Pentium chip. After an
initial denial, the manufacturer eventually had to publicly announce a recall,
replacement and destruction of the flawed chip with a budgeted cost of US $475
Million.

Fortunately, mathematics has found a way to handle within a finite amount
of time a supra-astronomical number of cases, in fact an infinity of them. The
notion of proof provides a way to handle all possible cases with certainty. The
notion of mathematical induction is one proof method that can deal with an
infinity of cases: If a property P is valid for the first natural number 0 (or if
you prefer 1) and if validity of P for n implies that for n + 1, then P is valid
for all natural numbers. For example, for all n one has

Zn: k? = én(n +1)(2n+1). P(n)
k=0

This can be proved by showing it for n = 0; and then showing that if P(n)
holds, then also P(n+1). Indeed P(0) holds: 22:0 k% = 0. If P(n) holds, then

n+1

YK = ZkQ) + (n+1)?
k=0

k=0

n(n+1)(2n +1) + (n+1)?

(n+1)(n+2)(2n+3),

D= D= /N

hence P(n + 1). Therefore P(n) holds for all natural numbers n.

Another method to prove statements valid for an infinite number of in-
stances is to use symbolic rewriting: From the usual properties of addition and
multiplication over the natural numbers (proved by induction), one can derive
equationally that (z + 1)(z — 1) = 2% — 1, for all instances of .

Proofs have been for more than two millennia the essence of mathematics.
For more than two decades, proofs have become essential for warranting quality
of complex IT products. Moreover, by the end of the twentieth century, proofs
in mathematics have become highly complex. Three results deserve mention:
the Four Color Theorem, the Classification of the Finite Simple Groups and
the correctness of the Kepler Conjecture (about optimal packing of equal three-
dimensional spheres). Part of the complexity of these proofs is that they rely

Tt took Dr. Nicely several months to realize that the inconsistency he noted in some of his
output was not due to his algorithms, but caused by the (microcode on the) chip. See [Ede97]
for a description of the mathematics behind the error.

on large computations by a computer (involving up to a billion cases). A new
technology for showing correctness has emerged: automated verification of large
proofs.

Two methodological problems arise. (1) How do proofs in mathematics
relate to the physical world of processors and other products? (2) How can we
be sure that complex proofs are correct? The first question will be addressed in
the next section, and the second in the following section. Finally the technology
is predicted to have a major impact on the way mathematics will be done in
the future.

2. Specification, design, and proofs of correctness

The Rationality Square

The ideas in this section come from [Wup98] and make explicit what is known
intuitively by designers of systems that use proofs. The first thing to realize
is that if we want quality of a product, then we need to specify what we want
as its behavior. Both the product and its (desired) behavior are in “reality”,
whereas the specification is written in some precise language. Then we make a
design with the intention to realize it as the intended product. Also the design
is a formal (mathematical) object. If one can prove that the designed object
satisfies the formal specification, then it is expected that the realization has the
desired behavior, see Fig. 1. For this it is necessary that the informal (desired)
behavior and the specification are close to each other and can be inspected in
a clearly understandable way. The same holds for the design and realization.
Then the role of proofs is in its place: They do not apply to an object and
desired behavior in reality but to a mathematical descriptions of these.

proof
DEsIGN SPECIFICATION
realization requirement
Probpuct BEHAVIOR
warranty

Figure 1: Wupper’s rationality square

In this setup, the specification language should be close enough to the in-
formal specification of the desired behavior. Similarly, the technology of re-
alization should also be reliable. The latter again may depend on tools that
are constructed component wise and realize some design (e.g., silicon compilers
that take as input the design of a chip and have as output the instructions to
realize them). Hence, the rationality square may have to be used in an earlier
phase.

This raises, however, two questions. Proofs should be based on some axioms.
Which ones? Moreover, how do we know that provability of a formal (mathe-
matical) property implies that we get what we want? The answers to these
questions come together. The proofs are based on some axioms that hold for
the objects of which the product is composed. Based on the empirical facts
that the axioms hold, the quality of the realized product will follow.

Products as Chinese Boxes of Components

Now we need to enter some of the details of how the languages for the design and
specification of the products should look. The intuitive idea is that a complex
product consists of components by, . .. ,bx put together in a specific way yielding
F®)(by, ... by). The superscript ‘(k)’ indicates the number of arguments that
F needs. The components are constructed in a similar way, until one hits the
basic components Og, O1, ... that no longer are composed. Think of a playing
music installation B. It consists of a CD, CD-player, amplifier, boxes, wires
and an electric outlet, all put together in the right way. So

B=F® (CD,CD-player,amplifyer,boxes,wires,outlet),

where F(9) is the action that makes the right connections. Similarly the ampli-
fier and other components can be described as a composition of their parts. A
convenient way to depict this idea in general is the so-called Chinese bozx, see
Fig. 2. This is a box with a lid. After opening the lid one finds a (finite) set of
“neatly arranged” boxes that either are open and contain a basic object or are
again other Chinese boxes (with lid). Eventually one will find something in a
decreasing chain of boxes. This corresponds to the component-wise construc-
tion of anything, in particular of hardware, but also of software?. It is easy to
construct a grammar for expressions denoting these Chinese boxes. The basic
objects are denoted by og, 01, Then there are “constructors”, that turn ex-
pressions into new expressions. Each constructor has an “’rity”, that indicates
how many arguments it has. There may be unary,

2In order that the sketched design method works well for software, it is preferable to have
declarative software, i.e., in the functional or logic programming style, in particular without
side effects.

b1 bo (b3)
® 02 bao
byg1| * |baag ®
b43 174.45 b4.46 : b4.48
bas bas bs

Figure 2: Partially opened Chinese box

binary, ternary, and so on constructors. Such constructors are denoted by

f(gk)ufl(k)v)

where k denotes the arity of the constructor. If by, ..., by are expressions and
fi(k) is a constructor of arity k, then

F By,)

is an expression. A precise grammar for such expressions is as follows.
2.1. DEFINITION. (i) Consider the following alphabet

S = {o; |ieNyU{f® |i,keN}U{, ()}

(ii) Expressions £ form the smallest set of words over 3 satisfying
0; €E;
bi,...be€€ = fP(by,. . by €L
An example of a fully specified expression is
12 (00, £ (01,02, 00)).
The partially opened Chinese box in Fig. 2 can be denoted by
£ (b, by, 01, ba, bs),

where

by = f2(6) (02,b4,2,b4,3,b1,4,b45,b46),

(12)
bia = fy (bsa1,03,b443,04,b435,b146,05,

ba,4,8, 06,07, 08,09),
and the other by still have to be specified.

2.2. DEFINITION. A design is an expression be €.

Specification and Correctness of Design

Following the rationality square one now can explain the role of mathematical
proofs in industrial design.

Some mathematical language is needed to state in a precise way the require-
ments of the products. We suppose that we have such a specification language
L, in which the expressions in £ are terms. We will not enter into the details
of such a language, but we will mention that for I'T products it often is con-
venient to be able to express relationships between the states before and after
the execution of a command or to express temporal relationships. Temporal
statements include “eventually the machine halts” or “there will be always a
later moment in which the system receives input”. See [MP92], [AO97], [HJ98]
and [BPS01] for possible specification languages, notably for reactive systems,
and [Mor01] for a general introduction to the syntax and semantics of logical
languages used in computer science.

2.3. DEFINITION. A specification is a unary formula® S(-) in L.

Suppose we have the specification S and a candidate design b as given. The
task is to prove in a mathematical way S(b), i.e., that S holds of b. We did
not yet discuss any axioms, or a way to warrant that the proved property is
relevant. For this we need the following.

2.4. DEFINITION. A walid interpretation for £ consists of the following.
(i) For basic component expressions o there is an interpretation O in the
“reality” of products.
(ii) For constructors f(k)7 there is a way to put together k products p1, ... ,pk
to form F*) (p1,- - \PK)-
(iii) By (i) and (ii) all designs have a realization. For example the design
1(2)(00, él)(ol, 02,00)) is interpreted as Fl(Q)(OO, Fél)(Ol, O2,0y)).
(iv) There are axioms of the form

P(e)
Vay.oxk [Qzy, .., xk) = R(FP (... ,21)))

Here P,Q, and R are formulas (formal statements) about designs: P and R
about one design and () about k£ designs.

(v) The formulas of £ have a physical interpretation.

(vi) By the laws of physics, it is known that the interpretation given by (v)
of the axioms holds for the interpretation described in the basic components
and constructors. The soundness of logic then implies that statements proved
from the axioms will also hold after interpretation.

This all may sound a bit complex, but the idea is simple and can be found
in any book on predicate logic and its semantics, see [Mor01], [Hod97]. Proving
starts from the axioms using logical steps; validity of the axioms and soundness
of logic implies that the proved formulas are also valid.

3Better: A formula S = S(z) = S(-) with one free variable z in S.

The industrial task of constructing a product with a desired behavior can
be fulfilled as follows.

2.5. DESIGN METHOD (I). (i) Find a language £ with a valid interpretation.
(ii) Formulate a specification S, such that the desired behavior becomes the
interpretation of S.
(iii) Construct an expression b, intended to solve the task.
(iv) Prove S(b) from the azioms of the interpretation mentioned in (i).
(v) The realization of b is the required product.

Of course the last step of realizing designs may be nontrivial. For example
transforming a chip design to an actual chip is an industry by itself. But that
is not the concern now. Moreover, such a realization process can be performed
by a tool that is the outcome of a similar specification-design-proof procedure.

The needed proofs have to be given from the axioms in the interpretation.
Design method I builds up products from “scratch”. In order not to reinvent
the wheel all the time, one can base new products on previously designed ones.

2.6. DESIGN METHOD (II). Suppose one wants to construct b satisfying S.
(i) Find subspecifications Si,...,Sk and a constructor %) such that

Si(z1) & ... & Splzr) = S(F® (xy,... 1))
(ii) Find (on-the-shelf) designs by, ... by such that for 1 < i <k, one has
Si(b;).
(iii) Then the design b= f*)(by,... by) solves the task.

Again this is done in a context of a language £ with a valid interpretation and
the proofs are from the axioms in the interpretation.

After having explained proofs of correctness, the correctness of proofs be-
comes an issue. In an actual nontrivial industrial design, a software system
controlling metro-trains in Paris without a driver, one needed to prove about
25,000 propositions in order to get reliability. These proofs were provided by a
theorem prover. Derivation rules were added to enhance the proving power of
the system. It turned out that if no care was taken, 2% to 5% of these added
derivation rules were flawed and led to incorrect statements, see [Abr98|. Next
section deals with the problem of getting proofs right.

3. Correctness of proofs

Methodology

Both in computer science and in mathematics proofs can become large. In
computer science this is the case because the proofs that products satisfy certain
specifications, as explained earlier, may depend on a large number of cases that
need to be analyzed. In mathematics, large proofs occur as well, in this case
because of the depth of the subject. The example of the Four Color Theorem

in which billions of cases need to be checked is well known. Then there is the
proof of the classification theorem for simple finite groups needing thousands
of pages (in the usual style of informal rigor).

That there are long proofs of short statements is not an accident, but a
consequence of a famous undecidability result.

3.1. THEOREM (Turing). Provability in predicate logic is undecidable.
PROOF. See, for example, [Dav04]. m

3.2. COROLLARY. For predicate logic, there is a number n and a theorem of
length n, with the smallest proof of length at least n™.

PROOF. Suppose that for every n theorems of length at least n, a proof of
length <n™ exists. Then checking all possible proofs of such length provides a
decision method for theoremhood, contradicting the undecidablity result. m

Of course this does not imply that there are interesting theorems with essen-
tially long proofs. The question now arises, how one can verify long proofs and
large numbers of shorter ones? This question is both of importance for pure
mathematics and for the industrial applications mentioned before.

The answer is that the state of the foundations of mathematics is such that
proofs can be written in full detail, making it possible for a computer to check
their correctness. Currently it still requires considerable effort to make such
“formalizations” of proofs, but there is good hope that in the future this will
become easier. Anyway, industrial design, as explained earlier, already has
proved the viability and value of formal proofs. For example, the Itanium, a
successor of the Pentium chip, has a provably correct arithmetical unit; see
[GHH™02].

Still one may wonder how one can assure the correctness of mathematical
proofs via machine verification, if such proofs need to assure the correctness of
machines. It seems that there is here a vicious circle of the type chicken-egg.
The principal founder of machine verification of formalized proofs is the Dutch
mathematician N. G. de Bruijn?; see [dB70]. He emphasized the following cri-
terion for reliable automated proof-checkers: Their programs must be small, so
small that a human can (easily) verify the code by hand. In the next subsection,
we will explain why it is possible to satisfy this so-called de Bruijn criterion.

Foundations of Mathematics

The reason that fully formalized proofs are possible is that for all mathematical
activities, there is a solid foundation that has been laid in a precise formal
system. The reason that automated proof-checkers exist that satisfy the de
Bruijn criterion is that these formal systems are simple enough, allowing a
logician to write them down from memory in a couple of pages.

*McCarthy described machine proof-checking some years earlier, see [McC62], but did not
come up with a formal system that had a sufficiently powerful and convenient implementation.

Mathematics is created by three mental activities: structuring, computing
and reasoning. It is an art and craftsmanship “with a power, precision and cer-
tainty, that is unequalled elsewhere in life”. The three activities, respectively,
provide definitions and structures, algorithms and computations, proofs and
theorems. These activities are taken as a subject of study by themselves, yield-
ing ontology (consisting either of set, type, or category theory), computability
theory and logic.

Activity Tools Results Meta study
Structuring | Axioms Structures | Ontology
Definitions

Computing | Algorithms | Answers Computability®

Reasoning | Proofs Theorems | Logic

Figure 3: Mathematical activity: tools, results, and meta study

During the history of mathematics these activities enjoyed attention in different
degrees. Mathematics started with the structures of the numbers and planar
geometry. Babylonian—Chinese—Egyptian mathematics was mainly occupied
with computing. In ancient Greek mathematics, reasoning was introduced.
These two activities came together in the work of Archimedes, al-Kwarizmi,
and Newton. For a long time only occasional extensions of the number sys-
tems was all that was done as structuring activity. The art of defining more
and more structures started in the nineteenth century with the introduction of
groups by Galois and non-Euclidean spaces by Lobachevsky and Bolyai. Then
mathematics flourished as never before.

Logic

The quest for finding a foundation for the three activities started with Aristotle.
This search for “foundation” does not imply that one was uncertain how to
prove theorems. Plato had already emphasized that any human being of normal
intelligence had the capacity to reason that was required for mathematics. What
Aristotle wanted was a survey and an understanding of that capacity. He started
the quest for logic. At the same time Aristotle introduced the “synthetic way”
of introducing new structures: the axiomatic method. Mathematics consists of
concepts and of valid statements. Concepts can be defined from other concepts.
Valid statements can be proved from other such statements. To prevent an
infinite regress, one had to start somewhere. For concepts one starts with the
primitive notions and for valid statements with the axioms. Not long after this
description, Euclid described geometry using the axiomatic method in a way
that was only improved by Hilbert, more than 2000 years later. Also Hilbert
gave the right view on the axiomatic method: The axioms form an implicit
definition of the primitive notions.

SFrom: The man without qualities, R. Musil, Rohwolt.

SFormerly called “Recursion Theory”.

Frege completed the quest of Aristotle by giving a precise description of
predicate logic. Godel proved that his system was complete, i.e., sufficiently
strong to derive all valid statements within a given axiomatic system. Brouwer
and Heyting refined predicate logic into the so-called intuitionistic version. In
their system, one can make a distinction between weak existence (“there exists
a solution, but it is not clear how to find it”) and constructive one (“there exists
a solution and from the proof of this fact one can construct it”), see [vDO04].

Ontology

An early contribution to ontology came from Descartes, who introduced what
is now called Cartesian products (pairs or more generally tuples of entities),
thereby relating geometrical structures to arithmetical (in the sense of algebraic)
ones. When in the nineteenth century, there was a need for systematic ontology,
Cantor introduced set theory in which sets are the fundamental building-blocks
of mathematics. His system turned out to be inconsistent, but Zermelo and
Fraenkel removed the inconsistency and improved the theory so that it could
act as an ontological foundation for large parts of mathematics, see [Hal74].

Computability

As soon as the set of consequences of an axiom system had become a precise
mathematical object, results about this collection started to appear. From
the work of Godel, it followed that the axioms of arithmetic are essentially in-
complete (for any consistent extension of arithmetic, there is an independent
statement A, that is neither provable nor refutable). An important part of the
reasoning of Godel was that the notion “p is a proof of A” is after coding a com-
putable relation. Turing showed that predicate logic is undecidable (it cannot
be predicted by machine whether a given statement can be derived or not). To
prove undecidability results, the notion of computation needed to be formal-
ized. To this end Church came with a system of lambda-calculus, see [Bar92],
later leading to the notion of functional programming with languages such as
Lisp, ML, and Haskell. Turing came with the notion of the Turing machine,
later leading to imperative programming with languages such as Fortran and
C, and showed that it gave the same notion of computability as Church’s. If
we assume the so-called Church—Turing thesis that humans and machines can
compute the same class of mathematical functions, something that most logi-
cians and computer scientists are willing to do, then it follows that provability
in predicate logic is also undecidable by humans.

Mechanical Proof Verification

As soon as logic was fully described, one started to formalize mathematics. In
this endeavor Frege was unfortunate enough to base mathematics on the incon-
sistent version of Cantorian set theory. Then Russell and Whitehead came with
an alternative ontology, type theory, and started to formalize very elementary
parts of mathematics. In type theory, that currently exists in various forms,
functions are the basic elements of mathematics and the types form a way to

10

classify these. The formal development of mathematics, initiated by Russell
and Whitehead, lay at the basis of the theoretical results of Godel and Tur-
ing. On the other hand, for practical applications, the formal proofs become so
elaborate, that it is almost undoable for a human to produce them, let alone to
check that they are correct.

It was realized by J. McCarthy and independently by N.G. de Bruijn that
this verification should not be done by humans but by machines. The formal
systems describing logic, ontology, and computability have an amazingly small
number of axioms and rules. This makes it possible to construct relatively
small mathematical assistants. These computer systems help the mathemati-
cian to verify whether the definitions and proofs provided by the human are
well founded and correct.

Based on an extended form of type theory de Bruijn introduced the system
AUTOMATH, see [NGdV94], in which this idea was first realized, although
somewhat painfulof thely, because of the level of detail in which the proofs
needed to be presented. Nevertheless, proof-checking by mathematical assis-
tants based on type theory is feasible and promising. For some modern versions
of type theory and assistants based on these, see [ML84], [NGdV94], [Con97],
[BGO1] and [BCO4].

Soon after the introduction of AUTOMATH, other mathematical assistants
were developed, based on different foundational systems. There is the system
MIZAR based on set theory; the system HOL(-light) based on higher order logic;
and ACLs based on the computational model “primitive recursive arithmetic”.
See [BWO05] for an introduction and references and [Bar06] for resulting differen-
ces of views in the philosophy of mathematics. To obtain a feel of the different
styles of formalization, see [Wie06].

In [GonO5] an impressive full development of the Four Color Theorem is
described. Tom Hales of the University of Pittsburgh, assisted by a group of
computer scientists specializing in formalized proof-verification, is well on his
way to verify his proof of the Kepler conjecture [Hal05], see [Hal]. The Anals of
Mathematics published that proof and considered adding (but finally did not
do it) a proviso, that the referees became exhausted (after 5 years) of checking
all details by hand therefore the full correctness depends on a (perhaps not so
reliable) computer computation. If Hales and his group succeed in formalizing
and verifying the entire proof, then that will be of a reliability higher than most
mathematical proofs, one third of which is estimated to contain real errors, not
just typos’.

The possibility of formalizing mathematics is not in contradiction with
Godel’s theorem, which only states the limitations of the axiomatic method,
informal or formal alike. The proof of Gédel’s incompleteness theorem does
in fact heavily rely on the fact that proof-checking is decidable and uses this
by reflecting over the notion of provability (the Godel sentence states: “This
sentence is not provable”).

One particular technology to verify that statements are valid is the use

It is interesting to note that, although informal mathematics often contains bugs, the
intuition of mathematicians is strong enough that most of these bugs usually can be repaired.

11

of model-checking. In IT applications the request “statement A can be proved
from assumptions I' (the ‘situation’)” often boils down to “A is valid in a model
A = Ar depending on I'”. (In logical notation

I'HFA & AF)ZA.

This is so because of the completeness theorem of logic and because of the fact
that the IT situation is related to models of digital hardware that are finite
by its nature.) Now, despite the usual huge size of the model, using some
cleverness the validity in several models in some industrially relevant cases is
decidable within a feasible amount of time. One of these methods uses the
so-called binary decision diagrams (BDD). Another ingredient is that universal
properties are checked via some rewriting rules, like (z + 1)(z — 1) = 2% — 1.
For an introduction to model-checkers, see [CJGP99]. For successful appli-
cations, see e.g. [Hol03]. The method of model-checking is often somewhat ad
hoc, but nevertheless important. Using “automated abstraction”, that works in
many cases, see [BGL100] and [Vaa06], the method becomes more streamlined.

4. Scaling-up through reflection

As to the question of whether fully formalized proofs are practically possible,
the opinions have been divided. Indeed, it seems too much work to work out
intuitive steps in full detail. Because of industrial pressure, however, full de-
velopments have been given for correctness of hardware and frequently used
protocols. Formalizations of substantial parts of mathematics have been lag-
ging behind.

There is a method that helps in tackling larger proofs. Suppose we want to
prove statement A. Then it helps if we can write A < B(f(t)), where ¢ belongs
to some collection X of objects, and we also can see that the truth of this is
independent of t; i.e., one has a proof Va € X.B(f(z)). Then B(f(t)), hence A.
An easy example of this was conveyed to me by A. Mostowski in 1968. Consider
the following formula as proof obligation in propositional logic:

A=pe=(peop@eop@eo@po@eo@eo@ao@e@e @)

Then A <« B(12), with B(1) = p, B(n+ 1) = (p < B(n)). By induction
on n one can show that for all natural numbers n > 1, one has B(2 x n).
Therefore, B(12) and hence A, because 2 x 6 = 12. A direct proof from the
axioms of propositonal logic would be long. Much more sophisticated examples
exist, but this is the essence of the method of reflection. It needs some form
of computational reasoning inside proofs. Therefore, the modern mathematical
assistants contain a model of computation for which equalities like 2 % 6 = 12
and much more complex ones become provable. There are two ways to do this.
One possibility is that there is a deduction rule of the form

Als)
A(t)

s —»pt.

12

This so-called Poincaré Principle should be interpreted as follows: From the
assumption A(s) and the side condition that s computationally reduces in sev-
eral steps to t according to the rewrite system R, it follows that A(t). The
alternative is that the transition from A(s) to A(t) is only allowed if s = ¢
has been proved first. These two ways of dealing with proving computational
statements can be compared with the styles of, respectively, functional and log-
ical programming. In the first style, one obtains proofs that can be recorded as
proof-objects. In the second style, these full proofs become too large to record as
one object, because computations may take giga steps. Nevertheless the proof
exists, but spread line by line over time, and one speaks about an ephemeral
proof-object.

In the technology of proof-verification, general statements are about mathe-
matical objects and algorithms, proofs show the correctness of statements and
computations, and computations are dealing with objects and proofs.

Results

The state-of-the-art of computer-verified proofs is as follows. To formalize one
page of informal mathematics, one needs four pages in a fully formalized style
and it takes about five working days to produce these four pages, see [BWO05].
It is expected that both numbers will go down. There have been formalized
several nontrivial statements, like the fundamental theorem of algebra (also in
a constructive fashion; it states that every non-constant polynomial over the
complex numbers has a root), the prime number theorem (giving an asymptotic
estimation of the number of primes below a given number), and the Jordan curve
theorem (every closed curve divides the plane in two regions that cannot be
reached without crossing this curve; on the torus surface this is not true). One
of the great success stories is the full formalization of the Four Color Theorem
by Gonthier, see [Gon05]. The original proof of this result was not completely
trustable for its correctness, as a large number of cases needed to be examined
by computer. Gonthier’s proof still needs a computer-aided computation, but
all steps have been formally verified by an assistant satisfying the de Bruijn
principle.

References

[Abrog| J.-R. Abrial. On B. In D. Bert, editor, B’98: Recent Advances
in the Development and Use of the B Method: Second Interna-
tional B Conference Montpellier, volume 1393 of LNCS, pages
1-8. Springer, 1998.

[AO9T] K. R. Apt and Ernst-Riidiger Olderog. Verification of sequential
and concurrent programs. Texts and Monographs in Computer
Science. Springer-Verlag, New York, 1997. Second edition.

[Bar92] H. P. Barendregt. Lambda calculi with types. In Handbook of

Logic in Computer Science, Vol. 2, Oxford Sci. Publ., pages 117—
309. Oxford Univ. Press, New York, 1992.

13

[BGO1]

[BWO5]

[Bar06]

[BGL*00]

[BPSO01]

[BCO4]

[CIGPYY)

[Con97]

[vDO4]

[dB70]

[Dav04]

[Ede97]

H.P. Barendregt and H. Geuvers. Proof-assistants Using Depen-
dent Type Systems. In Alan Robinson and Andrei Voronkov,
editors, Handbook of Automated Reasoning, pages 1149-1238. El-
sevier Science Publishers B.V., 2001.

H. P. Barendregt and F. Wiedijk. The challenge of computer
mathematics. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 363(1835):2351-2375, 2005.

H. P. Barendregt. Foundations of Mathematics from the Per-
spective of Computer Verification. In Mathematics, Computer
Science, Logic - A Never Ending Story. Springer Verlag, 2006.
To appear. Available at (www.cs.ru.nl/~henk/papers.html).

S. Bensalem, V. Ganesh, Y. Lakhnech, C. Mu noz, S. Owre,
H. Rue, J. Rushby, V. Rusu, H. Sadi, N. Shankar, E. Singerman,
and A. Tiwari. An overview of SAL. In C. M. Holloway, edi-
tor, LFM 2000: Fifth NASA Langley Formal Methods Workshop,
pages 187-196, 2000.

J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook
of process algebra. North-Holland Publishing Co., Amsterdam,
2001.

Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. Springer,
2004.

E. M.. Clarke Jr., O. Grumberg, and D. A. Peled. Model Checking.
MIT Press, 1999.

Robert L. Constable. The structure of Nuprl’s type theory. In
Logic of computation (Marktoberdorf, 1995), volume 157 of NATO
Adv. Sci. Inst. Ser. F Comput. Systems Sci., pages 123-155.
Springer, Berlin, 1997.

D. van Dalen. Logic and structure. Universitext. Springer-Verlag,
Berlin, fourth edition, 2004.

N. G. de Bruijn. The mathematical language AUTOMATH, its
usage, and some of its extensions. In Symposium on Automatic
Demonstration (Versailles, 1968), pages 29-61. Lecture Notes in
Mathematics, Vol. 125. Springer, Berlin, 1970.

M. Davis, editor. The undecidable. Dover Publications Inc., Mi-
neola, NY, 2004. Basic papers on undecidable propositions, un-

solvable problems and computable functions, Corrected reprint of
the 1965 original [Raven Press, Hewlett, NY].

Alan Edelman. The mathematics of the Pentium division bug.
SIAM Review, 37:54-67, 1997.

14

[Gon05]

[GHHT02]

[Hal05]

[Hal]

[Hal74]

[HJ98]

[Hod97]

[Hol03]

[MP92]

[McC62]

[ML84]

[Mor01]

[INGdV94]

[Vaa06]

G. Gonthier. A computer checked proof of the Four Colour The-
orem. Unpublished. Available from URL:
(research.microsoft.com/~gonthier/4colproof.pdf), 2005.

B. Greer, J. Harrison, G. Henry, W. Li, and P. Tang. Scientific
computing on the itanium” processor. Scientific Programming,
10(4):329-337, 2002.

T. C. Hales. A proof of the Kepler conjecture. Ann. of Math. (2),
162(3):1065-1185, 2005.

T. C. Hales. The flyspeck project fact sheet. URL: <www.math.
pitt.edu/~thales/flyspeck/index.html>.

P. R. Halmos. Naive set theory. Springer-Verlag, New York, 1974.
Reprint of the 1960 edition, Undergraduate Texts in Mathematics.

C.A.P Hoare and H. Jifeng. Unifying theories of programming.
Prenrice Hall, 1998.

Wilfrid Hodges. A shorter model theory. Cambridge University
Press, Cambridge, 1997.

G. J. Holzmann. The SPIN model checker, primer and reference
manual. Addison-Wesley, 2003.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and
Concurrent Systems: Specification. Springer, 1992.

J. McCarthy. Computer programs for checking the correctness
of mathematical proofs. In Proceedings of a Symposium in Pure
Methematics, vol. V., pages 219-227. American Mathematical So-
ciety, Providence, RI, 1962.

P. Martin-Lof. Intuitionistic type theory, volume 1 of Studies in
Proof Theory. Lecture Notes. Bibliopolis, Naples, 1984. Notes by
Giovanni Sambin.

B.-A. Mordechai. Mathematical Logic for Computer Science.
Springer, 2001.

R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer. Twenty-five
years of Automath research. In Selected papers on Automath, vol-
ume 133 of Stud. Logic Found. Math., pages 3-54. North-Holland,
Amsterdam, 1994.

F.W. Vaandrager. Does it pay off? model-based verification
and validation of embedded systems! In F.A. Karelse, edi-
tor, PROGRESS White papers 2006. STW, the Netherlands,
2006. URL: (www.cs.ru.nl/ita/publications/papers/fvaan/
whitepaper).

15

[WieO6]

[Wup98]

F. Wiedijk. The Seventeen Provers of the World, volume 3600 of
LNCS. Springer, 2006.

H. Wupper. Design as the discovery of a mathematical theorem
- What designers should know about the art of mathematics. In
Ertas et al., editor, Proc. Third Biennial World Conf. on Inte-
grated Design and Process Technology (IDPT), pages 86-94. Soc.
Des. & Proc. Sc., 1998.

16

