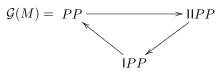
Exercises Lambda Calculus (week 5, 11.12.2013)

Exercise 1

In order to know lambda terms well, we introduce reduction. This gives a direction to equality. There is a one-step reduction \rightarrow , more-step reduction $\xrightarrow{}$ (0, 1 or more steps).


$(\lambda x.M)N \to M[x := N]$		
$N \to N$	\Rightarrow	$M \twoheadrightarrow N$
$M \twoheadrightarrow M$		
$M \twoheadrightarrow N \& N \twoheadrightarrow L$	\Rightarrow	$M \twoheadrightarrow L$
$M \twoheadrightarrow N$	\Rightarrow	$MZ \twoheadrightarrow NZ$
$M \twoheadrightarrow N$	\Rightarrow	$ZM \twoheadrightarrow NZ$
$M \twoheadrightarrow N$	\Rightarrow	$\lambda x.M \twoheadrightarrow \lambda x.N$

Examples (i)
$$|x \rightarrow x;$$

 $|x \rightarrow |x \rightarrow x;$
 $|x \rightarrow x;$
 $|x \rightarrow x.$

(ii) Given $M \in \Lambda$, write $\mathcal{G}(M)$, the graph of M, for

$$\{N \mid M \twoheadrightarrow N\}$$

with the relation \rightarrow displayed on its elements. For example let $P \equiv \lambda x. IIxx$ and $M \equiv PP$. Then

Now the exercise. Let $W \equiv \lambda xy.xyy$. Draw $\mathcal{G}(WWW)$. [Hint. This graph consists of exactly four terms.]

Exercise 2

Let $F_* \equiv \lambda mnfx.m(nf)x$ and $\mathbf{c}_n \equiv \lambda fx.f^nx$. Compute $F_* \mathbf{c}_2 \mathbf{c}_3$, $\mathbf{c}_2 \mathbf{c}_3$, $\mathbf{c}_3 \mathbf{c}_2$.

Exercise 3

Write down precisely a lambda term M such that

$$Mx = xMx.$$

Can you make it satisfy $Mx \twoheadrightarrow xMx$?