
A Two-Level Approach
towards Lean Proof-Checking

Gilles Barthe?, Mark Ruys and Henk Barendregt

Faculty of Mathematics and Informatics
University of Nijmegen, The Netherlands

email: gilles@cwi.nl,{markr,henk}@cs.kun.nl

Abstract. We present a simple and effective methodology for equational
reasoning in proof checkers. The method is based on a two-level approach
distinguishing between syntax and semantics of mathematical theories.
The method is very general and can be carried out in any type system
with inductive and oracle types. The potential of our two-level approach
is illustrated by some examples developed in Lego.

1 Introduction

The main actions in writing mathematics consist of defining, reasoning and com-
puting (symbolically; this is also called ‘equational reasoning’). Whereas defining
and reasoning are reasonably well captured by an interactive proof-developer,
the formalization of computations has caused problems. This paper studies the
possibilities of a partial automation of equational reasoning, which is from the
authors’ experience, one of the most recurrent source of problems in formalizing
mathematics using a proof-developer [5, 25]. We describe several methods using
elementary techniques from universal algebra which provides an efficient tool to
solve problems of an equational nature in any type theory with inductive types
and term-rewriting (inductive types are required for a formalization of universal
algebra, in particular for the formalization of the type of terms of a signature).

Our main goal is to solve equational problems of the form a =A b, where A
is a model of a given equational theory S = (Σ, E), a and b are (expressions for)
elements of A, and =A is the equality relation of the carrier of A. To do so, we
use two naming principles:

for satisfiability: we recast the problem a =A b in a syntactic form [[paq]]Aα =A
[[pbq]]Aα where α is an assignment and paq and pbq are two Σ-terms such that

[[paq]]Aα = a and [[pbq]]Aα = b

where [[]]Aα denotes the α-interpretation of Σ-terms into the model A. (Note
that such terms always exist and one can even find optimal terms). By the

? Current address: Department of Software Technology, CWI, Amsterdam, The
Netherlands.

soundness theorem, the latter problem follows from S ` paq .= pbq (we use
this informal notation to state that (paq, pbq) is a theorem of S). If S is
equivalent to a canonical term-rewriting system R, then the last problem
can be solved automatically by taking the R-normal forms of paq and pbq
and check whether they are equal. We internalize the whole informal process
using oracle types [7]; the rewrite system is grafted to the type theory in
such a way that the conversion rule itself is changed and checking whether
[paq] = [pbq] (the equality here is Leibniz equality) boils down to a reflexivity
test, which can be done by the proof checker.

for extensionality: often we need a proof object for statements of the form

s =A t ⇒ φ(s) =A φ(t) (1)

where s, t and φ(x) be (expressions for) elements of A. If this is done in the
way taught in books on logic (applying several times the axioms of equational
logic) a proof object for this fact becomes rather large: quadratic in the size
of the expression ‘φ’. However, using the naming principle one can solve (1)
by proving the meta-result

s =A t ⇒ [[pφq]]Aα (x:=s) =A [[pφq]]Aα (x:=t)

for all pφq. This result has a proof of fixed size.

In this paper, we shall give a detailed presentation of these methods (and some
minor variants) and demonstrate with non-trivial examples that they provide a
suitable tool for a partial automation of equational reasoning in proof-checking.
The distinctive features of our approach are:

– it applies to type systems where equality is treated axiomatically (intensional
frameworks) and with proof-objects; the only requirement is the presence of
(first-order) inductive types and so-called oracle types;

– the size of the implementation of the proof-checker is kept fairly small; the
whole process can be carried out within the proof-checker;

– the proof-checker is built upon formal systems whose meta-theory is easy to
understand.

The paper is organized as follows: in section 2, we introduce the relevant math-
ematical background for the subsequent parts of the paper. In section 3, we
specify the nature of equational reasoning and delimit the range of equational
problems whose resolution can be automated. In section 4, we discuss the possi-
ble approaches to the automation of equational reasoning and present our own
solution in terms of oracle types. In section 5, we present a preliminary imple-
mentation of the two-level approach in Lego. Large parts of the paper are of
expository nature; they have been included because (i) the material we present
has never been presented elsewhere with a view to use it for our specific purpose
(ii) the main contribution of this paper is to specify the problem and device a
methodology to solve it (but the methodology does not use any new technique).

The two-level approach was grew out from earlier work by P. Aczel and
the first author on the formalization of (universal) algebra in type theory. The
applications of universal algebra for equational reasoning were realized later by
the first author and presented at the HISC meeting in Amsterdam in March 1994
(see [5, 4]). After the completion of this work, H. Elbers and the first author have
developed further the two-level approach and provided an automatic procedure
to solve equational problems in Lego [6]. The work presented in this paper bears
some similarities with the work of the NuPrl team on reflection [11, 16], although
the specific use of naming principles to automate equational reasoning seems to
be new.

Acknowledgments Thanks to P. Aczel, H. Elbers and H. Geuvers for useful dis-
cussions on the two-level approach. Thanks to J. Harrison for his comments on
an earlier version of the draft. This work was partially supported by the ESPRIT
project ‘TYPES: Types for Programs and Proofs’.

2 Mathematical Background

In this section, we review some standard material on equational logic and term-
rewriting. During the last few years, there has been an explosion in the number of
variants of equational logic: many-sorted, order-sorted, conditional. . . We shall
only be concerned with the simplest formalism, unsorted equational logic. For
convenience, we separate the presentation in two parts; the first part is con-
cerned with syntax, equational deduction and term-rewriting. The second part
is devoted to semantics. See [10, 18] for a longer introduction to the notions
involved.

2.1 Equational Logic and Term-Rewriting

The basic notions of universal algebra are those of signature and equational
theory. As the notions are standard, we give them without any further comment.

Definition 1 – A signature is a pair Σ = (FΣ , Ar) where FΣ is a set of
function symbols and Ar : FΣ → N is the arity map.

– Let Σ be a signature. Let V be a fixed, countably infinite set of variables.
The set TΣ of Σ-terms is defined as follows:
– if x ∈ V , then x ∈ TΣ,
– if f ∈ FΣ and t1, . . . , tArf ∈ TΣ, then f(t1, . . . , tArf) ∈ TΣ.

– A map θ : TΣ → TΣ is a Σ-substitution if for every f ∈ FΣ and Σ-terms
t1, . . . , tArf we have θ(f(t1, . . . , tArf)) = f(θt1, . . . , θtArf).

– The relation ≤ is defined by t, t′ ∈ TΣ, t ≤ t′ if there exists θ such that
θt = t′. The pre-order induced by ≤ is denoted by T≤

Σ .
– The set var(s) of variables of a term s is defined inductively as follows:

– if x ∈ V , then var(x) = {x},
– var(f(t1, . . . , tArf)) =

⋃
1≤i≤n var(ti).

– if s and t are Σ-terms and u is an occurrence of s, s[u ← t] is the term
obtained by replacing the subterm of s at u by t.

Note that every (partial) map θ : V → TΣ yields a Σ-substitution in an obvious
way. We shall sometimes refer to such maps as partial substitutions. The stan-
dard terminology can be carried over to partial substitutions, so we will also talk
about partial renamings.

Equational Logic. A Σ-equation is a pair of Σ-terms (s, t), usually written as
s

.= t.

Definition 2 An equational theory is a pair S = (Σ, E) where Σ is a signature
and E is a set of Σ-equations.

The rules for equational deduction are given in the following table:

Rules for equational deduction

s
.= s Reflexivity

s
.= t

t
.= s

Symmetry

s
.= t t

.= u
s

.= u
Transitivity

s1
.= t1 . . . sn

.= tn
f(s1, . . . , sn) .= f(t1, . . . tn)

Compatibility

s
.= t

θs
.= θt

Instantiation

where θ is a substitution.

Definition 3 Let S = (Σ, E) be an equational theory. A Σ-equation s
.= t is a

theorem of S (written S ` s
.= t) if it is deducible from E using the rules for

equational deduction.

Term-Rewriting. Let Σ be a signature.

Definition 4 A Σ-rewrite rule is a pair of Σ-terms (s, t), usually written s→ t,
such that s is a non-variable term and var(t) ⊆ var(s). A Σ-rewrite system is a
set of rewrite rules.

As usual, we talk about rewrite rules and rewrite systems when there is no risk
of confusion. Note that every Σ-rewrite system R induces an equational theory
(Σ,R), simply by seeing rewrite rules as equations. By abus de notation, we
shall denote this equational theory by R.

LetR be a rewrite system and s and t be two Σ-terms. We say that s one step
R-rewrites to t (notation s →R t) if there exist an occurrence u of s, a rewrite
rule (l, r) in R and a Σ-substitution θ satisfying s/u = θl and t = s[u← θr].

We let �R and↔R be respectively the reflexive transitive and the reflexive,
symmetric and transitive closure of →R. Finally, s ↓R t if there exists u such
that s �R u and t �R u. Note that ↓R ⊆ ↔R.

Definition 5 A rewrite system R is confluent if ↓R = ↔R and terminating if
there is no infinite reduction sequence t→R t1 →R t2 →R · · ·. A rewrite system
is canonical if it is both confluent and terminating.

Proposition 6 Let R be a confluent rewrite system.

(s ↓R t) ⇔ (s↔R t) ⇔ R ` s
.= t .

Remark. Algebraic structures are usually described equationally rather than
as term-rewriting systems. However, some of them can be turned into term-
rewriting systems using the Knuth-Bendix completion procedures [18].

2.2 The Semantics of Equational Logic and the Completeness
Theorem

Equational theories are syntactical descriptions of mathematical objects. The
objects satisfying these descriptions are the mathematical structures themselves.
In this section, we define a semantics for equational theories. As we are interested
in using universal algebra to solve the problem of equational reasoning in type
theory, our semantics is ultra-loose, i.e. the equality relation between terms is
interpreted as an arbitrary equivalence relation rather than as the underlying
equality of the model.

Definition 7 An Σ-algebra A for a signature Σ consists of a set A, an equiv-
alence relation =A on A and for each function symbol f of arity n, a function
fA : An → A such that for every (a1, . . . , an), (a′

1, . . . , a
′
n) ∈ An,

a1 =A a′
1, . . . , an =A a′

n ⇒ fA(a1, . . . , an) =A fA(a′
1, . . . , a

′
n) .

For implementation purposes, we us a slightly modified definition of assignment
and satisfiability. Of course, the resulting semantics is equivalent to the standard
one.

Definition 8 An A-assignment is a partial map α : V ⇀ A with a non-empty,
finite domain.

Any A-assignment can be extended inductively to a partial function [[]]Aα on the
set of Σ-terms:

[[x]]Aα ' αx if x ∈ dom α

[[f(t1, . . . , tn)]]Aα ' fA([[t1]]
A
α , . . . , [[tn]]Aα) .

Definition 9 Let A be a Σ-algebra. Two A-assignments α and β are compatible
if dom α = dom β and αx =A βx for all x ∈ dom α.

The following lemma shows that compatible assignments satisfy the same equa-
tions.

Lemma 10 (Compatibility lemma) Let A be a Σ-algebra. Let α and β be
two compatible A-assignments. Let t be a Σ-term such that var(t) ⊆ dom α.
Then [[t]]Aα =A [[t]]Aβ .

We write A |= s
.= t if for all A-assignments α such that var(s) ∪ var(t) ⊆

dom α,
[[s]]Aα =A [[t]]Aα .

Definition 11 Let S = (Σ, E) be an equational theory. A Σ-algebra A is a
S-model if A |= s

.= t for all the equations s
.= t in E.

We say that S = (Σ, E) semantically entails a Σ-equation s
.= t (notation

S |= s
.= t) if A |= s

.= t for every S-model A. The fundamental theorem of
equational logic establishes the compatibility between syntax and semantics.

Theorem 12 (Soundness/Completeness) For every Σ-equation s
.= t,

S ` s
.= t ⇔ S |= s

.= t .

The completeness result is proved by constructing the term-model TS as the
quotient of TΣ by the provability relation ∼S. The crucial fact that we shall
exploit later is that for every term s and t,

S ` s
.= t ⇔ [s] = [t]

where [] : TΣ → TS is the canonical map assigning to every term its equivalence
class under the provability relation.

3 The Naming Principles

In this section, we define a methodology to solve equational problems in type
theory. Our methodology is very flexible and can be carried out in any type
system with inductive types. In particular, it can be carried out in the underlying
type systems of Lego [20], Coq [13], Alf [21] and NuPrl [12].

3.1 Specifying the Problem to be Solved

Our first task is to fix the boundaries of the problem to be solved. In its most
general form, equational reasoning is concerned with determining whether two
elements s and t of a set V of values are related by an equality relation R.
Naturally, the problem is far too general to have an automated solution. Yet
there is a well-understood branch of mathematical logic, namely equational logic,
which is concerned with equational theories, i.e. first-order languages with a
single (binary) predicate symbol =. Equational logic provides the right level of
generality to tackle the problem of equational reasoning for several reasons:

1. the problem is general enough: a wide collection of mathematical theories
can be presented equationally, for example the theories of monoids, groups
and rings;

2. one might expect an useful and automated solution to the problem: in some
cases, it is possible to provide an algorithm to test whether an equation of
a given theory S is a theorem of this theory;

3. this work can provide a theoretical foundation to integrate computer algebra
systems and proof checkers: computer algebra systems, with their impressive
power, are mostly concerned with equational theories.

This justifies the following choice for the form of an equational problem.

The problem. Let S be an equational theory. Let A be a model of S. Let a and
b be expressions for elements of A. Does a =A b?

Note that the problem makes sense within a type system with inductive types
as one can formalize all basic notions of universal algebra in such a system. Here
are a few examples of equational problems.

Example 13 – Let Zn be the ring of integers modulo n, where n ≥ 3. Does
2(n− 1) = 0?

– Let D8 be the dihedral group with eight elements. Let σ, τ ∈D8. Does τσ =
σ3τ? Here the problem is quantified over all elements of D8.

– Let (M, =M , ◦M , eM) be a monoid. Let x, y ∈ M . Does (x ◦M e) ◦M y =M

x ◦M y? Here the problem is quantified over all x, y ∈M and monoids M .

To solve the problem, we will first relate it to equational logic and then use
equational logic to solve the problem automatically.

For the remaining of this section, we work with the formalization of universal
algebra in the type system. In particular, an equational theory is an inhabitant
of the type of equational theories, and a model of a theory is an inhabitant of
the type of models of this theory. To alleviate the presentation, we will still use
the ordinary language of universal algebra.

In the sequel, we let S = (Σ, E) be a fixed equational theory and A be a
model of S.

3.2 Equational Logic, Local Equational Logic and Equational
Reasoning

Equational logic is global in the sense that it is used to determine whether a
S-equation s

.= t is true in all models of S, i.e. whether S |= s
.= t. In contrast,

equational reasoning is local, in the sense that one is also interested whether a
given equality holds in a specific model, i.e. a =A b for some specific a and b in
a specific model A of S. An intermediate formal system is local equational logic,
a variant of equational logic whose deductive system allows to infer whether
A |= s

.= t for a specific model A of S. One could even go one step further and
develop a formal system to infer whether [[s]]Aα =A [[t]]Aα in a specific model A and
for a specific assignment α. This last problem, which we call the local satisfiability
problem is in fact a special instance of equational reasoning. If we analyse the
logical formulations of local satisfiability and semantical entailment, we see that

the latter represents an uniform notion of the former2. One concludes that the
goal of equational logic is to know whether an uniform collection of equational
problems is satisfied.

Local satisfiability is a very common form of equational problem. However,
not all equational problems arising in the formalization of mathematics are con-
cerned with local satisfiability. An equally important instance of equational prob-
lem is the extensionality problem: given a S-term t, a model A of S and two
interpretations α, β in A, does [[t]]Aα =A [[t]]Aβ ? In fact, those two problems (local
satisfiability and extensionality) form the core of equational reasoning.

3.3 The Naming Principles

As outlined in the previous subsection, there is a divergence between equational
logic as a formal system and equational reasoning as it occurs in mathematics.
We have

a goal: an equational problem, i.e. an equality a =A b;
some tools: equational logic, which can be used to solve a local satisfiability

problem, and the compatibility lemma, which can be used to solve an exten-
sionality problem.

The difficulty in applying the tools to solve the goal is that equational prob-
lems are essentially of a semantical nature while equational logic is designed to
solve syntactical problems. In order to apply equational logic to equational rea-
soning, one must perform a preliminary manipulation on equational problems,
so that they present themselves in a form which is amenable to be solved by
equational logic. What is needed here is a naming principle which transforms
a semantical equational problem into a local satisfiability problem or an exten-
sionality problem. For the clarity of the discussion, we will therefore distinguish
between the naming principle for satisfiability (for short NPS) and the naming
principle for extensionality (for short NPE). One fundamental feature of these
naming principles is that they do not require any extension of the type sys-
tem; indeed, the naming principles are a special instance of conversion rules. We
introduce these principles below.

The Naming Principle for Satisfiability. The aim of the naming principle
for satisfiability is to recast a local equation a =A b into an equation of the form
[[s]]Aα =A [[t]]Aα , where

– s and t are terms of the theory T ,
– [[s]]Aα � a,
– [[t]]Aα � b.

2 By the soundness/completeness theorem, S |= s
.
= t is equivalent to the collection of

local satisfiability problems ([[s]]Aα =A [[t]]Aα)(A∈M,α∈V(A) where M is the collection
of S-models and for A ∈ M, V(A) is the set of A-assignments.

Of course, the equation to be solved has not changed; what has changed is the
way to look at it. The equation in its second form makes it clear that the problem
to be solved is an instance of an uniform collection of equational problems, as
defined in the previous section. The advantage of this switch of perspective is
that the equation in its second form is more amenable to be solved by standard
syntactic tools. Indeed, [[s]]Aα =A [[t]]Aα is an immediate consequence of S ` s

.= t.
This yields a semi-complete3 method to prove a =A b:

1. apply the NPS; this reduces the equational problem to one of the form
[[s]]Aα =A [[t]]Aα ;

2. apply any method available to prove S ` s
.= t.

Of course, the efficiency of the method depends on the choice of s and t4. For-
tunately, there is always an optimal application of the NPS.

Definition 14 Let A be a model of S. Let a be an element of A. The pre-order
of codes of a is the sub-pre-order of T≤

Σ whose elements are the terms t for which
there exists an assignment α such that [[t]]Aα � a.

For every element a of A, the pre-order of codes of a has a top element
(unique up to renaming), called the optimal code of a. We write paq for the
optimal code of a.

Similarly, we can define a code for an equational problem a =A b to be an
equation s

.= t such that for some assignment α, [[s]]Aα � a and [[t]]Aβ � b. Every
equational problem a =A b has an optimal code paq .= pbq (one can verify that
paq and pbq are optimal codes for a and b respectively) with the two properties:

– paq
.= pbq is a code for a =A b;

– S ` paq .= pbq if and only if S ` s
.= t for some code s

.= t of a =A b.

The conclusion is that one can define an algorithm which performs the optimal
choice for the NPS. In the sequel, it is understood that the NPS is always applied
for such an optimal choice.

The Naming Principle for Extensionality. The aim of the naming principle
for extensionality is to recast a local equation a =A b into an equation [[t]]Aα =A
[[t]]Aβ , where

– t is a term of the theory T ,
– [[t]]Aα � a,
– [[t]]Aβ � b.

3 The method can fail even if the equational problem is true.
4 Indeed, some uses of the NPS can be less than judicious. Every equational problem

a =A b can be reduced by the NPS to [[s]]Aα =A [[t]]Aα where s and t are distinct
variables and α is any assignment satisfying αs = a and αt = b. In order to solve
the problem according to the proposed method, we must now solve S ` s

.
= t. This

only holds if the theory is inconsistent!

In the second form, the equation can be immediately deduced from αx =A βx
for all x ∈ var(t). As for the NPS, the method is only semi-complete. Yet it is
a very important tool for formal proof development. Indeed, the standard rep-
resentation of sets in most type systems uses the so-called setoids; consequently
all the reasoning takes place with book equalities and extensionality matters do
come up very often. As for the NPS, the NPE can be applied optimally. Indeed,
one can find for every equational problem a =A b a term t (the optimal code for
NPE) such that

– there exist two assignments α and β such that [[t]]Aα � a and [[t]]Aβ � b;

– for every term t′ and assignments δ and γ such that [[t′]]Aδ � a and [[t′]]Aγ � b,
there exists a substitution θ such that θt′ � t.

Note that it is possible to extend the naming principle for extensionality to
formulae. Details will appear in [25].

Combining Both Principles. In the previous subsections, we have considered
two different naming principles which can be used to solve equational problems.
However, the method that we have described disregards the possibility of using
assumptions present in the context. In fact, the NPS is too weak to be useful in
this more general case. For example, if one has to prove in a monoid M that

(a ◦ b) ◦ c =A a′ ◦ (b ◦ c) (2)

for some elements a, a′, b and c of M such that a =A a′, the NPS reduces the
problem to

[[(x · y) · z]]Aγ =A [[x′ · (y · z)]]Aγ (3)

for a suitable assignment γ. Moreover, one cannot invoke the NPE principle to
reduce equation (3) further. However, one can combine the NPS and the NPE to
obtain a powerful naming principle (NPSE) which can be used to solve equational
problems in a context. This new principle takes as input an equational problem
a =A b and returns as output an equation [[s]]Aα = [[t]]Aβ where s and t are two
terms s and t and α and β are two assignments such that

– [[s]]Aα � a,
– [[t]]Aβ � b,
– dom α = dom β and αx = βx for every x ∈ dom α.

As for the NPS, the equation follows from S ` s
.= t. With this new principle,

equation (2) can be reduced to [[(x · y) · z]]Aα =A [[x · (y · z)]]Aβ and αx = βx for
suitable α and β. This shows that the NPSE is stronger than the combination
of the NPS and the NPE. However, it is difficult to find an optimal use of the
NPSE for obvious reasons. Fortunately, one can recover the power of the NPSE
from the NPS by grafting a simple procedure on top of the NPE. The procedure,
called collapsing procedure (or CP for short),

– takes as input a problem of the form [[s]]Aα = [[t]]Aα and two variables x and y
in the domain of α,

– returns as output the problems [[s[y/x]]]Aα = [[t[y/x]]]Aα and αx = αy.

The benefits of the CP are similar to those of the NPSE. For example, the CP
can be called to reduce equation (3) into the two problems

[[(x · y) · z]]Aγ =A [[x · (y · z)]]Aγ
γx =A γx′ .

The CP provides an easy means to make use of the optimal naming of an equa-
tional problem via the NPS. Unfortunately, there does not seem to be any obvious
counterpart for making use of the optimal naming of an equational problem via
the NPE5.

4 Oracle Types

4.1 How to Automate Equational Reasoning?

As mentioned earlier, the naming principles do not solve equational problems. A
naming principle is a special kind of conversion rule which recasts an equational
problem into a specific form. Here these specific forms are local satisfiability and
extensionality problems. The point is the naming principles make apparent terms
of an equational theory. In the special case where we look at a local satisfiability
problem, the equational problem will become of the form [[s]]Aα =A [[t]]Aα . By the
soundness/completeness theorem, the equality is a consequence of S ` s

.= t.
Reducing an equational problem to a problem of the form S ` s

.= t is useful
because we dispose of techniques to determine whether an equation is in the
deductive closure of an equational theory:

using computer algebra systems. Current computer algebra systems are excel-
lent at equational reasoning. They have various clever algorithms to compute
all kinds of equations at a symbolic (syntactical) level. We could use such
a system to compute s

.= t and, if this succeeds, we let our proof checker
assume the statement as an axiom. This is what we call the external believing
way.

using term-rewriting. Another technique to check S ` s
.= t is of course term-

rewriting: if S can be completed into a confluent and terminating term-
rewriting systemR, we can look at the normal form of s and t with respect to
the completion of S. For such theories, equational reasoning can be partially

5 Consider a monoid H and three elements a, b, c of H such that a ◦ b =H a′ ◦ b′. The
optimal use of the NPE on

(a ◦ b) ◦ c =H (a′ ◦ b′) ◦ c

will yield the two subproblems a =H a′ and b =H b′. Indeed, the NPE will be applied
with (x ◦ y) ◦ z as code whereas it would have been better to take x ◦ y as code.

automated by using the naming principle and importing in some way term-
rewriting into the type theory as done for example in [9]. We call this method
the internal believing way, because the problem is solved without any outside
help. This is the method proposed in this paper.

the autarkic way. We might want to define a map nf which assigns to every term
its normal form in R and to show that for every term t and assignment α,
we have [[t]]Aα =βι [[nf t]]Aα . In order to check s

.= t, we just have to verify
(nf s) = (nf t), where = denotes Leibniz equality. This comes down to a
reflexivity test. This method is called the autarkic way because it does not
involve any change to the type theory or the proof-checker. It must be said
that this method seems currently too inefficient to be used in practice.

Most proposals in the literature opt for the external believing approach [2, 15,
17]. Indeed, the external believing way has an obvious advantage: hybrid sys-
tems offer a shortcut to integrate term-rewriting in proof checking. However, the
approach has two disadvantages:

– proof checkers are based on well-understood languages whose logical and
computational status are well understood. It is not always the case for com-
puter algebra systems.

– proof checkers generate from scripts proof-objects; if the computer algebra
system is used as an oracle, then all calculations performed by the computer
algebra system have to be taken as axioms by the proof checker. Such a
process threatens the reliability of the hybrid system6.

One can remedy to these two problems by using the computer algebra system
not as an oracle but as a guide, as done in [15]. In this case, the answer of
the computer algebra system is used to solve an equation. We call this method
the skeptic way because the proof-checker does not trust the computer algebra
system. This technique is superior over the external believing one in that it
eliminates the holes in the proof-terms. Moreover, the problem of the reliability
of the computer algebra system is circumvented. However the skeptic way seems
unfeasable in a proof-checker such as Lego because of the absence of tactics.

4.2 The Internal Believing Approach via Oracle Types

In this section, we introduce oracle types. The formalism, which is based on
algebraic, inductive and quotient types, is well-suited for the introduction of
canonical term-rewriting systems. We refer the reader to [7] for a general scheme
for oracle types and focus on a specific example of oracle type used to solve
equational problems for groups. It consists of two types:

– an inductive type G corresponding to the set of terms of the signature of
groups,

6 Sometimes the user has to make sure that the necessary side conditions are satis-
fied. For example, several computer algebra systems will state that (

√
x)2 equals x,

without bothering about the condition that x ≥ 0.

– the quotient G of G by the deductive closure of the theory of groups; G is
defined as an algebraic type, i.e. equality between inhabitants of G is forced
by the rewrite rules.

Both types are related by a map [] : G → G which assigns to every term its
equivalence class under the provability relation. There is an axiom to reflect the
universal property of quotients as it is used in the completeness theorem: an
equation s

.= t holds in every group if [s] = [t]. If we work in ECC [19], the rules
are:

` G : �0 ` e : G ` i : G → G ` o : G → G → G

` G : �0 ` e : G ` i : G → G ` o : G → G → G

` a : N → G ` a : N → G
Γ ` b : G

Γ ` [b] : G

Γ ` p : [a] = [b]

Γ ` noconf p : a =G b

Γ ` fe : C Γ ` fi : G → C → C
Γ ` C : �0 Γ ` fa : N → C Γ ` fo : G → G → C → C → C

εC [fa, fe, fi, fo] : G → C

Γ ` a : A Γ ` B : s

Γ ` a : B
if A →βχιρ B or B →βχιρ A

where =G is the (impredicatively defined) deductive closure of the theory
of groups, [] is a new constructor and N are the inductively defined natural
numbers. The computational content of the system is given by β-reduction and
the following reduction relations:

– ι-reduction; let f = (fa, fe, fi, fo). The rules are

εC [f] (a i)→ι fa i

εC [f] e→ι fe

εC [f] (i x)→ι fi x (εC [f] x)
εC [f] (o x y)→ι fo x y (εC [f] x) (εC [f] y)

– ρ-reduction; the rules correspond to the Knuth-Bendix completion of the
axioms of groups:

o e x→ρ x

o x e→ρ x

o x (o y z)→ρ o (o x y) z

o (i x) x→ρ e

o x (i x)→ρ e

i e→ρ e

o (o x (i y)) y →ρ x

o (o x y) (i y)→ρ x

i (i x)→ρ x

i (o x y)→ρ o (i y) (i x)

– χ-reduction; for every x, y : G,

[o x y]→χ o [x] [y]
[i x]→χ i [x]

[e]→χ e

Note that the rules we present here are in fact a subset of the usual rules for
congruence types.

5 Formalization in Lego

Type theory based proof checkers such as Alf, Coq and Lego are expressive
enough for the two-level approach described above to be developed within the
system itself. We present an implementation of the two-level approach in Lego.
The reason to choose Lego is that it allows for the user to input its own rewrite
rules, thus offering the possibility to implement oracle types.

5.1 Formalization of Equational Logic

Formalizing equational logic in Lego is relatively easy. There are no major diffi-
culties in developing the whole theory along the lines of section 2. We can define
a type of signatures as

Signature == <T:Type> T -> nat

where nat is the inductively defined type of natural numbers. The set of (n-
tuples of) terms over a set of variables is defined as an inductive type. Equations
are defined as pairs of terms and equational theories as signatures together with
a predicate over the type of equations. One can even formalize the deductive
closure of a set of equations by formalizing first the notion of simultaneous
substitution. It is equally easy to define the semantics of equational logic. The
definitions of algebra, assignment, satisfaction and model are immediate adap-
tations of the definitions introduced in section 3. See [25] for a more detailed
presentation of our implementation of universal algebra in Lego.

5.2 Formalization of the Naming Principles

Lego does not offer support for the naming and extensionality principles7. Yet
they are special instances of conversion rules, so they can be performed manually
using the Equiv command. We present three examples, one using the NPE, a
second using the CP and the third one using the NPS. These examples are meant
to give an idea of the method used. To understand them fully, the reader should
read first Appendix B. In each case, the proofs turn out to be remarkably short.

7 An extension of the Lego system is proposed in [6] to solve this problem.

Note that in our implementation we did not use (nor need) specifications of
equational theories.

First, we give an example where the NPE is used to solve an equational
problem. Here G is an algebra for the signature of groups, obj G is an element
of its carrier, times is the multiplication on G and inv is the inverse on G. TIMES
and INV are function symbols of the signature of groups. int is the interpretation
function which, given an assignment rho, assigns a symbol of the signature to
an element of G whose set of variables is contained in the domain of rho. Note
that [x:A]b stands for λx:A.b, {x:A}B for Πx:A.B, <x:A>B for Σx:A.B, Set
stands for the type of setoids, Eq for the equality of a Set, el for the elements
of a Set, obj for the elements of a model and Q is Leibniz equality.

Lego> Goal {x,y,z:obj G} (Eq x y) ->

(Eq (times (inv x) z) (times (inv y) z));

Goal

?0 : {x,y,z:obj G}(Eq x y)->Eq (times (inv x) z) (times (inv y) z)

Lego> intros;

intros (4)

x : obj G

y : obj G

z : obj G

H : Eq x y

?1 : Eq (times (inv x) z) (times (inv y) z)

Lego> rho == necons x (necons y (base z));

defn rho = necons x (necons y (base z))

rho : nelist (obj G)

Lego> t == TIMES (INV (VAR ZeroN)) (VAR TwoN);

defn t = TIMES (INV (VAR ZeroN)) (VAR TwoN)

t : termGr

Lego> u == TIMES (INV (VAR OneN)) (VAR TwoN);

defn u = TIMES (INV (VAR OneN)) (VAR TwoN)

u : termGr

Lego> Equiv Eq (int G rho t) (int G rho u);

Equiv

?2 : Eq (int G rho t) (int G rho u)

Lego> Refine SubstitutionLemma G ZeroN;

Refine by SubstitutionLemma G ZeroN

?9 : Eq (int G rho (TFV sig ZeroN)) (int G rho (VAR OneN))

Lego> Refine H;

Refine by H

Discharge.. rho H z y x

*** QED ***

Note that the NPE yields the goal ?2. The SubstitutionLemma is used to
obtain ?9 is a specific instance of the compatibility lemma. The next example
uses the CP procedure. Here we are working in a context in which times assoc
states that times is associative. The CP procedure is called by the term CP.

Lego> Goal {a,b,b’,c:obj G} (Eq b b’) ->

Eq (times a (times b c)) (times (times a b’) c);

Goal

?0 : {a,b,b’,c:obj G} (Eq b b’) ->

(Eq (times a (times b c)) (times (times a b’) c)

Lego> intros;

intros (5)

a : obj G

b : obj G

b’ : obj G

c : obj G

H : Eq b b’

?1 :Eq (times a (times b c)) (times (times a b’) c)

Lego> rho == necons a (necons b (necons b’ (base c)));

defn rho = necons a (necons b (necons b’ (base c)))

rho : nelist (obj G)

Lego> t == TIMES (VAR ZeroN) (TIMES (VAR OneN) (VAR ThreeN));

defn t = TIMES (VAR ZeroN) (TIMES (VAR OneN) (VAR ThreeN))

t : termGr

Lego> u == TIMES (TIMES (VAR ZeroN) (VAR TwoN)) (VAR ThreeN);

defn u = TIMES (TIMES (VAR ZeroN) (VAR TwoN)) (VAR ThreeN)

u : termGr

Lego> Equiv Eq (int G rho t) (int G rho u);

Equiv

?1 : Eq (int G rho u) (int G rho u)

Lego> Refine CP G OneN (VAR TwoN);

Refine by CP G OneN (VAR TwoN)

?9 : Eq (int G rho (TFV sig OneN)) (int G rho (VAR TwoN))

?10 : Eq (int G rho (Subst t OneN (VAR TwoN)))

(int G rho (Subst u OneN (VAR TwoN)))

Lego> Refine H;

Refine by H

?10 : ...

Lego> Refine times_assoc;

Refine by times_assoc

Discharge.. rho H c b’ b a

*** QED ***

The final example uses the NPS. Oracle types are used to give a short proof
of an equality on groups. In the sequel, Q refl is a proof of the reflexivity of
Leibniz equality, comm and conj respectively denote the commutator and the
conjugate of two elements. For comparison, we have included a traditional proof
of this fact in appendix B.

Goal {x,y,z:obj G} Eq (conj (comm x y) z) (comm (conj x z) (conj y z));

intros;

rho == necons x (necons y (base z));

t == CONJ (COMM (VAR ZeroN) (VAR OneN)) (VAR TwoN);

u == COMM (CONJ (VAR ZeroN) (VAR TwoN)) (CONJ (VAR OneN) (VAR TwoN));

Equiv Eq (int G rho t) (int G rho u);

Refine Soundness;

Refine Q_refl;

Save comm_conj;

6 Conclusions

We have developed a simple, flexible and rather efficient method to solve equa-
tional problems in type theory. The main ingredients of our method are a two-
level formalization of universal algebra based on oracle types. The approach cho-
sen in this paper is also intimately related to the design of hybrid systems and
can be seen as an attempt to lay the foundations for a theoretical understand-
ing of the interaction between proof checkers and computer algebra systems. In
the future, it seems worthwhile to try to extend the framework to equational
theories which do not yield a confluent terminating term-rewriting system. A
longer term goal related to this research is the understanding of computer alge-
bra algorithms. A full understanding of their nature as term-rewriting systems
is necessary to see whether a type system with (a reasonable variant of) ora-
cle types can provide a theoretical framework in which the integration of proof
checkers and computer algebra systems can be justified.

References

1. A. Bailey. Representing algebra in Lego, M.Sc. thesis, University of Edinburgh,
October 1993.

2. C. Ballarins, K. Homann and J. Calmet. Theorems and algorithms: an interface
between Maple and Isabelle, in the proceedings of ISSAC’95.

3. H.P. Barendregt. Typed λ-calculi, Handbook of logic in computer science, Abram-
sky and al eds, OUP 1992.

4. G. Barthe. Towards a mathematical vernacular, manuscript, presented at the HISC
workshop, Amsterdam, March 1994.

5. G. Barthe. Formalising mathematics in type theory: fundamentals and case studies,
manuscript, June 1994, submitted for publication.

6. G. Barthe and H. Elbers. Towards lean proof checking, to appear in the proceed-
ings of DISCO’96, Lecture Notes in Computer Science, Springer-Verlag, 1996. An
extended version will appear as a CWI technical report.

7. G. Barthe and H. Geuvers. Congruence types, to appear in the proceedings of
CSL’95, 1995.

8. G. Barthe, M. Ruys and H. Barendregt. A two-level approach towards lean proof-
checking, to appear as a CWI technical report, 1996.

9. V. Breazu-Tannen. Combining algebra and higher-order types, in the proceedings
of LICS’88, pp 82-90, IEEE, 1988.

10. P. Cohn. Universal algebra, Mathematics and its Applications, Vol. 6, D. Reidel,
1981.

11. R. Constable. Metalevel Programming in Constructive Type Theory, Logic and
Algebra of Specification, F. Bauer and al eds, NATO Asi Series, 1994.

12. R. Constable and al. Implementing mathematics with the NuPrl proof development
system, Prentice Hall, 1986.

13. G. Dowek and al. The Coq proof assistant user’s guide Technical Report, INRIA,
November 1993.

14. H. Elbers. A machine-assisted construction of the real numbers, M.Sc. thesis, Uni-
versity of Nijmegen, September 1993.

15. J. Harrison and L. Théry. Extending the HOL theorem prover with a computer
algebra system to reason about the reals, in proceedings of HOL’93, LNCS, 1993.

16. D. Howe. Automating reasoning in an implementation of constructive type theory,
Ph.D. thesis, Cornell University, 1988.

17. P. Jackson. Exploring abstract algebra in constructive type theory, in the proceed-
ings of CADE-12, LNAI 814, June 1994.

18. J.W. Klop. Term-rewriting systems, in Handbook of logic in computer science
(volume 2), Abramsky and al eds, OUP 1992.

19. Z. Luo. Computation and reasoning: a type theory for computer science, OUP,
1994.

20. Z. Luo and R. Pollack. LEGO proof development system: user’s manual, Technical
Report, University of Edinburgh, May 1992.

21. L. Magnusson and B. Nordström. The Alf proof editor and its proof engine, in the
proceedings of Types for Proofs and Programs, LNCS 806, May 1993.

22. P. Martin-Löf. An intuitionistic theory of types, Bibliopolis, 1984.
23. R. Nederpelt and al. Selected papers on AUTOMATH, North-Holland, 1994.
24. B. Nordström, K. Petersson and J. Smith. Programming in Martin-Löf ’s type the-

ory, OUP, 1990.
25. M.P.J. Ruys. Ph.D. thesis, University of Nijmegen, forthcoming (1996).

A Formalization of Universal Algebra

The reader is referred to [8] for the formalization in Lego. It can be obtained via
WWW at http://www.cs.kun.nl/fnds/papers/two-level.shtml8, together
with the complete set of Lego files to reproduce the examples. For an elaboration
on formalizing mathematics (and universal algebras) in type theory, see [25].

B Examples

This appendix contains examples of equational problems solved using our ap-
proach. To keep the presentation simple, we introduce the group axioms without
using an equational theory. Note that because of the two-level approach, the
number of Lego commands of the proof comm conj is very small (in essence only
four). This in contrast to the traditional proof comm conj hand. Because of a lot
of applications of the transitivity of equality and the group axioms, the proof
explodes up to a few pages of Lego commands. The former proof can be found
at same location mentioned in the previous appendix.

8 The same files are also available by anonymous FTP from ftp.cs.kun.nl. Look at
the directory /pub/CSI/CompMath.Found and its descenders.

(* Define the signature and the terms of a Group. *)

[sigGr : Signature = ...]

[termGr : SET = term sigGr]

[VAR : nat -> termGr = TFV sigGr]

[ONE : termGr = ...]

[INV : termGr -> termGr = ...]

[TIMES : termGr-> termGr -> termGr = ...]

[DIV : termGr-> termGr -> termGr = ...];

(* Let G be a group, satisfying the group axioms. *)

[G : Algebra sigGr];

[one : obj G = ...]

[inv : (obj G) -> (obj G) = ...]

[times : (obj G) -> (obj G) -> (obj G) = ...];

[one_ident : identity times one]

[inv_invers : inverse times one inv]

[times_assoc : associative times];

(* Show y = z -> z ((x/y) y) = z ((x/z) z) *)

Goal {x,y,z:obj G} (Eq y z) -> Eq (times (times y (times x (inv y))) z)

(times (times z (times x (inv z))) z);

intros;

rho == necons x (necons y (base z));

t == TIMES (TIMES (VAR OneN) (DIV (VAR ZeroN) (VAR OneN))) (VAR TwoN);

u == TIMES (TIMES (VAR TwoN) (DIV (VAR ZeroN) (VAR TwoN))) (VAR TwoN);

Equiv Eq (int G rho t) (int G rho u);

Refine SubstitutionLemma G OneN;

Refine H;

Save Example_1;

(* Show b = b’ -> a (b c) = (a b’) c *)

Goal {a,b,c,d:obj G} (Eq b d) -> Eq (times a (times b c))

(times (times a d) c);

intros;

rho == necons a (necons b (necons c (base d)));

t == TIMES (VAR ZeroN) (TIMES (VAR OneN) (VAR TwoN));

u == TIMES (TIMES (VAR ZeroN) (VAR ThreeN)) (VAR TwoN);

Equiv Eq (int G rho t) (int G rho u);

Refine CP G OneN (VAR TwoN);

Refine H;

Refine Times_assoc;

Save Example_2;

(* ==

Use Oracle Types to implement term rewriting. *)

[FreeGroup : SET];

[varFg : nat -> FreeGroup];

[oneFg : FreeGroup];

[invFg : FreeGroup -> FreeGroup];

[timesFg : FreeGroup -> FreeGroup -> FreeGroup];

(* Define the Knuth-Bendix completion of the group equations. *)

[[x,y,z : FreeGroup]

timesFg oneFg x ==> x

|| timesFg x oneFg ==> x

|| timesFg (invFg x) x ==> oneFg

|| timesFg x (invFg x) ==> oneFg

|| invFg oneFg ==> oneFg

|| timesFg (timesFg x (invFg z)) z ==> x

|| timesFg (timesFg x y) (invFg y) ==> x

|| timesFg x (timesFg y z) ==> timesFg (timesFg x y) z

|| invFg (invFg z) ==> z

|| invFg (timesFg z y) ==> timesFg (invFg y) (invFg z)

];

[class : termGr -> FreeGroup = ...];

[Soundness : {s,t:termGr} {rho:el (Assignment G)}

(Q (class s) (class t)) -> Eq (int G rho s) (int G rho t)];

(* --

The conjugate of a commutator equals the commutator of the conjugates.

Define the commutator [x,y] == (x y)/(y x)

and the conjugate x*y == y (x/y) *)

[comm [x,y : obj G] : obj G = times (times x y) (inv (times y x))]

[COMM [x,y : termGr] : termGr = TIMES (TIMES x y) (INV (TIMES y x))]

[conj [x,y : obj G] : obj G = times y (times x (inv y))]

[CONJ [x,y : termGr] : termGr = TIMES y (TIMES x (INV y))];

(* Show [x,y]*z = [x*z,y*z] using the two-level approach. *)

Goal {x,y,z:obj G} Eq (conj (comm x y) z) (comm (conj x z) (conj y z));

intros;

rho == necons x (necons y (base z));

t == CONJ (COMM (VAR OneN) (VAR OneN)) (VAR TwoN);

u == COMM (CONJ (VAR OneN) (VAR TwoN)) (CONJ (VAR OneN) (VAR TwoN));

Equiv Eq (int G rho t) (int G rho u);

Refine Soundness;

Refine Q_refl;

Save comm_conj;

