

1. Verify that in the reduction of $(\lambda x.xx)\mathbf{c}_1$ to normal form one needs alpha conversion.
2. Let $\mathbf{W} \equiv \lambda xy.xyy$. Construct the reduction graph for \mathbf{WWW} .
3. Construct types for \mathbf{S} , \mathbf{K} , \mathbf{SK} .
4. Prove
 - (i) $(\mathbf{c}_n x)^m(y) = x^{n*m}(y)$
 - (ii) $(\mathbf{c}_n)^m(x) = \mathbf{c}_{(n^m)}(x)$ for $m > 0$
 - (iii) $\mathbf{A}_+ \mathbf{c}_n \mathbf{c}_m = \mathbf{c}_{n+m}$
 - (iv) $\mathbf{A}_* \mathbf{c}_n \mathbf{c}_m = \mathbf{c}_{n*m}$
 - (v) $\mathbf{A}_{exp} \mathbf{c}_n \mathbf{c}_m = \mathbf{c}_{n^m}$ for $m > 0$
5. Find a term of length about 40 cm whose normal form has length more than 10^{10} light years. Each symbol takes 0.3 cm and the speed of light is 300000 km/sec. [Hint use the previous exercise]