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1. Computer Mathematics: goals
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Mathematical activity: defining, computing, proving

Mathematical assistant helps human user:

Representing arbitrary mathematical notions (defining)
Manipulating these (computing)
Proving results about them (proving)

in an impeccable way

Eventually to assist humans to learn and develop mathematics

At present an interesting foundational problem



1. Computer Mathematics: method

e e e R e e P T AR s e e e et et e e RS

e Representing “computable” objects

v/2 becomes a symbol «

a? — 2 becomes 0 o + 1 cannot be simplified
e Representing “non-computable” objects

Hilbert space H, again just a symbol
P(H) := “H 1is locally compact” is not decidable
But -p:l P(H) is decidable (!p is a proof of P(H))

But then we need formalized proofs



1. Computer Mathematics: choices
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1. Ontology
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ONTOLOGY

Classical mathematics
only needed a few fixed spaces

Modern mathematics needs a wealth of new spaces
and ample energy is devoted to the construction of these

Set Theory has the virtue that it unifies all needed concepts in one framework
Type Theory based on

e inductively defined data types with their
e recursively defined functions and closed under

e function spaces and dependent products

is an interesting alternative



1. Ontology: Function and Product Types
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Function space types

If A, B are types, then A— B is the type of functions from objects of type A
into objects of type B.

a:A f:(A-B) f:(A—-B) g:(B—C)
(fa):B (g0 f):(A=C)

Dependent products
[,n:AF B(n) : type

= 11,.4.B(n) : type

Functional abstraction

Ax. f(x)
stands for the function x —— f(z). For example, go f = \z.g(f(x))



1. Ontology, Computing: Inductive Types
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Inductive types (freely generated data types)

Natural numbers nat
nat := 0 | S(nat)
nat := O:nat | S:nat—nat
Primitive recursion over nat: we postulate an f : nat,nat®*—nat such that
£0,2) = g(z)
f(S(n),Z) = h(f(n,2),n,7)

for g : nat*—nat, h : nat,nat,nat*—nat.

For example
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1. Ontology, Computing: more Data Types
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Other data type: (binary) trees.

tree := leaf:nat—tree | p:tree,tree—tree

Primitive recursion over trees: given g, h we postulate F' such that

F(leaf(n), ) = g(n,x)
F(p(tl,tg),f> h(F(tl,f),F(tQ,f),tl,tQ)

For example

mirror(leaf(n)) leaf(n)
mirror(p(ti,t2)) = p(mirror(¢z2), mirror(t:1))

No need to code such structures into numbers via the Chinese remainder theorem (Goédel)



1. Logic
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First order rules for —, &, V, =, <, VaeU, dzeU

Continuity: Ve>0VxddVy. ..., uniform continuity: Ve>0doVzx,y. ...

Second-order rules for VX CU, dXCU

An element z in a group G has torsion iff AneN.x™ = e

This definition is not allowed in pure first order logic.

In second-order logic:

VXCGlreX & (VyeX.ayeX) = ecX]

Higher-order A topology O on U is an element of P(P(U))

Third order statement:

There exists a topology on U such that F' is continuous



1. Logic: Intuitionism
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Brouwer: Aristotelian logic is unreliable

It may promise existence without being able to give a witness

- dneN.P(n), but ¥ P(0), &/ P(1),...

Heyting: charted Brouwer’s logic

Gentzen: gave it a nice form

Example of such a P

Pn) & (n=0& GRH)V (n=1& -GRH)



1. Logic: “Intuitionism has become technology” (Constable)
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THEOREM-CLASSICAL [No effectiveness]
For every ideal I = (p1,...,pn) in Q|Z] there is a Grobner basis P of I.

THEOREM-CLASSICAL [This does not give the theorem]
There is a Turing machine TM such that for every ideal I = (p1,...,pn) in
Q[Z] the result TM(p1,...,pn) = P is a Grébner basis of 1.

THEOREM-CLASSICAL [We do not always want to be explicit]
Let TM = ({qo,..),...). Then TM is a Turing machine and for every ideal
I=(p1,...,pn) in Q[T] the result TM(p1,...,pn) = P is a Grobner basis of I.

THEOREM-CONSTRUCTIVELY. | ]
For every ideal I = (p1,...,pn) in Q|Z] there is a Grobner basis P of I.

Building an intuitionistic library provides certified tools



2. Status quo: Proof-assistants

Assistance
tactics
—t—
< certified
current context proof- statement
current goal checker
proof-development system

proof assistant
Reliability?

The de Bruijn criterion: have a small checker.



2. Status quo: some systems
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e Mizar based on classical ZFC

e Isabelle-HOL based on classical higher order logic with A-terms

e Coq based on impredicative intuitionistic Type Theory



2. Status quo: Computing vs. proving
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Abstract history of mathematics 4000 AD — 2100 AD

Cauchy

Computing Proving
Egyptians, Chinese Thales
Babylonians Fudoxos, FEuclid
Archimede
al-Khowarizmi
Leibniz Newton
Euler




2. Status quo: Computing vs. proving
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The Chinese-Babylonian vs Greek tradition
Chinese-Babylonian: computing

Greek: proving

It took until the 19-th century until the two traditions fully came together

20-th century: a temporary separation

e (Computer algebra: Chinese-Babylonian

e Formalization of proofs: Greek

21-st century: synthesis is emerging



2. Status quo: Towards proofs by computation
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Goal to prove

Full generalization

First try to prove
Va.A(x)

obtaining A(t) a fortiori

Example
107 4919 =919 4 10°

is proved best by first proving

Ve, yeN.x+y=y+x



2. Status quo: Proofs by computation
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Goal to prove

A(l)
Pattern generalization
Strategy: write t = f(s) with s€L
and try to prove
Vee L. A(f(x))

giving A(f(s)), hence A(%).

This method is particulary powertful if combined with reflection.

But we need to prove f(s) =t.



2. Status quo: Computing and provin
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How does one give formal proofs of

e Computations
(zy —2® + ) (® =y +2°) = 2y —ay’ +ay’ — 2+
220 — 1223 4+ %08 — o5 + 228,
It is important to formally prove computations, not just for computational
statements, but also for statements involving intuition

e Intuition

Let f : R—R be defined by

Then f is continuous.



2. Status quo: sliding styles
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The Poincaré Principle:
If f(a) =0, via a computation, then F f(a) = b axiomatically

The class P of f’s for which this is postulated may vary

P =1 (Isabelle-HOL: ephemeral proofs)
P ={f | prim. rec. over a data type} (Coq)

P ={f| f is representable in a CAS} (PVS)

The Poincaré Principle is in tension with the de Bruijn criterion



2. Status quo: sliding styles
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The Poincaré Principle:
If f(a) =0, via a computation, then F f(a) = b axiomatically

The class P of f’s for which this is postulated may vary

P =1 (Isabelle-HOL: ephemeral proofs)
P ={f | prim. rec. over a data type} (Coq)

P ={f | f is representable in a CAS} (PVS)

The Poincaré Principle is in tension with the de Bruijn criterion



2. Status quo: using the Poincaré Principle
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logaglogb a+$ bt
v square ; Y r )

Logarithms fep



2. Status quo: using reflection
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In our case the map + is not the logarithm but usually of a syntactic coding
nature (reflection): ((x +y)*)" = sq(plus vary vary) and f is something like
a simplify function on these syntactic expressions. The role of the exp func-
tion is played by the semantic function | |.

smpl.

times(minus x y)(plus x y) minus(sq x)(sq y) cL

N o

(z = y)(z +y) T (% = y?) €R

In order to apply this freely one has to show

Ve:L.[e] = [smpl e]

once and for all



3. Case studies
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Formalized in Coq (intuitionistic proofs)
THEOREM 1.
|[Formalization: Geuvers, Wiedijk, Zwanenburg, Pollack, Niqui]

FEvery non-constant polynomial p(x) over C has a root x.

THEOREM 2. Collaboration between Coq and GAP
[Formalization: Oostdijk, Caprotti, Elbers]

The number 9026258083384996860449366072142307801963 s a prime.
(Based on Fermat’s little theorem and Pocklington.)

THEOREM 3.
[Formalization: Caprettal

Correctness of the Fast Fourier Transform.



3. Case studies

THEOREM 4. [Formalization: Person, Théry]

Correctness of an efficient Grobner base algorithm.

THEOREM 5. [Formalization: Cruz-Félipe]

Fundamental theorem of calculus

THEOREM 6. [Formalization: Danos, Gonthier, Werner]

Main lemma for the four colour theorem.

For this, Coq needed an overdrive: compilation rather than interpretation

This compiler was proved correct in the simpler version of Coq

romantic Super cool
Maths Human mind Coq Compiled Coq
Biology | Human eye Light microscope Electronic microscope




4. Challenge: to construct a mathematician-friendly assistant

e e e T e e e T AT

And to formalize substantial parts of mathematics Start with undergraduate
mathematics

Needed

Libraries: theories, algorithms.

Estimated development time: 140 manyear (7M$)



4. Challange: Friendly proof-assistant
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Aspects of mathematics are being ‘programmed’ in the proofs

Proof-objects

o Formalism Automath-68
o Calculism ACL2

o Logicism HOL

° Platonism Mizar

° Formal Intuitionism Coq

(o Best Style not yet implemented]



4. Challenge: Style “A-term”
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THEOREM. Euclid : Vd>0,n3q,r[r<d & n = qd + r].
Proof.
(EX qg:nat | (EX r:nat|(lthan r d)/\n=(plus(times d q)r)))
[d:nat; p:(d>0)] [r’:nat; H4:((lthan r’ d)/\n’=(plus (times d q’) r’))]
[P:=[n:nat] . (and_ind (lthan r’ d) n’=(plus (times d q’) r’)
(EX g:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))] (EX q:nat|(EX r:nat|(lthan r d)/\n=(plus (times d q) r)))
(cv_ind P

[H5: (1than r’ d); H6:(n’=(plus (times d q’) r’))]
(ex_intro nat [q:nat]
(EX r:nat | (1lthan r d)/\n=(plus (times d q) r))
(suc q’) (ex_intro nat
[r:nat]
(1than r d)/\n=(plus (times d (suc q’)) r) r’
(conj (lthan r’ d4)
n=(plus (times d (suc q’)) r’) H5
[H7:=(f_equal nat nat (plus d) n’
(plus (times d q’) r’) H6)]
[H8:=(eq_ind_r nat (plus (monus n d) d)
[n0:nat]n0=n (pdmon n d HO)
(plus d (monus n d))
(plus_com d (monus n d)))]
(eq_ind nat (plus d n’)
[n0:nat]n0=(plus (times d (suc q’)) r’)
(eq_ind_r nat

[n:nat; ih:(before n P)]
[H:=(1tgeq n d)]
(or_ind (1lthan n d) (geq n d4)
(EX q:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))
[HO: (1than n d)]
(ex_intro nat
[g:nat] (EX r:nat | (lthan r d)/\n=(plus (times d q) r))
0 (ex_intro nat
[r:nat] (1than r d)/\n=(plus (times 4 0) r) n
(conj (1than n d) n=(plus (times d 0) n) HO
(eq_ind_r nat (times O d) [nO:nat]ln=(plus nO n)
(req nat n) (times d 0) (times_com d 0)))))
[HO: (geq n d)] [n’:=(monus n d)]
[H1:=(1tm n d (leseq_trans one d n p HO) p)l]
[H2:=(ih n’ H1)] (ex_ind nat [q:nat]
(EX r:nat | (1than r d)/\nn=(plus (times d q) r))

(EX q:nat | (plus d (plus (times d q’) r’))
(EX r:nat | (lthan r d)/\n=(plus (times d q) r))) [n0:nat]
[q’ :nat;

n0=(plus (times d (suc q’)) r’)
(compute q’ r’ d)
(plus d n’)H7) n H8))))H4)H3)H2)H)). QED

H3:(EX r:nat|(lthan r d)/\nn=(plus(times d q’)r))]
(ex_ind nat

[r:nat] (1than r d)/\n’=(plus (times d q’) 1)



4. Challenge: Style “Script”
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Theorem. Euclid : (d:nat) (0<d)->(n:nat) (EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).

Proof.

Intros d p.

LetTac P:=[n:nat]

(EX q:nat| (EX r:nat| (r<d/\n=(d[*]1q[+]1r))))
Apply ’(cv_ind P).

Intro n.

Intro ih.

Unfold before in ih.

Assert ((lthan n d)\/(geq n d)).
Apply ltgeq.

Unfold P.

Intuition.

Exists O.

Exists n.

Split.

Try Assumption.

Rewrite -> times_com.

Try Assumption.

Simpl.

Apply req.

LetTac nn := (n[-]14d).

Assert (lthan nn n).

Unfold nn.

Apply ltm.

Intuition.

Apply (leseq_trans one d n).

e e =

Intuition.
Intuition.
Intuition.
Assert (P nn).
Apply ih.

Try Assumption.
Unfold P in H1.
Pick H1 qq.
Pick H2 rr.
Intuition.
Exists (suc qq).
Exists rr.
Intuition.
Assert ((d[+]nn)=(d[+]1(d[*]1qql[+Irr))).
Apply (f_equal ? 7 (plus d)).
Try Assumption.

Assert ((d[+]nn)=n).

Unfold nn.

R plus_com.

Apply pdmon.

Try Assumption.

Rewrite <- H4.

Rewrite -> H1.

Apply compute.

Qed.



4. Challenge: Style “Script”
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Theorem. Euclid :
(d:nat) (d>0)->(n:nat) (EX q:nat| (EX r:natl| (r<d/\n=(d[*]1ql+]r)))).

Proof.

Intros d p.

LetTac P:=[n:nat] (EX q:nat| (EX r:natl|(r<d/\n=(d[*]ql+]r))))
Apply ’(cv_ind P).

Intro n.

Intro ih.



4. Challenge: Style “Mathmode”

5 LE el e SRR e e S T T e T

e e =

Theorem. Euclid : (d:nat)(d>0)->(n:nat) (EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).

Proof.
Given d.
assume ’d>0.

towards ’(n:nat) (EX q:natl| (EX r:natl| (r<d/\(n=(@d[*1q[+]1r))))).

LetTac P:=[n:nat]

((EX q:nat| (EX r:nat|(r<d/\n=(d[*1q[+]1r))))).
We must prove (n:nat) (P n).
Apply (cv_ind P).

Given n.

assume ’(before n P).
towards (P n).

Remember_in before HO.
We_have ’((n<d) \/ (n>=4d)).
By 1ltgeq.

Intuition.

remember P.

Take O.

Take n.

Split.

Trivial.

RR times_com.

Simpl.

By req.

LetTac nn := (n[-]d).

Then ’( nn <n).

remember nn.

By 1ltm.

Apply (leseq_trans one d n).
Assumption.

Assumption.

We_have ’ (P nn).
Unfold P in HS3.

pick qq H3.

pick rr H4.

Exists (suc qq).
Exists rr.
Intuition.

R times_com.

Simpl.

R times_com.

Assert ((d[+]nn)=n).
Unfold nn.

R plus_com.

Apply pdmon.
Trivial.

RR H3.

R H5.

R plus_com.

RR plus_ass.

We_have ’(d[*]qql[+]d[+]lrr)=(d[*Iqql[+] (d[+]rr)).
R plus_ass.

By req.

RR plus_ass.

Apply (f_equal 7 7 (plus (d[*]qqg))).
R plus_com.

By req.

Qed.



4. Challenge: Style “Math mode”
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Theorem. Euclid :
(d:nat) (d>0)->(n:nat) (EX q:nat| (EX r:natl| (r<d/\n=(d[*]1ql+]r)))).

Proof.

Given d.

assume ’d>0.

towards ’(n:nat) (EX qg:nat| (EX r:nat| (r<d/\(n=(d[*]ql+]r))))).
LetTac P:=[n:nat] ((EX qg:nat| (EX r:nat| (r<d/\n=(d[*]ql[+]r))))).
We must prove (n:nat) (P n).

Apply (cv_ind P).

Given n.

assume ’(before n P).

towards ’(P n).



4. Challenge: “Best Mathematical Style”
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THEOREM. Let deN with O < d. Then
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VneNdq,reN[r < d & n = qd+r].

PROOF. Let deN with 0 < d be given.
Write P(n) :=dq,reN.[r < d & n = qd + 7].

We will show

VneN.P(n)

by course of value induction. So assume

in order to prove P(n).

Vk<n.P(k),

If n < d, then we can take ¢ = 0,7 = n.
If on the other hand n > d, define n1 = n —d.

Then n1 < n by ltm. Therefore P(n1) by (ih).

(ih)

Hence for some ¢g1,71€N one has r1 < d & n1 = q1d + r1.
Take g = q1 +1,r =r1. Then r < d and

n _

d+ (n —d),
d+ nq
d+q1d+ 71

(Q1 + 1)d‘|‘ ri,
qd + .

by lemma pdmon,

by computation,
QED



4. Challenge
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Mathematician-friendly systems for Computer Mathematics can be built

Needed

mathematical mode
libraries
automation

It will take 150 manyear to build them
for the topics of an MA in mathemematics



Logo
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For a Proof-Assistant based on Type Theory with the Poincaré Principle



Propositional Logic
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Introduction Rules

Elimination Rules

I''AF B I'-(A—B) TH+FA
' (A—B) ' B
I'-A I'HB ''-(A& B) TF(A&B)
' (A & B) r-A I'-B
I'-A I'-B '-(AvB) TWA+-C T,BFC
'-r(AvB) T'(AVB) C
Start Rule Absurdum Rule | Classical Negation
Ael | I',-AkF L
—A:=(A—_1)
r-A r-A A




Propositional Logic
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Introduction Rules

Elimination Rules

I'xA+- M : B

' (A\z:A.M) : (A—B)

'Ep:A TI'q: B

'+ {(p,q): (A& B)

'Fp: A I'-p: B

''HrF:(A—-B) T'kFp:A

' (Fp): B

'2z:(A&B) T'kFz:(A& B)

I'z21: A I'2.2: B

'p:(AvB) I'Ne:AFqgq:C T,yBkFr:C

' (in1 p): (AVB) I'k (in2 p): (AV B)

' ([Axz:A.q, \y:B.r]p) : C

Start Rule Absurdum Rule Classical Negation
(z:A)el CEp:l r,—AkF L

—A:=(A—1)
' ax:A [+ (absa p) : A ' A

Propositions-as-types

[A] = {p|pisaproof of A}
[A—B] [A]—[B]
[A & B] [A] x [B]
[Av B 1A]

[l =0

W[B] = {(1,a) | acA} U{(2,0) | bcB}




Propositional Logic in Coq
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Prop type of propositions

False | (p:Prop)...
“p p->False [p:Prop] ...
P/\q  Pp&q
pP\/q  pVq

p<—>q (p—>q)/\(gq—>p)

EXERCISE 1. Prove the following.

“(p\/q)—>"p/\"q
“(p/\@Q—>""Cp\/"q)
“(p—>q)->p/\"q

EXERCISE 2. Idenmn.

T ((p—>q)<—>Cp\/q))
““(p\/"p)

PN/ P<>Cp/\"q))
T P/A\R<>Cp\/"9))

For all p:Prop ...

Ap:Prop.

EXERCISE 3. PROVE ASSUMING TND (CLASSICAL LOGIC)

" (p—>q)<->p/\"q



