
Computer Mathematics

Henk Barendregt
Nijmegen University

The Netherlands

1. Computer Mathematics
2. Status quo
3. Case studies
4. Challenge

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Computer Mathematics: goals

Mathematical activity: defining, computing, proving

Mathematical assistant helps human user:

Representing arbitrary mathematical notions (defining)

Manipulating these (computing)

Proving results about them (proving)

in an impeccable way

Eventually to assist humans to learn and develop mathematics

At present an interesting foundational problem

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Computer Mathematics: method

• Representing “computable” objects

√
2 becomes a symbol α

α2 − 2 becomes 0 α + 1 cannot be simplified

• Representing “non-computable” objects

Hilbert space H, again just a symbol

P (H) := “H is locally compact” is not decidable

But ` p :1 P (H) is decidable (1p is a proof of P (H))

But then we need formalized proofs

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Computer Mathematics: choices

•

Computing

		
		

		
		

		
		

		
		

		
		

	

Reasoning

55
55

55
55

55
55

55
55

55
55

5

•
Ontology

•

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Ontology

Ontology (what objects do there exist?)

Classical mathematics (before the 19-th century)
only needed a few fixed spaces

Modern mathematics needs a wealth of new spaces
and ample energy is devoted to the construction of these

Set Theory has the virtue that it unifies all needed concepts in one framework

Type Theory based on

• inductively defined data types with their

• recursively defined functions and closed under

• function spaces and dependent products

is an interesting alternative

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Ontology: Function and Product Types

Function space types

If A, B are types, then A→B is the type of functions from objects of type A

into objects of type B.

a : A f : (A→B)

(f a) : B

f : (A→B) g : (B→C)

(g ◦ f) : (A→C)

Dependent products
Γ, n:A ` B(n) : type

` Πn:A.B(n) : type

Functional abstraction
λx.f(x)

stands for the function x 7−→ f(x). For example, g ◦ f = λx.g(f(x))

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Ontology, Computing: Inductive Types

Inductive types (freely generated data types)

Natural numbers nat

nat := 0 | S(nat)

nat := 0:nat | S:nat→nat

Primitive recursion over nat: we postulate an f : nat,natk→nat such that

f(0, ~x) = g(~x)
f(S(n), ~x) = h(f(n, ~x), n, ~x)

for g : natk→nat, h : nat,nat,natk→nat.

For example

0 + x = x 0 ∗ x = 0 0! = 1
S(n) + x = S(n + x) S(n) ∗ x = (n ∗ x) + x (S(n))! = n! ∗ (n + 1)

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Ontology, Computing: more Data Types

Other data type: (binary) trees.

tree := leaf:nat→tree | p:tree,tree→tree

Primitive recursion over trees: given g, h we postulate F such that

F (leaf(n), ~x) = g(n, ~x)
F (p(t1, t2), ~x) = h(F (t1, ~x), F (t2, ~x), t1, t2)

For example

mirror(leaf(n)) = leaf(n)
mirror(p(t1, t2)) = p(mirror(t2),mirror(t1))

No need to code such structures into numbers via the Chinese remainder theorem (Gödel)

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Logic

First order rules for →, & , ∨, ¬, ⇔ , ∀x∈U, ∃x∈U

Continuity: ∀ε>0∀x∃δ∀y. . . ., uniform continuity: ∀ε>0∃δ∀x, y. . . .

Second-order rules for ∀X⊆U, ∃X⊆U

An element x in a group G has torsion iff ∃n∈N.xn = e

This definition is not allowed in pure first order logic.

In second-order logic:

∀X⊆G[x∈X & (∀y∈X.xy∈X) ⇒ e∈X]

Higher-order A topology O on U is an element of P(P(U))

Third order statement:

There exists a topology on U such that F is continuous

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Logic: Intuitionism

Brouwer: Aristotelian logic is unreliable

It may promise existence without being able to give a witness

` ∃n∈N.P (n), but 6` P (0), 6` P (1), . . .

Heyting: charted Brouwer’s logic

Gentzen: gave it a nice form

Example of such a P

P (n) ⇔ (n = 0 & GRH) ∨ (n = 1 & ¬GRH)

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

1. Logic: “Intuitionism has become technology” (Constable)

Theorem-classical [No effectiveness]
For every ideal I = (p1, . . . , pn) in Q[~x] there is a Gröbner basis P of I.

Theorem-classical [This does not give the theorem]
There is a Turing machine TM such that for every ideal I = (p1, . . . , pn) in

Q[~x] the result TM(p1, . . . , pn) = P is a Gröbner basis of I.

Theorem-classical [We do not always want to be explicit]
Let TM = 〈〈q0, ..〉, . . .〉. Then TM is a Turing machine and for every ideal

I = (p1, . . . , pn) in Q[~x] the result TM(p1, . . . , pn) = P is a Gröbner basis of I.

Theorem-constructively. [Effectiveness]
For every ideal I = (p1, . . . , pn) in Q[~x] there is a Gröbner basis P of I.

Building an intuitionistic library provides certified tools

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: Proof-assistants

Assistance

proof-development system

proof-

checker

proof-

object

certified

statement

tactics

current context

current goal

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

proof assistant

Reliability?

The de Bruijn criterion: have a small checker.

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: some systems

• Mizar based on classical ZFC

• Isabelle-HOL based on classical higher order logic with λ-terms

• Coq based on impredicative intuitionistic Type Theory

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: Computing vs. proving

Abstract history of mathematics 4000 AD – 2100 AD

Computing Proving

Egyptians, Chinese Thales
Babylonians Eudoxos, Euclid

Archimede
al-Khowârizmı̂

Leibniz Newton
Euler

Cauchy
...

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: Computing vs. proving

The Chinese-Babylonian vs Greek tradition

Chinese-Babylonian: computing

Greek: proving

It took until the 19-th century until the two traditions fully came together

20-th century: a temporary separation

• Computer algebra: Chinese-Babylonian

• Formalization of proofs: Greek

21-st century: synthesis is emerging

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: Towards proofs by computation

Goal to prove
A(t)

Full generalization

First try to prove
∀x.A(x)

obtaining A(t) a fortiori

Example
109 + 910 = 910 + 109

is proved best by first proving

∀x, y∈N.x + y = y + x

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: Proofs by computation

Goal to prove
A(t)

Pattern generalization

Strategy: write t = f(s) with s∈L

and try to prove
∀x∈L.A(f(x))

giving A(f(s)), hence A(t).

This method is particulary powerful if combined with reflection.

But we need to prove f(s) = t.

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: Computing and proving

How does one give formal proofs of

• Computations

(xy − x2 + y2)(x3
− y3 + z3) = x4y − xy4 + xyz3

− x5+
x2y3

− x2z3 + y2x3
− y5 + y2z3.

It is important to formally prove computations, not just for computational
statements, but also for statements involving intuition

• Intuition

Let f : R→R be defined by

f(x) =
ex + e−x

2
+ esin2 x + ecos2 x.

Then f is continuous.

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: sliding styles

The Poincaré Principle:

If f(a) = b, via a computation, then ` f(a) = b axiomatically

The class P of f ’s for which this is postulated may vary

P = ∅ (Isabelle-HOL: ephemeral proofs)

P = {f | prim. rec. over a data type} (Coq)

P = {f | f is representable in a CAS} (PVS)

The Poincaré Principle is in tension with the de Bruijn criterion

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: sliding styles

The Poincaré Principle:

If f(a) = b, via a computation, then ` f(a) = b axiomatically

The class P of f ’s for which this is postulated may vary

P = ∅ (Isabelle-HOL: ephemeral proofs)

P = {f | prim. rec. over a data type} (Coq)

P = {f | f is representable in a CAS} (PVS)

The Poincaré Principle is in tension with the de Bruijn criterion

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: using the Poincaré Principle

log a
2.

// log b

a
��

e−

square
// b

��

e−

a+
f

// b+

a
�� F

// b
��

Logarithms f∈P

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

2. Status quo: using reflection

In our case the map + is not the logarithm but usually of a syntactic coding
nature (reflection): ((x + y)2)+ = sq(plus varx vary) and f is something like
a simplify function on these syntactic expressions. The role of the exp func-
tion is played by the semantic function [[]].

times(minus x y)(plus x y)
smpl.

// minus(sq x)(sq y) ∈L

(x − y)(x + y)
��

[[]]

=provably
// (x2 − y2)

��

[[]]

∈R

In order to apply this freely one has to show

∀e:L.[[e]] = [[smpl e]]

once and for all

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

3. Case studies

Formalized in Coq (intuitionistic proofs)

Theorem 1.
[Formalization: Geuvers, Wiedijk, Zwanenburg, Pollack, Niqui]

Every non-constant polynomial p(x) over C has a root x.

Theorem 2. Collaboration between Coq and GAP
[Formalization: Oostdijk, Caprotti, Elbers]

The number 9026258083384996860449366072142307801963 is a prime.

(Based on Fermat’s little theorem and Pocklington.)

Theorem 3.
[Formalization: Capretta]

Correctness of the Fast Fourier Transform.

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

3. Case studies

Theorem 4. [Formalization: Person, Théry]

Correctness of an efficient Gröbner base algorithm.

Theorem 5. [Formalization: Cruz-Félipe]

Fundamental theorem of calculus

Theorem 6. [Formalization: Danos, Gonthier, Werner]

Main lemma for the four colour theorem.

For this, Coq needed an overdrive: compilation rather than interpretation

This compiler was proved correct in the simpler version of Coq

romantic Cool Super cool

Maths Human mind Coq Compiled Coq

Biology Human eye Light microscope Electronic microscope

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge: to construct a mathematician-friendly assistant

And to formalize substantial parts of mathematics Start with undergraduate
mathematics

Needed

Libraries: theories, algorithms.

Estimated development time: 140 manyear (7M$)

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challange: Friendly proof-assistant

Aspects of mathematics are being ‘programmed’ in the proofs

Proof-objects

• Formalism Automath-68

• Calculism ACL2

• Logicism HOL

• Platonism Mizar

• Formal Intüıtionism Coq

[• Best Style not yet implemented]

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge: Style “λ-term”

Theorem. Euclid : ∀d>0, n ∃q, r[r<d & n = qd + r].

Proof.

[d:nat; p:(d>0)]

[P:=[n:nat]

(EX q:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))]

(cv_ind P

[n:nat; ih:(before n P)]

[H:=(ltgeq n d)]

(or_ind (lthan n d) (geq n d)

(EX q:nat | (EX r:nat | (lthan r d)/\n=(plus (times d q) r)))

[H0:(lthan n d)]

(ex_intro nat

[q:nat](EX r:nat | (lthan r d)/\n=(plus (times d q) r))

0 (ex_intro nat

[r:nat](lthan r d)/\n=(plus (times d 0) r) n

(conj (lthan n d) n=(plus (times d 0) n) H0

(eq_ind_r nat (times 0 d) [n0:nat]n=(plus n0 n)

(req nat n) (times d 0) (times_com d 0)))))

[H0:(geq n d)] [n’:=(monus n d)]

[H1:=(ltm n d (leseq_trans one d n p H0) p)]

[H2:=(ih n’ H1)](ex_ind nat [q:nat]

(EX r:nat | (lthan r d)/\nn=(plus (times d q) r))

(EX q:nat |

(EX r:nat | (lthan r d)/\n=(plus (times d q) r)))

[q’:nat;

H3:(EX r:nat|(lthan r d)/\nn=(plus(times d q’)r))]

(ex_ind nat

[r:nat](lthan r d)/\n’=(plus (times d q’) r)

(EX q:nat |(EX r:nat|(lthan r d)/\n=(plus(times d q)r)))

[r’:nat; H4:((lthan r’ d)/\n’=(plus (times d q’) r’))]

(and_ind (lthan r’ d) n’=(plus (times d q’) r’)

(EX q:nat|(EX r:nat|(lthan r d)/\n=(plus (times d q) r)))

[H5:(lthan r’ d); H6:(n’=(plus (times d q’) r’))]

(ex_intro nat [q:nat]

(EX r:nat | (lthan r d)/\n=(plus (times d q) r))

(suc q’) (ex_intro nat

[r:nat]

(lthan r d)/\n=(plus (times d (suc q’)) r) r’

(conj (lthan r’ d)

n=(plus (times d (suc q’)) r’) H5

[H7:=(f_equal nat nat (plus d) n’

(plus (times d q’) r’) H6)]

[H8:=(eq_ind_r nat (plus (monus n d) d)

[n0:nat]n0=n (pdmon n d H0)

(plus d (monus n d))

(plus_com d (monus n d)))]

(eq_ind nat (plus d n’)

[n0:nat]n0=(plus (times d (suc q’)) r’)

(eq_ind_r nat

(plus d (plus (times d q’) r’))

[n0:nat]

n0=(plus (times d (suc q’)) r’)

(compute q’ r’ d)

(plus d n’)H7) n H8))))H4)H3)H2)H)). QED

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge: Style “Script”

Theorem. Euclid : (d:nat)(0<d)->(n:nat)(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).
Proof.

Intros d p.

LetTac P:=[n:nat]

(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r))))

Apply ’(cv_ind P).

Intro n.

Intro ih.

Unfold before in ih.

Assert ((lthan n d)\/(geq n d)).

Apply ltgeq.

Unfold P.

Intuition.

Exists 0.

Exists n.

Split.

Try Assumption.

Rewrite -> times_com.

Try Assumption.

Simpl.

Apply req.

LetTac nn := (n[-]d).

Assert (lthan nn n).

Unfold nn.

Apply ltm.

Intuition.

Apply (leseq_trans one d n).

Intuition.

Intuition.

Intuition.

Assert (P nn).

Apply ih.

Try Assumption.

Unfold P in H1.

Pick H1 qq.

Pick H2 rr.

Intuition.

Exists (suc qq).

Exists rr.

Intuition.

Assert ((d[+]nn)=(d[+](d[*]qq[+]rr))).

Apply (f_equal ? ? (plus d)).

Try Assumption.

Assert ((d[+]nn)=n).

Unfold nn.

R plus_com.

Apply pdmon.

Try Assumption.

Rewrite <- H4.

Rewrite -> H1.

Apply compute.

Qed.

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge: Style “Script”

Theorem. Euclid :

(d:nat)(d>0)->(n:nat)(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).

Proof.

Intros d p.

LetTac P:=[n:nat](EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r))))

Apply ’(cv_ind P).

Intro n.

Intro ih.

....

....

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge: Style “Mathmode”

Theorem. Euclid : (d:nat)(d>0)->(n:nat)(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).
Proof.

Given d.

assume ’d>0.

towards ’(n:nat)(EX q:nat|(EX r:nat|(r<d/\(n=(d[*]q[+]r))))).

LetTac P:=[n:nat]

((EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r))))).

We must prove (n:nat)(P n).

Apply (cv_ind P).

Given n.

assume ’(before n P).

towards ’(P n).

Remember_in before H0.

We_have ’((n<d) \/ (n>=d)).

By ltgeq.

Intuition.

remember P.

Take 0.

Take n.

Split.

Trivial.

RR times_com.

Simpl.

By req.

LetTac nn := (n[-]d).

Then ’(nn <n).

remember nn.

By ltm.

Apply (leseq_trans one d n).

Assumption.

Assumption.

We_have ’(P nn).

Unfold P in H3.

pick qq H3.

pick rr H4.

Exists (suc qq).

Exists rr.

Intuition.

R times_com.

Simpl.

R times_com.

Assert ((d[+]nn)=n).

Unfold nn.

R plus_com.

Apply pdmon.

Trivial.

RR H3.

R H5.

R plus_com.

RR plus_ass.

We_have ’(d[*]qq[+]d[+]rr)=(d[*]qq[+](d[+]rr)).

R plus_ass.

By req.

RR plus_ass.

Apply (f_equal ? ? (plus (d[*]qq))).

R plus_com.

By req.

Qed.

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge: Style “Math mode”

Theorem. Euclid :

(d:nat)(d>0)->(n:nat)(EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r)))).

Proof.

Given d.

assume ’d>0.

towards ’(n:nat)(EX q:nat|(EX r:nat|(r<d/\(n=(d[*]q[+]r))))).

LetTac P:=[n:nat]((EX q:nat|(EX r:nat|(r<d/\n=(d[*]q[+]r))))).

We must prove (n:nat)(P n).

Apply (cv_ind P).

Given n.

assume ’(before n P).

towards ’(P n).

....

....

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge: “Best Mathematical Style”

Theorem. Let d∈ � with 0 < d. Then

∀n∈ � ∃q, r∈ � [r < d & n = qd + r].

Proof. Let d∈ � with 0 < d be given.
Write P (n) := ∃q, r∈ � .[r < d & n = qd + r].
We will show

∀n∈ � .P (n)

by course of value induction. So assume

∀k<n.P (k), (ih)

in order to prove P (n).
If n < d, then we can take q = 0, r = n.
If on the other hand n ≥ d, define n1 = n −̇d.
Then n1 < n by ltm. Therefore P (n1) by (ih).
Hence for some q1, r1∈ � one has r1 < d & n1 = q1d + r1.
Take q = q1 + 1, r = r1. Then r < d and

n = d + (n −̇d), by lemma pdmon,

= d + n1

= d + q1d + r1

= (q1 + 1)d + r1, by computation,

= qd + r. QED

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

4. Challenge

Mathematician-friendly systems for Computer Mathematics can be built

Needed

mathematical mode
libraries
automation

It will take 150 manyear to build them
for the topics of an MA in mathemematics

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

Logo

•

R

��
��
��
��
��
�

∀

--
--

--
--

--
-

λ
•

Π
•

For a Proof-Assistant based on Type Theory with the Poincaré Principle

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

Propositional Logic

Introduction Rules Elimination Rules

Γ, A ` B

Γ ` (A→B)

Γ ` (A→B) Γ ` A

Γ ` B

Γ ` A Γ ` B

Γ ` (A & B)

Γ ` (A & B)

Γ ` A

Γ ` (A & B)

Γ ` B

Γ ` A

Γ ` (A ∨ B)

Γ ` B

Γ ` (A ∨ B)

Γ ` (A ∨ B) Γ, A ` C Γ, B ` C

C

Start Rule Absurdum Rule Classical Negation

A∈Γ

Γ ` A

Γ ` ⊥

Γ ` A

Γ,¬A ` ⊥

Γ ` A

¬A:=(A→⊥)

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

Propositional Logic

Introduction Rules Elimination Rules

Γ, x:A ` M : B

Γ ` (λx:A.M) : (A→B)

Γ ` F : (A→B) Γ ` p : A

Γ ` (Fp) : B

Γ ` p : A Γ ` q : B

Γ ` 〈p, q〉 : (A & B)

Γ ` z : (A & B)

Γ ` z.1 : A

Γ ` z : (A & B)

Γ ` z.2 : B

Γ ` p : A

Γ ` (in1 p) : (A ∨ B)

Γ ` p : B

Γ ` (in2 p) : (A ∨ B)

Γ ` p : (A ∨ B) Γ, x:A ` q : C Γ, y:B ` r : C

Γ ` ([λx:A.q, λy:B.r]p) : C

Start Rule Absurdum Rule Classical Negation

(x:A)∈Γ

Γ ` x:A

Γ ` p : ⊥

Γ ` (absA p) : A

Γ,¬A ` ⊥

Γ ` A

¬A:=(A→⊥)

Propositions-as-types

[[A]] = {p | p is a proof of A}
[[A→B]] = [[A]]→[[B]]
[[A & B]] = [[A]] × [[B]]
[[A ∨ B]] = [[A]]

⊎
[[B]] = {〈1, a〉 | a∈A} ∪ {〈2, b〉 | b∈B}

[[⊥]] = ∅

——————————————————————————————————–
HB MRI Masterclass Computer Mathematics Nijmegen, Spring 2003

Propositional Logic in Coq

Prop type of propositions

False ⊥ (p:Prop)... For all p:Prop ...

~p p->False [p:Prop]... λp:Prop. ...

p/\q p&q

p\/q p∨q
p<->q (p->q)/\(q->p)

Exercise 1. Prove the following.

~(p\/q)->~p/\~q

~(p/\q)->~~(~p\/~q)

~(p->q)->p/\~q

Exercise 2. Idem.

~~((p->q)<->(~p\/q))

~~(p\/~p)

~~(~(p\/q)<->(~p/\~q))

~~(~(p/\q)<->(~p\/~q))

Exercise 3. Prove assuming tnd (classical logic)
~(p->q)<->p/\~q

