


Lambda Calculus, Week 4

In-class problems

1. Draw the Böhm-trees of the following terms.
 - (a) KISS.
 - (b) SSS.
 - (c) $H\mathbf{c}_0$ with $Hnx \rightarrow_\beta \langle x, H(\mathbf{S}^+n)(zx) \rangle$. Write down such an H .
2. Find terms with the following Böhm-trees.

3. Show that there is a term P having the following BT.

Take-home problems

1. Construct a term $M \in \Lambda^\emptyset$ such that its $BT(Mx)$ is the binary tree with at each node an x .
2. Goldbach's conjecture is the statement G

Every even number $n > 3$ is the sum of two primes

- (a) Show that there is a term M such that $BT(M)$ is finite iff G .
- (b) Show that there is a term N such that $BT(N)$ is finite iff $\neg G$.

3. Show that λ with any of the following axioms becomes inconsistent, i.e. one can derive any equation.
 - (a) $I = K$.
 - (b) $I = S$.
 - (c) $K = S$.
 - (d) $\Delta = K$, with $\Delta := \lambda x. xx$.
 - (e)* [Jacopini] $I = (\lambda x. xxx)(\lambda x. xxx)$.
[By contrast adding the axiom $I = \Delta\Delta$ is consistent.]