Course Lambda calculus: Answers exam 4.6.2012.

1. Let A be a II3 statement of arithmetic, i.e. A is of the form
Vady.P(x,y)

with z,y ranging over N and P (primitive) recursive. For example
Goldbach’s conjecture

“Every even number > 2 is the sum of two primes”

is such a statement. Purpose of this exercise is to construct A-terms
M 4, Mo such that

BT(My4) = BT (M) <= A is valid (1)

(a) Let Kp be the characteristic function of P. Construct a closed
A-term H such that

He,c,, = co if Kp(n,m)=1
Hc,(cpmy1) else.

What is BT(Hc,co), depending on n?

Answer. As P is a recursive predicate, its characteristic function Kp is
A-definable, by say Fp.

Fpcnc,, = ¢y, if P(n,m),
= ¢y, else.

Taking Fp = Anm.EFpnm/(KK)(KI) we get

Fie,c,, = K, if P(n,m),
= KI, else.

By the fixed point theorem there exists a term H such that
H = Anm.Fpnmeg(Hn(m + 1)),
where m + 1 = Afz.f(mfz). Indeed we kan take

H =Y (Ahnm.Fpnmco(hn(m + 1)).

1



Then

Hc,cy = co, if P(n,0),
= Hc,cq, else,
Co, if P(n, ].),

Hc,co, else,

Therefore

BT(Hc,co) = BT(cy), if Im.P(n,m),
= 1 if =3m.P(n, m).

(b) Construct a closed A-term G

Ge,x = z(Hcuco)(Gepi2)
MA = GCO

Answer. The term G can be constructed by the fixed point theorem.
Note that BT (M) is

A\T.T

N
/\

where B, = BT(Hc,cy).

(c¢) Construct a A-term M, such that (1) holds and prove this.

Answer. Using the fixed point theorem there exists a term

Mire = A\x.xCo( Mipye ).



Then BT(Miyue) is

N
7

BT(C())

\,

C())

C())

.

BT(M4) = BT (M) < A is valid

By (a) and (b) one has

2. For simple types A define [[A]] as follows.

[[0]] = SN ={M € A| M is strongly normalizing}
[A— B]] = {FeA|VN €][A]].FN € [[B]]}

(a) Do we have for arbitrary M € A and simple types A

(VN.M —5 N = N € [[A]) < M € [[A])?

Answer. Yes. We prove this by induction on A.

Case A = 0. Then [[A]] = SN. If M € [[4]], then M is SN. Let
M —5 N. Suppose N has an infinite reduction path; then so has
M, quod non.

Case A= B — C. Let M € [[A]]. Then by definition of [[A]]
VP € [[B]].MP € [[B]].

Suppose M —g N. Then also M P —3 NP. Hence
VP e [[B].NP € [[B]],

by the Induction Hypothesis on B. Therefore N € [[A]].



(b) Do we have for arbitrary M € A and simple types A
(VN.M —3 N = N € [[A]]) = M € [[A])?

[Hint. Consider M = A\x.zz.]

Answer. Suppose the implication is correct. Then M € [[0 — 0]], as M
is in nf and therefore we have (VN.M —3 N = N € [[0 — 0]]).
Also M € [[0]] as it is SN. Therefore by definition MM € [[0]],
quod non as it isn’t normalizing: M —z M

3. We want to prove in Coq that 0 # 1. In Coq we already have the
following constants:

Prop : Type
False : Prop
True : Prop

I+ True

not : Prop — Prop
eq @ VA:Type.A— A — Prop
refl_ equal : VA :Type.Vx: A eqAzxx
eq.ind : VA:Type.Vx:AVP:A — Prop. Pr —Vy:A.eqAzy — Py

nat : Type
O : nat
S : nat — nat

nat_rect : VP :nat — Type. PO — (Vn :nat. Pn — P(Sn)) — Vn : nat. Pn

and (among others) the following reduction rules:

nat_rect PGHO —»35 G
nat_rect PGH(Sn) —»gs, Hn (nat_rect PGHn)

Finally not is defined as:
not := AA:Prop. A — False

Now define four Coq terms:



(a) A term f_equal with type:
fequal : VAB:Type.Vf:A— B.Vry:AeqAzy — eqB(fz)(fy)

This says that if x = y then also fx = fy.
(Hint: use eq_ind with a well-chosen P.)

Answer. fequal := MAB:Type. A\f: A— B.Ax: A.
eqiind Az (\y: A.eqB(fz) (fy)) (refl_equal B (fx)).

(b) A term g with type
g : nat — Prop
that satisfies:

True ifn=0

False otherwise

g(S"0) =gs {

Show that this term indeed satisfies the given equations.
(Hint: use nat_rect with a well-chosen P.)

Answer. g := nat_rect (An : nat.Prop) True (An : nat. A\r : Prop. False).
(c¢) A term h with type

h : eqProp True False — False

This says that from True = False it follows that False is inhabited.
(Hint: again use eq-ind, and use that | inhabits True.)

Answer. h := eq.ind Prop True (Ax : Prop.z) | False.
(d) A term neq_0_1 with type

neq 0.1 : not(eqnatO(SO))

This says that 0 # 1.

(Hint: use the previous three terms. You do not need to spell them
out again, but can just refer to them by name. If you didn’t suc-
ceed in defining some of the previous terms, you are still allowed
to use them in this final term.)

Answer. neq-0.1 := AH :eqnatO (SO).h (f_equal nat Prop g O (S50) H).



