
5. Self-reflection

We present the following fact with a proof depending on another fact.

5.1. Fact. Let x, y be to distinct variables (e.g. x, x′ or x′′, x′′′). Then

x 6=λ y.

Proof. Use Fact 4.17. If x =l y, then x has two normal forms: itself and y.

5.2. Application. K 6=λ I.

Proof. Suppose K = I. Then

x = Kxy

= I Kxy

= K Ixy

= Iy

= y,

a contradiction.

5.3. Application. There is no term P1 such that P1(xy) =λ x.

Proof. If P1 would exist, then as Kxy = x = Ix one has

Kx = P1((Kx)y) = P1(Ix) = I.

Therefore we obtain the contradiction

x = Kxy = Iy = y.

In a sense this is a pity. The agents, that lambda terms are, cannot separate
two of them that are together. When we go over to codes of lambda terms the
situation changes. The situation is similar for proteins that cannot always cut
into parts another protein, but are able to have this effect on the code of the
proteins, the DNA.

Data types

Before we enter the topic of coding of lambda terms, it is good to have a look
at some datatypes.

Context-free languages can be considered as algebraic data types. Consider
for example

S → 0
S → S+

This generates the language

Nat = {0, 0+, 0++, 0+++, . . .}

37

that is a good way to represent the natural numbers

0, 1, 2, 3, . . .

Another example generates binary trees.

S → ♠
S → •SS

generating the language that we call Tree. It is not necessary to use parentheses.
For example the words

•♠ • ♠♠
• • ♠♠♠
• • ♠♠ • ♠♠

are in Tree. With parentrheses and commas these expressions become more
readable for humans, but these auxiliary signs are not necessary:

•(♠, •(♠,♠))
•(•(♠,♠),♠)
•(•(♠,♠), •(♠,♠))

These expressions have as ‘parse trees’ respectively the following:

•

||
||
||
||

AA
AA

AA
AA

♠ •

~~
~~
~~
~~

AA
AA

AA
AA

♠ ♠

•

}}
}}
}}
}}

DD
DD

DD
DD

•

~~
~~
~~
~~

@@
@@

@@
@@

♠

♠ ♠

•

ww
ww
ww
ww
ww
ww

FF
FF

FF
FF

FF
FF

•

®®
®®
®®
®®

44
44

44
44

•

®®
®®
®®
®®

44
44

44
44

♠ ♠ ♠ ♠
One way to represent as lambda terms such data types is as follows.

5.4. Definition. (Böhm and Berarducci)
(i) An element of Nat, like 0++ will be represented first like

s(sz)

and then like
λsz.s(sz).

If n is in Nat we write n for this lambda term. So 2 ≡ λsz.s(sz),
3 ≡ λsz.s(s(sz)). Note that n ≡ λsz.snz ≡ Cn.

38

(ii) An element of Tree, like •♠ • ♠♠ will be represented first by

bs(bss)

and then by
λbs.bs(bss).

This lambda term is denoted by •♠ • ♠♠ , in this case. In general a tree t in
Tree will be represented as lambda term t .

Now it becomes possible to compute with trees. For example making the
mirror image is performed by the term

Fmirror ≡ λtbs.t(λpq.bqp)s.

The operation of enting one tree at the endpoints of another tree is performed
by

Fenting ≡ λt1t2bs.t1b(t2bs).

The attentive reader is advised to make exercises 5.4 and 5.5.

Tuples and projections

For the efficient coding of lambda terms as lambda terms a different represen-
tation of datatypes is needed. First we find a way to connect terms together in
such a way, that the components can be retrieved easily.

5.5. Definition. Let ~M ≡ M1, . . . , Mn be a sequence of lambda terms. Define

〈M1, . . . , Mn〉 ≡ λz.zM1, . . . , Mn.

Here the variable z should not be in any of the M ’s. Define

Un
i ≡ λx1, . . . , xn.xi.

5.6. Proposition. For all natural numbers i, n with 1 ≤ i ≤ n, one has

〈M1, . . . , Mn〉Un
i = Mi.

5.7. Corollary. Define P n
i ≡ λz.zUn

i . Then P n
i 〈M1, . . . , Mn〉 = Mi.

Now we introduce a new kind of binary trees. At the endpoints there is not a
symbol ♠ but a variable x made into a leaf Lx. Moreover, any such tree may
get ornamented with a !. Such binary trees we call labelled trees or simply
ltrees.

5.8. Definition. The data type of ltrees is defined by the following context-free
grammar. The start symbol is ltree.

ltree → L var

ltree → P ltree ltree

ltree → ! ltree
var → x
var → var′

39

A typical ltree is !P !Lx!!P !LxLy or more readably !P (!Lx, !!P (!Lx, Ly)). It can
be representated as a tree as follows.

!P

yy
yy
yy
yy

EE
EE

EE
EE

!Lx !!P

zz
zz
zz
zz

CC
CC

CC
CC

!Lx Ly

We say that for ltree there are three constructors. A binary constructor P that
puts two trees together, and two unary constructors L and !. L makes from a
variable an ltree and ! makes from an ltree another one.

Now we are going to represent these expressions as lambda terms.

5.9. Definition. (Böhm, Piperno and Guerrini)
(i) We define three lambda terms FL, FP , F! to be used for the representation
of ltree.

FL ≡ λxe.eU3
1 xe;

FP ≡ λxye.eU3
2 xye;

F! ≡ λxe.eU3
3 xe.

These definitions are a bit more easy to understand if written according to their
intended use (do exercise 5.7).

FLx = λe.eU3
1 xe;

FP xy = λe.eU3
2 xye;

F!x = λe.eU3
3 xe.

(ii) For an element t of ltree we define the representing lambda term t .

Lx = FLx;

Pt1t2 = FP t1 t2 ;

!t = F! t .

Actually this is just a mnemonic. We want that the representations are normal
forms, do not compute any longer.

Lx ≡ λe.eU3
1 xe;

Pt1t2 ≡ λe.eU3
2 t1 t2 e;

!t ≡ λe.eU3
3 t e.

The representation of the data was chosen in such a way that computable
function on them can be easily represented. The following result states that
there exist functions on the represented labelled trees such that their action on
a composed tree depend on the components and that function in a given way.

40

5.10. Proposition. Let A1, A2, A3 be given lambda terms. Then there exists a
lambda term H such that11.

H(FLx) = A1xH

H(FP xy) = A2xyH

H(F!x) = A3xH

Proof. We try H ≡ 〈〈B1, B2, B3〉〉 where the ~B are to be determined.

H(FLx) = 〈〈B1, B2, B3〉〉(FLx)

= FLx〈B1, B2, B3〉
= 〈B1, B2, B3〉U3

1 x〈B1, B2, B3〉
= U3

1 B1, B2, B3x〈B1, B2, B3〉
= B1x〈B1, B2, B3〉
= A1xH,

provided that B1 ≡ λxb.A1x〈b〉. Similarly

H(FP xy) = B2xy〈B1, B2, B3〉
= A2xyH,

provided that B2 ≡ λxyb.A2xy〈b〉. Finally,

H(F!x) = B3x〈B1, B2, B3〉
= A3xH,

provided that B3 ≡ λxb.A3x〈b〉.

Stil we have as goal to represent lambda terms as lambda terms in nf, such
that decoding is possible by a fixed lambda term. Moreover, finding the code of
the components of a term M should be possible from the code of M , again using
a lambda term. To this end the (represented) constructors of ltree, FL, FP , F!,
will be used.

5.11. Definition. (Mogensen) Define for a lambda term M its code M as
follows.

x ≡ λe.eU3
1 xe = FLx;

MN ≡ λe.eU3
2 M N e = FP M N ;

λx.M ≡ λe.eU3
3 (λx. M)e = F!(λx. M).

11A weaker requirement is the following, where H of a composed ltree depends on H of the
components in a given way:

H(FLx) = A1x(Hx)

H(FP xy) = A2xy(Hx)(Hy)

H(F!x) = A3x(Hx)

This is called primitive recursion, whereas the proposition provides (general) recursion.

41

The trick here is to code the lambda with lambda itself, one may speak of
an inner model of the lambda calculus in itself. Putting the ideas of Mogensen
[1992] and Böhm et al. [1994] together, as done by Berarducci and Böhm [1993],
one obtains a very smooth way to create the mechanism of reflection the lambda
calculus. The result was already proved in Kleene [1936]12.

5.12. Theorem. There is a lambda term E (evaluator or self-interpreter) such
that

E x = x;

E MN = E M (E N);

E λx.M = λx.(E M).

It follows that for all lambda terms M one has

E M = M.

Proof. By Proposition 5.10 for arbitary A1, . . . , A3 there exists an E such that

E(FLx) = A1xE;

E(FP mn) = A2mnE;

E(F!p) = A3pE.

If we take A1 ≡ K, A2 ≡ λabc.ca(cb) and A3 ≡ λabc.b(ac), then this becomes

E(FLx) = x;

E(FP mn) = Em(En);

E(F!p) = λx.(E(px)).

But then (do exercise 5.9)

E(x) = x;

E(MN) = E M (E N);

E(λx.M) = λx.(E(M)).

That E is a self-interpreter, i.e. E M = M , now follows by induction on M .

5.13. Corollary. The term 〈〈K, S, C〉〉 is a self-interpreter for the lambda cal-
culus with the coding defined in Definition 5.11.

Proof. E ≡ 〈〈B1, B2, B3〉〉 with the ~B coming from the A1 ≡ K, A2 ≡
λabc.ca(cb) and A3 ≡ λabc.b(ac). Looking at the proof of 5.10 one sees

B1 = λxz.A1x〈z〉
= λxz.x

= K;

12But only valid for lambda terms M without free variables.

42

B2 = λxyz.A2xy〈z〉
= λxyz.〈z〉x(〈z〉y)

= λxyz.xz(yz)

= S;

B3 = λxz.A3x〈z〉
= λxz.(λabc.b(ac))x〈z〉
= λxz.(λc.xcz)

≡ λxzc.xcz

≡ λxyz.xzy

≡ C, see exercise 4.6.

Hence E = 〈〈K, S, C〉〉.

This term
E = 〈〈K, S, C〉〉

is truly a tribute to

Kleene, Stephen Cole

(1909-1994)

(using the family-name-first convention familiar from scholastic institutions)
who invented in 1936 the first self-interpreter for the lambda calculus13.

The idea of a language that can talk about itself has been heavily used with
higher programming languages. The way to translate (‘compile’) these into ma-
chine languages is optimized by writing the compiler in the language itself (and
run it the first time by an older ad hoc compiler). This possibility of efficiently
executed higher programming languages was first put into doubt, but was re-
alized by mentioned reflection since the early 1950-s and other optimalizations.
The box of Pandora of the world of IT was opened.

The fact that such extremely simple (compared to a protein like titin with
slightly less than 27000 aminoacids) self interpreter is possible gives hope to
understand the full mechanism of cell biology and evolution. In Buss and
Fontana [1994] evolution is modelled using lambda terms.

Exercises

5.1. Show that

K 6=λ S;

I 6=λ S.
.

13Kleene’s construction was much more involved. In order to deal with the ‘binding effect’
of λx lambda terms where first translated into CLbefore the final code was obtained. This
causes some technicalities that make the original E more complex.

43

5.2. Show that there is no term P2 such that P2(xy) =λ y.

5.3. Construct all elements of Tree with exactly four ♠s in them.

5.4. Show that

Fmirror •♠ • ♠♠ = • • ♠♠♠ ;

Fmirror • • ♠♠♠ = •♠ • ♠♠ ;

Fmirror • • ♠♠ • ♠♠ = • • ♠♠ • ♠♠ .

5.5. Compute Fenting •♠ • ♠♠ • • ♠♠♠ .

5.6. Define terms P n
i such that for 1 ≤ i ≤ n one has

Pn
i 〈M1, . . . , Mn〉 = Mi.

5.7. Show that the second set of three equations in definition 5.9 follows from
the first set.

5.8. Show that given terms A1, A2, A3 there exists a term H such that the
scheme of primitive recurion, see footnote 5.10 is valid.

5.9. Show the last three equations in the proof of Theorem 5.12.

5.10. Construct lambda terms P1 and P2 such that for all terms M, N

P1 MN = M & P2 MN = N.

44

References

Alberts, B. et al. [1997]. The Cell, Garland.

Barendregt, H. P. [1984]. The Lambda Calculus, its Syntax and Semantics,
Studies in Logic and the Foundations of Mathematics 103, revised edition,
North-Holland Publishing Co., Amsterdam.

Barendregt, H. P. [1997]. The impact of the lambda calculus in logic and
computer science, Bull. Symbolic Logic 3(2), pp. 181–215.

Berarducci, Alessandro and Corrado Böhm [1993]. A self-interpreter of lambda
calculus having a normal form, Computer science logic (San Miniato,
1992), Lecture Notes in Comput. Sci. 702, Springer, Berlin, pp. 85–99.

Blackmore, S. [2004]. Consciousness, an Introduction, Oxford University Press,
Oxford.

Böhm, Corrado, Adolfo Piperno and Stefano Guerrini [1994]. λ-definition
of function(al)s by normal forms, Programming languages and systems—
ESOP ’94 (Edinburgh, 1994), Lecture Notes in Comput. Sci. 788, Springer,
Berlin, pp. 135–149.

Buss, L.W. and W. Fontana [1994]. ‘the arrival of the fittest’: Toward a theory
of biological organization, Bulletin of Mathematical Biology 56(1), pp. 1–
64.

Chalmers, D. [1996]. The Conscious Mind, Towards a Fundamental Theory,
Oxford University Press, Oxford.

Chomsky, N. [1956]. Three models of the description of language, IRE Trans-
actions on Information Theory 2(3), pp. 113–124.

Church, A. [1932]. A set of postulates for the foundation of logic, Annals of
Mathematics, second series 33, pp. 346–366.

Church, A. [1936]. An unsolvable problem of elementary number theory, Amer-
ican Journal of Mathematics 58, pp. 345–363.

Curry, H. B. [1930]. Grundlagen der kombinatorischen Logic,, American Jour-
nal of Mathematics 52, pp. 509–536, 789–834.

Dennet, D. [1993]. Consciousness Explained, Penguin Books.

Goldstein, J. [1983]. The Experience of Insight, Shambhala.

Hofstadter, D. [1979]. Gödel Escher Bach, An Eternal Golden Braid, Harvester
Press.

Howe, D. [1992]. Reflecting the semantics of reflected proof, Proof Theory, ed.
P. Aczel, Cambridge University Press, pp. 229–250.

45

Kleene, S. C. [1936]. Lambda-definability and recursiveness, Duke Mathematical
Journal 2, pp. 340–353.

Kozen, Dexter C. [1997]. Automata and computability, Undergraduate Texts in
Computer Science, Springer-Verlag, New York.

Menninger, K., M. Mayman and P. Pruyser [1963]. The Vital Balance. The
Life Process in Mental Health and Illness, Viking.

Mogensen, Torben Æ. [1992]. Efficient self-interpretation in lambda calculus,
J. Funct. Programming 2(3), pp. 345–363.

Peitsch, M.C., D.R. Stampf, T.N.C. Wells and J.L. Sussman [1995]. The swiss-
3dimage collection and pdb-browser on the world-wide web, Trends in
Biochemical Sciences 20, pp. 82–84. URL: <www.expasy.org>.

Schönfinkel, M. [1924]. Über die Bausteine der mathematischen Logik, Mathe-
matische Annalen 92, pp. 305–316.

Smullyan, R. [1992]. Gödel’s Incompleteness Theorems, Oxford University
Press.

Stapp, H. [1996]. The hard problem: A quantum approach, Journal of Con-
sciousness Studies 3(3), pp. 194–210.

Tarski, A. [1933/1995]. Introduction to Logic, Dover.

Turing, A.M. [1936]. On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society,
Series 2 42, pp. 230–265.

Yates, M. [1998]. What computers can’t do, Plus 5.
URL: <plus.maths.org/issue5/index.html>.

46

<plus.maths.org/issue5/index.html>

