Reflection Languages and Lambda Calculus

(QUICK REFERENCE

Henk Barendregt
Nijmegen Universiteit

Schakelblok Informatica
Winter 2004

Reflectie (1)

Actoren: domein van actieve objecten

Codes: zelf meestal passief; decodering tot actoren
niet noodzakelijkerwijs in domein

Interactie: actoren —— codes

N

decodering
Onderwerp || Actoren Codes
Biologie eiwitten DNA
Taal zinsdelen ‘citaten’
Wiskunde uitspraken ‘citaten’
Informatica || berekenbare functies programma’s
Meditatie bewustzijnsinhouden opmerkzaamheid

Reflectie (2)

Globale terugkoppeling

Actoren ° Structuren

e Processen (extern, intern)

/]

® (odes
decodering

door actoren

Kracht en keerzijde van reflectie

Onderwerp || ‘nuttig’ effect | ‘ongewenst’ effect

Biologie leven virussen

Taal homo sapiens | paradoxen

Wiskunde wetenschap essentiéle onbewijsbaarheid
Informatica || IT essentiéle onberekenbaarheid

Meditatie zuivering verwarring

Talen (1)

Een alfabet X is een verzameling van symbolen. Een woord (string) over 3 is een eindig
rijtje elementen uit X. De verzameling X" bestaat uit alle woorden over . Een taal over
Y. is een deelverzameling L C X",

Operaties op woorden. Laat a€X een symbool, u, v€X™ woorden en L, L1, Lo C ™ talen
zijn. Dan is ua€X™ het woord u met erachter het symbool a; uveX™ is het woord dat
ontstaat door achter u het woord v te plaatsen; L1 U Ly C X* is de taal bestaande uit
de woorden in L; tezamen met die uit Ls. L™ bestaat uit de collectie verkregen door een
willekeurig aantal woorden uit L achter elkaar te plakken.

Reguliere expressies over ::

exp::=0|e|a|expexp|expUexp]| (exp)”

Voor een reguliere expressie e definieren we de taal L(e) over X:

L@ = 0
e = o)
Leres) = L(ex)L(es)
L(61 U 63) = L(€1> U L<€2>
L((e)") = L(e)

Een taal L heet regulier als L = L(e) voor een reguliere expressie e.

Talen (2)

Een context vrije taal L over > wordt gegenereerd door productieregels van de vorm

X —w

met X€V en we(X U V)*. De elementen van V heten hulpsymbolen. Er is een SeV
(start). L wordt uit deze regels gekregen m.b.v. de relatie =™ gedefinieerd alsvolgt (er
geldt u, v, w,z,yc(ZUV)™):

X —-w = zXy=" zwy
u="v, =" w = U= w

Tenslotte is
L ={weX" | S =" w}.

Notatie. X — w; | ws staat voor

X—>w1

X — w2
De context gevoelige talen gaan uit van productie regels van de vorm
Xy — zwy,

waarbij w # €.

Bij de opsombare talen daarentegen mag w = €.

Talen (3): Chomsky hiérarchie

Een taal L heet recursief (berekenbaar) als zowel L als L = X* — L. opsombaar zijn. Laten
R, CF, CS, Rec, Ops notaties zijn voor de reguliere, context vrije, context gevoelige, re-
cursieve en opsombare talen, respectivelijk. Dan R C CF C CS C Rec C Ops.

® [44

o {a” | p is prime}
o {a"b"c" | n > 0}

o {a"b" |n >0}

o L((ab™)")

R

CF
e English? CS

Rec

The Chomsky hierarchy

Talen (4): Klein deel van het Engels als CF taal

S = (sentence
(sentence
(noun — phrase
(name

(noun

(article

(verb

(adverb
(adjective — list
(adjective
(object — phrase

)
)
)
)
)
)
(verb — phrase)
)
)
)
)
)
)

(object — phrase

I e

(noun — phrase)(verb — phrase).
(noun — phrase)(verb — phrase)(object — phrase).
(name) | {article)(noun)

John | Jill

bicycle | mango

a | the

(verd) | (adverb){verb)

eats | rides

slowly | frequently
(adjective)(adjective — list) | €
big | juicy | yellow

(adjective — list) (name)

(article){adjective — list) (noun)

Combinatory Logic (1)

ECL — {IaKa S,CU,/,)7 (}

(constant) — I|K|S

(variable) — x| (variable)’

(term) — (constant) | (variable) | ((term) (term))
We use z,v,z,...,%0,%0,20,-.-,%1,Y1,21,... to denote variables
PQR,... XY Z ... to denote terms
C to denote a constant I, K or S
PQ1...Qn to denote (..((PQ1)Q2) ...Qn)

The theory CL consists of statements P =c1, @ (or just P = Q) axiomatized by

1P —cr P
KPQ =c1. P
SPQR =cL. PR(QR)

Define D = SII Then Dz =CL I (doubling)
B = S(KSK Bfgr =cL f(gx) (composition)
L = D(BDD) L =c1. LL (self-doubling, life!)

Combinatory Logic (2)

The tree of a CL-term

M tree(M)

T T

C C

Y / '\
tree(P) tree(Q)

Making abstractions in CL.
P [XNzP or better p Nz P
x I x I
Y Ky P, x ¢ FV(P) | KP
c Kc QR, zeFV(P) | S(A*z.Q)(A*z.R)
Q

S(A*z.Q)(*x.R)

Lambda calculus (1)

Y ={z,", \,), (} (just one symbol more than the DNA alphabet)

Lambda terms

(variable) — x| (variable)’
(term) — (variable) | (A(variable) (term)) | ((term) (term))

Axiom (M|[Z := N] denotes the result of substituting the N for the & in M)

(Ax.M)N =) M|x := N]| (B-rule)

Conventions. z,vy,z,...and M, N, L, ... denote arbitrary variables and terms respectively.
M = N means that M, N are literally the same lambda term.

MNi...N, = (.((MN1)N3)...Np) association to the left
A1 ... M = (Axi(Az2(..(Azn(M))..)))) association to the right
AC1...xn. M = Ay1...yn.Mz1,...,Tn = Y1, .., Yn] renaming ‘bound’ variables
One has

()\f.M):Z: = M

\E.M)N = M][z:= N]

We like to abbreviate an expression like bX (c(Xa)) as Cla, b, c, X]. Such an expression
C|...] is called a context. C'|yi,...,yn, x| will be abbreviated as Cy, x].

Lambda calculus (2)

THEOREM. For every lambda term F' there exists a lambda term X such that
FX =, X.
Given F. Define W = Az.F(xzx) and X = WW. Then

X WWw
x F(WW)

FX.

COROLLARY. Given a context C|y, x]. Then there exists a term X such that

Xy =xCly, X].
Hence for all terms P = Pi,..., P,
XP =, C[P, X].

APPLICATIONS. There are L,O,P,Z such that L=y LL, Ox = O, P=y Pl, Zz =, zZ.
Let F°A= A, F"™' A = F(F"A); define the Church numerals c,, = Afa.f"a. Then

(Anmfanf(mfa))cnCm =x Cntm.

Arbitrary computable operations on numbers can be lambda defined similarly.

Reflection in lambda calculus (1)

DEFINITION. A redex is a lambda term of the form (Az.M)N.

A term M is a normal form (nf) if M does not contain a redex.
A term M has a nfif M =5 N and N is a nf.

FacT. Every lambda term has at most one nf.

Hence = #, 2/, K # |I.

COROLLARY. There are no terms P;, P> such that

Pi(xy) = x or Pa(zy) = y.

DATA TYPES.

nat — z | s(nat)

tree — b | P tree tree

ltree — L var | P ltree ltree | !ltree
var — x| var’

Bohm-Berarducci (BB) representation of first two data types.
Asz.s"z (Church numerals); A\bP.Pb(Pbb), A\bP.P(Pbb)(Pbb).
We have seen the representation of addition on nat.

Mirroring on tree: Fuirror = AtbP.tbP’, where P’ = \ab.Pba.
Then Fiirror (ADP.Pb(Pbb)) =x AbP.P(Pbb)b.

Reflection in lambda calculus (2)

Nz.zMy ... M,,.
AL ...Tn . Tj-

Tuples and projections: (Mi,..., My)
Ui*

Then <M1,,Mn>UZn =\ M;.

Bohm-Piperno-Guerrini (BPG) representation of third data type.

Define Fr. = Azxe.eUjze; or more mnemonical Frx =y Je.eUizxe;
Fp = Jxye.eUszye; Fpxy =x Xe.eUszye;
F =)we.eU?‘?xe. Fix ==\)\€.€U§’CL’€.
Now define Lx =\ Frx; orinnf Lz =)\e.eUf’ace;
Pt1t2 = Fp t1 tQ ; Ptltg = le. €U2 t1 t2 €,
It =\ K t. It = J)e. eU3 t e.

PROPOSITION. Let A, As, As be given lambda terms. Then there exists a H such that

H(FLQZ) = Ale; Hint. Try H = <<B1,BQ,B;3>>.
H(Fpxy) =x AsxyH;

H(Fiz) =\ AsxzH.
APPLICATION. There exists an H that erases the I's in an 1ltree.
H(Frx) =\ Frzx, take A1 = Azh.Frx;

H(Fpxy) =x Fp(Hzx)(Hy), take As = Azyh.Fp(hx)(hy);
H(Fix) =x Hrz, take A3 = Axh.hzx.

Reflection in lambda calculus (3)

Coding lambda terms as other lambda terms in nf (Mogensen).

)\e.eUf:):e =\ Frx;

xr =
MN = XeeUs M Ne =, Fp M N
e M = deeUs(A\x. M e = F(\x. M).

By the above proposition there exists a lambda term E (self-interpreter) such that

Ex =\ =
EMN = EM (EN);
EX e M =5 M. EM).

Hence for all lambda terms M one has
EM =\ M.
Following the construction one can take E = ((K, S, C)).
There exists lambda terms P;, P> such that
PP MN =y M and P, MN =, N .
There exists a lambda term () such that

Q MN L =, ML .

Reflection revisited

The last slide shows that reflection gives power. We can select from the code of a term
(but not from the term itself) or we can replace part of it by the code of another term.

THEOREM. For all lambda terms F' there is a lambda term X such that
F X =, X.
APPLICATION. There is a term H such that

Hc,, = c3n if n iIs even;
Hc, G H c, else.

Typical use of reflection actually happens during translation (so called compiling) of higher
programming languages into machine code. Often the compiler of the higher programming
language is written in that language itself. In order to run that compiler the first time,

one needs an older (usually less efficient) compiler in another language.

