
Reflection Languages and Lambda Calculus

Quick Reference

Henk Barendregt
Nijmegen Universiteit

Schakelblok Informatica

Winter 2004

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Reflectie (1)
—————————————————————————————
Actoren: domein van actieve objecten

Codes: zelf meestal passief; decodering tot actoren
niet noodzakelijkerwijs in domein

Interactie: actoren // codes

decodering

[[

Onderwerp Actoren Codes
Biologie eiwitten DNA
Taal zinsdelen ‘citaten’
Wiskunde uitspraken ‘citaten’
Informatica berekenbare functies programma’s

Meditatie bewustzijnsinhouden opmerkzaamheid

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Reflectie (2)
—————————————————————————————
Globale terugkoppeling

Actoren
((PPPPPPPP

ÃÃA
AA

AA
AA

AA
A // • Structuren

• Processen (extern, intern)

•
decodering

door actoren

SS

Codes

Kracht en keerzijde van reflectie

Onderwerp ‘nuttig’ effect ‘ongewenst’ effect
Biologie leven virussen
Taal homo sapiens paradoxen
Wiskunde wetenschap essentiële onbewijsbaarheid
Informatica IT essentiële onberekenbaarheid
Meditatie zuivering verwarring

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Talen (1)
—————————————————————————————
Een alfabet Σ is een verzameling van symbolen. Een woord (string) over Σ is een eindig
rijtje elementen uit Σ. De verzameling Σ∗ bestaat uit alle woorden over Σ. Een taal over
Σ is een deelverzameling L ⊆ Σ∗.

Operaties op woorden. Laat a∈Σ een symbool, u, v∈Σ∗ woorden en L,L1, L2 ⊆ Σ
∗ talen

zijn. Dan is ua∈Σ∗ het woord u met erachter het symbool a; uv∈Σ∗ is het woord dat
ontstaat door achter u het woord v te plaatsen; L1 ∪ L2 ⊆ Σ∗ is de taal bestaande uit
de woorden in L1 tezamen met die uit L2. L

∗ bestaat uit de collectie verkregen door een
willekeurig aantal woorden uit L achter elkaar te plakken.

Reguliere expressies over Σ:

exp ::= ∅ | ε | a | exp exp | exp ∪ exp | (exp)∗

Voor een reguliere expressie e definieren we de taal L(e) over Σ:

L(∅) = ∅
L(ε) = {ε}
L(a) = {a}

L(e1e2) = L(e1)L(e2)
L(e1 ∪ e2) = L(e1) ∪ L(e2)

L((e)∗) = L(e)∗

Een taal L heet regulier als L = L(e) voor een reguliere expressie e.

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Talen (2)
—————————————————————————————
Een context vrije taal L over Σ wordt gegenereerd door productieregels van de vorm

X → w

met X∈V en w∈(Σ ∪ V)∗. De elementen van V heten hulpsymbolen. Er is een S∈V
(start). L wordt uit deze regels gekregen m.b.v. de relatie ⇒∗ gedefinieerd alsvolgt (er
geldt u, v, w, x, y∈(Σ ∪ V)∗):

X → w ⇒ xXy ⇒∗ xwy

u⇒∗ v, v ⇒∗ w ⇒ u⇒∗ w

Tenslotte is
L = {w∈Σ∗ | S ⇒∗ w}.

Notatie. X → w1 | w2 staat voor

X → w1

X → w2

De context gevoelige talen gaan uit van productie regels van de vorm

xXy → xwy,

waarbij w 6= ε.

Bij de opsombare talen daarentegen mag w = ε.

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Talen (3): Chomsky hiërarchie
—————————————————————————————
Een taal L heet recursief (berekenbaar) als zowel L als L = Σ∗−L opsombaar zijn. Laten
R, CF, CS, Rec, Ops notaties zijn voor de reguliere, context vrije, context gevoelige, re-
cursieve en opsombare talen, respectivelijk. Dan R ⊆ CF ⊆ CS ⊆ Rec ⊆ Ops.

• L((ab∗)∗)

R

CF

• {anbn | n > 0}

CS

• {anbncn | n > 0}

Rec

• {ap | p is prime}

Ops

• L44

• English?

The Chomsky hierarchy

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Talen (4): Klein deel van het Engels als CF taal
—————————————————————————————

S = 〈sentence〉 → 〈noun− phrase〉〈verb− phrase〉.

〈sentence〉 → 〈noun− phrase〉〈verb− phrase〉〈object− phrase〉.

〈noun− phrase〉 → 〈name〉 | 〈article〉〈noun〉

〈name〉 → John | Jill

〈noun〉 → bicycle | mango

〈article〉 → a | the

〈verb− phrase〉 → 〈verb〉 | 〈adverb〉〈verb〉

〈verb〉 → eats | rides

〈adverb〉 → slowly | frequently

〈adjective− list〉 → 〈adjective〉〈adjective− list〉 | ε

〈adjective〉 → big | juicy | yellow

〈object− phrase〉 → 〈adjective− list〉〈name〉

〈object− phrase〉 → 〈article〉〈adjective− list〉〈noun〉

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Combinatory Logic (1)
—————————————————————————————
ΣCL = {I,K,S, x, ′,), (}

〈constant〉 → I | K | S

〈variable〉 → x | 〈variable〉′

〈term〉 → 〈constant〉 | 〈variable〉 | (〈term〉 〈term〉)

We use x, y, z, . . . , x0, y0, z0, . . . , x1, y1, z1, . . . to denote variables
P,Q,R, . . . ,X, Y, Z, . . . to denote terms
c to denote a constant I,K or S

PQ1 . . . Qn to denote (..((PQ1)Q2) . . . Qn)

The theory CL consists of statements P =CL Q (or just P = Q) axiomatized by

IP =CL P
KPQ =CL P
SPQR =CL PR(QR)

Define D ≡ SII

B ≡ S(KS)K
L ≡ D(BDD)

Then Dx =CL xx (doubling)
Bfgx =CL f(gx) (composition)
L =CL LL (self-doubling, life!)

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Combinatory Logic (2)
—————————————————————————————
The tree of a CL-term

M tree(M)

x x

c c

(PQ) •

wwwwwwwww

GGGGGGGGG

tree(P) tree(Q)

Making abstractions in CL.

P λ∗x.P

x I

y Ky
c Kc

QR S(λ∗x.Q)(λ∗x.R)

or better P λ∗x.P

x I

P, x /∈ FV(P) KP

QR, x∈FV(P) S(λ∗x.Q)(λ∗x.R)

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Lambda calculus (1)
—————————————————————————————
Σλ = {x,

′, λ,), (} (just one symbol more than the DNA alphabet)

Lambda terms

〈variable〉 → x | 〈variable〉′

〈term〉 → 〈variable〉 | (λ〈variable〉 〈term〉) | (〈term〉 〈term〉)

Axiom (M [~x := ~N] denotes the result of substituting the ~N for the ~x in M)

(λx.M)N =λ M [x := N] (β-rule)

Conventions. x, y, z, . . . andM,N,L, . . . denote arbitrary variables and terms respectively.
M ≡ N means that M,N are literally the same lambda term.

MN1 . . . Nn ≡ (..((MN1)N2) . . . Nn) association to the left

λx1 . . . xn.M ≡ (λx1(λx2(..(λxn(M))..)))) association to the right

λx1 . . . xn.M ≡ λy1 . . . yn.M [x1, . . . , xn := y1, . . . , yn] renaming ‘bound’ variables

One has
(λ~x.M)~x = M

(λ~x.M) ~N = M [~x := N]

We like to abbreviate an expression like bX(c(Xa)) as C[a, b, c,X]. Such an expression

C[. . .] is called a context. C[y1, . . . , yn, x] will be abbreviated as C[~y, x].

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Lambda calculus (2)
—————————————————————————————
Theorem. For every lambda term F there exists a lambda term X such that

FX =λ X.

Given F . Define W ≡ λx.F (xx) and X ≡WW . Then

X ≡ WW
≡ (λx.F (xx))W
=λ F (WW)
≡ FX.

Corollary. Given a context C[~y, x]. Then there exists a term X such that

X~y =λ C[~y,X].

Hence for all terms ~P =λ P1, . . . , Pn

X ~P =λ C[~P ,X].

Applications. There are L,O,P,Z such that L=λ LL, Ox =λ O, P=λ PI, Zx =λ xZ.

Let F 0A ≡ A, Fn+1A ≡ F (FnA); define the Church numerals cn ≡ λfa.fna. Then

(λnmfa.nf(mfa))cn cm =λ cn+m.

Arbitrary computable operations on numbers can be lambda defined similarly.

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Reflection in lambda calculus (1)
—————————————————————————————

Definition. A redex is a lambda term of the form (λx.M)N .

A term M is a normal form (nf) if M does not contain a redex.

A term M has a nf if M =λ N and N is a nf.

Fact. Every lambda term has at most one nf.

Hence x 6=λ x
′, K 6=λ I .

Corollary. There are no terms P1, P2 such that

P1(xy) = x or P2(xy) = y.

Data types. nat → z | s(nat)

tree → b | P tree tree

ltree → L var | P ltree ltree | !ltree

var → x | var′

Böhm-Berarducci (BB) representation of first two data types.

λsz.snz (Church numerals); λbP.Pb(Pbb), λbP.P (Pbb)(Pbb).

We have seen the representation of addition on nat.

Mirroring on tree: Fmirror ≡ λtbP.tbP ′, where P ′ ≡ λab.Pba.

Then Fmirror(λbP.Pb(Pbb)) =λ λbP.P (Pbb)b.

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Reflection in lambda calculus (2)
—————————————————————————————
Tuples and projections: 〈M1, . . . ,Mn〉 ≡ λz.zM1 . . .Mn.

Un
i ≡ λx1 . . . xn.xi.

Then 〈M1, . . . ,Mn〉U
n
i =λ Mi.

Böhm-Piperno-Guerrini (BPG) representation of third data type.

Define FL ≡ λxe.eU3
1xe;

FP ≡ λxye.eU3
2xye;

F! ≡ λxe.eU3
3xe.

or more mnemonical FLx =λ λe.eU3
1xe;

FPxy =λ λe.eU3
2xye;

F!x =λ λe.eU3
3xe.

Now define Lx =λ FLx;
Pt1t2 =λ FP t1 t2 ;
!t =λ F! t .

or in nf Lx ≡ λe.eU3
1xe;

Pt1t2 ≡ λe.eU3
2 t1 t2 e;

!t ≡ λe.eU3
3 t e.

Proposition. Let A1, A2, A3 be given lambda terms. Then there exists a H such that

H(FLx) =λ A1xH;
H(FPxy) =λ A2xyH;
H(F!x) =λ A3xH.

Hint. Try H ≡ 〈〈B1, B2, B3〉〉.

Application. There exists an H that erases the !’s in an ltree.

H(FLx) =λ FLx, take A1 ≡ λxh.FLx;

H(FPxy) =λ FP (Hx)(Hy), take A2 ≡ λxyh.FP (hx)(hy);

H(F!x) =λ Hx, take A3 ≡ λxh.hx.

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Reflection in lambda calculus (3)
—————————————————————————————
Coding lambda terms as other lambda terms in nf (Mogensen).

x ≡ λe.eU3
1xe =λ FLx;

MN ≡ λe.eU3
2 M N e =λ FP M N ;

λx.M ≡ λe.eU3
3 (λx. M)e =λ F!(λx. M).

By the above proposition there exists a lambda term E (self-interpreter) such that

E x =λ x;

E MN =λ E M (E N);

E λx.M =λ λx.(E M).

Hence for all lambda terms M one has

E M =λ M.

Following the construction one can take E ≡ 〈〈K , S , C〉〉.

There exists lambda terms P1, P2 such that

P1 MN =λ M and P2 MN =λ N .

There exists a lambda term Q such that

Q MN L =λ ML .

—————————————————————————————
HB Schakelblok Informatica 2-13 februari, 2004

Reflection revisited
—————————————————————————————
The last slide shows that reflection gives power. We can select from the code of a term
(but not from the term itself) or we can replace part of it by the code of another term.

Theorem. For all lambda terms F there is a lambda term X such that

F X =λ X.

Application. There is a term H such that

H cn = c3n if n is even;

H cn = G H cn else.

Typical use of reflection actually happens during translation (so called compiling) of higher

programming languages into machine code. Often the compiler of the higher programming

language is written in that language itself. In order to run that compiler the first time,

one needs an older (usually less efficient) compiler in another language.

