
Semantics and Strong Normalization

Part I

Semantics

Set-theoretic semantics

We start with a family of sets {Xα}α∈A.

I The types A ∈ T are interpreted thus:

JαK = Xα

JA→ BK = {f : JAK→ JBK} (= JBKJAK)

I If Γ ` t : A, then JtK : JΓK→ JAK, where

Jx1:A1, . . . , xn:AnK = JA1K× · · · × JAnK

I In particular, if ` t : A, then JtK is an element of JAK.

Set-theoretic semantics

Let Γ = {x1:A1, . . . , xn:An}.
The interpretation JtK proceeds by induction on t:

I Γ ` xi : Ai . Then

JxiK : JA1K× · · · × JAnK
πi−→ JAiK

JxiK~a = ai

I Γ ` st : B by Γ ` s : A→B and Γ ` t : A. Then, for
(a1, . . . , an) ∈ JΓK, JsK~a ∈ JBKJAK, and JtK~a ∈ JAK.

JstK~a = JsK~a(JtK~a)

I Γ ` t : A→ B by Γ, x :A ` t : B. Then

Jλx :A.tK : JΓK→ JA→ BK
Jλx :A.tK~a = a 7→ JtK(~a; a)

example

Example

Suppose A = {o}, and let Xo = N. Then

Jo → oK = {f : N→ N} = NN

J(o → o)→ (o → o)K = {Φ : NN → NN} = (NN)N
N

Jλx :o.xK = JIK = (n 7→ n) = IdN ∈ NN

Jλx :o→o λy :o.x(xy)K = Jc2K = (f 7→ f ◦ f) ∈ (NN)N
N

A typed lambda term of type A→ B should be interpreted as a
morphism between mathematical structures A and B.
How can we capture this generality?

Categories

I A category C consists of
I a collection C0 of objects

(representing some mathematical structure), and
I a collection C1 of structure-preserving morphisms

(between objects in C0)

I The collection of morphisms from object A to object B is
denoted as C (A,B). (Also popular: Hom(A,B), Mor(A,B))

I One writes f : A→ B if f ∈ C (A,B).

Categories

I Examples

C0 C (A,B)

Sets {f : A→ B}
Groups {h : A→ B | h(a1a2) = h(a1)h(a2)}
Top. spaces {f : A→ B | f −1U open if U open}
Vector spaces {L : A→ B | L(ax + by) = aL(x) + bL(y)}
Posets {m : A→ B | a ≤ a′ =⇒ m(a) ≤ m(a′)}

Categories

Axioms for a category:

I For every object X , there is a morphism IdX : X → X .

I For morphisms f : X → Y and g : Y → Z , there is the
composition morphism

g ◦ f : X → Z

I For f : A→ X , g : X → B, the identity map IdX satisfies

f = IdX ◦ f and g = g ◦ IdX

I The composition operation satisfies:

(f ◦ g) ◦ h = f ◦ (g ◦ h)

Universal properties

Many constructions of classical mathematics are characterized by
their mapping properties:

I The free group on a set

I The Stone-Cech compactification of a space

I The algebraic closure of a field

I The Cauchy-completion of a metric space

These are non-trivial examples.
However, even the most elementary constructs of the language of
mathematics can be captured by the “categorical perspective.”

A puzzle

What is the universal mapping property of the singleton set {∗}
(a set 1 with only one element ∗ ∈ 1)?

Answer: For any set X , there is exactly one map c∗ : X → 1.
(The constant map with value ∗.)

A puzzle

What is the universal mapping property of the singleton set {∗}
(a set 1 with only one element ∗ ∈ 1)?
Answer: For any set X , there is exactly one map c∗ : X → 1.
(The constant map with value ∗.)

Puzzle no. 2

For two sets A,B, what is the universal property of the product
A× B?

Answer: there are maps π1 : A× B → A, and π2 : A× B → B,
such that any pair of maps f : C → A and g : C → B can be
factored through the product:

C
f ↙ ↓ (f , g) ↘ g

A
π1← A× B

π2→ B

Puzzle no. 2

For two sets A,B, what is the universal property of the product
A× B?
Answer: there are maps π1 : A× B → A, and π2 : A× B → B,
such that any pair of maps f : C → A and g : C → B can be
factored through the product:

C
f ↙ ↓ (f , g) ↘ g

A
π1← A× B

π2→ B

I In Set Theory, the natural numbers are defined as

N :=
⋂
{X | ∅ ∈ X , n ∈ X ⇒ n ∪ {n} ∈ X}

I Up to isomorphism, the natural numbers are determined by
any set N which is freely generated from a distinguished
element 0 ∈ N and a function S : N → N.

I The condition of being “freely generated” states the universal
property of the natural numbers: for any set X ,
given an element x0 ∈ X and a function xS : X → X ,
there is a canonical map h : N → X (it is given by recursion).

natural numbers

This leads to the notion of a natural numbers object.

Definition
Let N ∈ C0 come with maps z : 1→ N, s : N → N such that, for
any other object X with maps b : 1→ X and f : X → X , there
exists a unique map i : N → X satisfying

i ◦ z = b

i ◦ s = f ◦ i

Such an N is called a natural numbers object (nno).

Function space

We have now seen abstract categorical descriptions of

I Singletons (generally, terminal objects)

I Products

I Natural numbers

To interpret the simply typed lambda calculus, we need the notion
of a “function space” object. The appropriate categorical setting
for this is that of Cartesian closed categories.
Idea: we want a category where, for any pair of objects A,B,
there is another object “A→ B” which in a natural way represents
C (A,B), the collection of maps from A to B.

CCCs

Let C be a category with a terminal object 1.
C is a Cartesian category if, for any two objects A,B,
there is an object A× B with the following properties:

I there are maps π1 : A× B → A and π2 : A× B → B,

I for any pair of maps f : C → A, g : C → B, there exists a
unique map (f , g) : C → A× B such that

π1 ◦ (f , g) = f

π2 ◦ (f , g) = g

I In other words, the following diagram commutes, for any f , g :

TheStupidDiagramGoesHere

CCC

Let C be a Cartesian category.

I C is a Cartesian closed category if, for any two objects Y , Z ,
there is an object ZY and a canonical isomorphism

{f : X × Y → Z} ⇐⇒ {g : X → ZY }
f (x , y) ←→ (x 7→ fx(y))

I Taking X = ZY and g = IdZY yields the evaluation map

evY ,Z : ZY × Y → Z

Examples

C0 A× B BA

Sets A× B {f : A→ B}
Top. Spaces X × Y , product topology C (X ,Y), compact-open topology

Posets X × Y , product order C (X ,Y), ordered pointwise

Categorical Semantics

Let C be a ccc.
The simply typed lambda calculus is interpreted as follows.
Types are interpreted by objects of C :

I Choose Xα ∈ C0 for each α ∈ A
I A ∈ T is interpreted by induction

I JαK = Xα

I JA→ BK = JBKJAK

A context Γ = {x1:A1, . . . , xn:An} is interpreted by the product

JΓK = JA1K× · · · × JAnK

A term t of type A in the context Γ is interpreted by an arrow

JtK : JΓK→ JAK

In particular, a closed term is interpreted by an arrow 1→ JAK.

Categorical Semantics
Let Γ = {x1:A1, . . . , xn:An}.
The interpretation JtK proceeds by induction on t:

I Γ ` xi : Ai . Then

JxiK : JA1K× · · · × JAnK
πi−→ JAiK

I Γ ` st : B by Γ ` s : A→B and Γ ` t : A. Then

JstK : JΓK
(JsK,JtK)
−−−−→ JBKJAK × JAK

evJAK,JBK
−−−−→ JBK

I Γ ` t : A→B by Γ, x :A ` t : B. Then

Jλx :A.tK : JΓK −→ JBKJAK

is the transpose of

JΓK× JAK
JtK−→ JBK

cccs

Relationship between syntax and semantics.

I “Cartesian closed categories are the canonical semantic
universe of the simply typed lambda calculus. Conversely, the
internal language of Cartesian closed categories is that of
simple type theory.”

I There is a subtlety: CCCs have more structure than the
function space between two types: they also have products
and a terminal object (which acts as the unit element for the
product).

I Questsion: what should we add to the system of types and
terms in order to have the full language of cccs?

Simple type theory
Any type theory consists of three components

I Syntax:

T ::= α T→ T

t ::= x λx :T.t | t t

I Typing rules:
(x :A) ∈ Γ

(Ax)
Γ ` x :A

Γ, x :A ` r :B
(→I)

Γ ` λx :A.r : A→B

Γ ` s:A→B Γ ` t:A
(→E)

Γ ` st:B

I Computation rules:

β : (λx :A.r)a = r [a/x]

Simple type theory
Any type theory consists of three components

I Syntax:

T ::= α T→ T T× T

t ::= x λx :T.t | t t (t, t) | π1t | π2t

I Typing rules:
(x :A) ∈ Γ

(Ax)
Γ ` x :A

Γ, x :A ` r :B
(→I)

Γ ` λx :A.r : A→B

Γ ` s:A→B Γ ` t:A
(→E)

Γ ` st:B

Γ ` s:A Γ ` t:B
(×I)

Γ ` (s, t) : A×B
Γ ` p : A×B

(×1E)
Γ ` π1p : A

Γ ` p : A×B
(×2E)

Γ ` π2p : B

I Computation rules:

β : (λx :A.r)a = r [a/x]

π : πi (a1, a2)= ai i ∈ {1, 2}

Simple type theory
Any type theory consists of three components

I Syntax:

T ::= α T→ T T× T N

t ::= x λx :T.t | t t (t, t) | π1t | π2t 0 | St | ITtt

I Typing rules:
(x :A) ∈ Γ

(Ax)
Γ ` x :A

Γ, x :A ` r :B
(→I)

Γ ` λx :A.r : A→B

Γ ` s:A→B Γ ` t:A
(→E)

Γ ` st:B

Γ ` s:A Γ ` t:B
(×I)

Γ ` (s, t) : A×B
Γ ` p : A×B

(×1E)
Γ ` π1p : A

Γ ` p : A×B
(×2E)

Γ ` π2p : B

(N0I)
Γ ` 0 : N

Γ ` n : N
(NS I)

Γ ` Sn : N
Γ ` b : X Γ ` f : X→X

(NE)
Γ ` IXbf : N→ X

I Computation rules:

β : (λx :A.r)a = r [a/x]

π : πi (a1, a2)= ai i ∈ {1, 2}
ι : IXbf 0= b

ι : IXbf (Sn)= f (IXbfn)

Type theory provides a uniform term language for concepts defined
abstractly by their universal properties.

I The map appearing in the universal property of the natural
numbers, technically called the iteration functional

IXbf 0 = b

IXbf (Sn) = f (IXbfn)

is not sufficient to define the predecessor function.

I But one can use the product (present in any ccc) to define it
using Kleene’s laughing gas trick:

Predn = π2(IN×N (0, 0) (λp:N×N.(S(π1p), π1p)) n)

It is more natural to simply allow f to know the iteration step n.
This results in the principle of primitive recursion:

Γ ` b : X Γ ` f : N→ X → X
(NE)

Γ ` RXbf : N→ X

with reduction rules:

RXbf 0 = b

RXbf (Sn) = fn(RXbfn)

With a recursor, the predecessor can be defined directly

Predn = RX 0 (λnx .n)

Induction

When X : N→ ∗ is a type which depends on the recursed variable,
the dependence of f on n cannot be avoided:

Γ ` b : X 0 Γ ` f : ∀n:N.Xn→X (Sn)
(NE)

Γ ` IndXbf : ∀n:N.Xn

This is the induction principle. It is much more powerful than the
(non-dependent) recursion principle.
(Roughly, recursion says that N is a weakly initial {0, S}-algebra,
i.e. that the universal morphism exists; induction also says that it is
unique — that N is the “standard model” of Peano axioms.)

Dependent eliminators

Check nat_rect.

> nat_rect

: forall P : nat -> Type,

P 0 -> (forall n : nat, P n -> P (S n))

-> forall n : nat, P n

Any inductive definition has a corresponding induction principle,
giving the dependent version of its universal mapping property.

Puzzle no.3

What is the dependent elimination rule for the product type A×B?

Hint. The projection operators πi can be replaced by a
“product recursor”

RA×B
X : (A→ B → X)→ A× B → X

RA×B
X h (a, b) = hab

This presents A× B as an inductive type.
Answer: Allowing X to be a dependent type over A× B
(so that X : A× B → ∗) yields

prod_rect

: forall (A B : Type) (P : A * B -> Type),

(forall (a : A) (b : B), P (a, b))

-> forall p : A * B, P p

Puzzle no.3

What is the dependent elimination rule for the product type A×B?
Hint. The projection operators πi can be replaced by a
“product recursor”

RA×B
X : (A→ B → X)→ A× B → X

RA×B
X h (a, b) = hab

This presents A× B as an inductive type.

Answer: Allowing X to be a dependent type over A× B
(so that X : A× B → ∗) yields

prod_rect

: forall (A B : Type) (P : A * B -> Type),

(forall (a : A) (b : B), P (a, b))

-> forall p : A * B, P p

Puzzle no.3

What is the dependent elimination rule for the product type A×B?
Hint. The projection operators πi can be replaced by a
“product recursor”

RA×B
X : (A→ B → X)→ A× B → X

RA×B
X h (a, b) = hab

This presents A× B as an inductive type.
Answer: Allowing X to be a dependent type over A× B
(so that X : A× B → ∗) yields

prod_rect

: forall (A B : Type) (P : A * B -> Type),

(forall (a : A) (b : B), P (a, b))

-> forall p : A * B, P p

The function type A→B is not inductive.
The map on types (A,B 7→ A→B) is not monotone in the first
argument: as A gets bigger, A→ B will generally get smaller.
So the universal property instead goes via the adjunction

Mor(C × A,B) ∼= Mor(C ,A→ B)

(The negatively-occurring C encodes the context.)

Puzzle for the break:
How could a dependent version of this property be formulated?
(IOW, what is the “dependent elimination principle” for the simply
typed lambda calculus?)

The function type A→B is not inductive.
The map on types (A,B 7→ A→B) is not monotone in the first
argument: as A gets bigger, A→ B will generally get smaller.
So the universal property instead goes via the adjunction

Mor(C × A,B) ∼= Mor(C ,A→ B)

(The negatively-occurring C encodes the context.)
Puzzle for the break:
How could a dependent version of this property be formulated?
(IOW, what is the “dependent elimination principle” for the simply
typed lambda calculus?)

Part II
Strong Normalization

Logical Relations

Solution to the puzzle:
For every type A ∈ T, we are given a predicate PA : A→ ∗
on terms of type A.
That is, we are given P : ∀A:T.A→∗
The “elimination principle” specifies which conditions guarantee
that PA will hold of all terms of type A.
Its conclusion has type ∀A : T ∀a : A.PAa
P(A→B)f holds for a term f : A→ B if

∀a:A.PAa→ PB(fa)

Logical Relations

Definition
A predicate P : ∀A:T.A→∗ is a logical relation if

P(A→B)f ⇐⇒ ∀a:A.PAa→ PB(fa)

If P is a logical relation, then

I P holds of an application st provided P(A→B)s and PAt

I P holds of an abstraction λx :A.t provided PAa⇒ PBt[x :=a]

Logical Relations

The variables of the context Γ now add hypotheses PΓ:
If Γ = x1:A1, . . . , xn:An, the typing Γ ` t : A eliminates into

∀(a1:A1, . . . , an:An) PA1a1 ∧ · · · ∧ PAnan ⇒ PAt[~x :=~a]

Theorem
Let P be a logical relation. Let Γ ` t : A.
If PAixi holds for each (xi :Ai) ∈ Γ, then PAt holds.

Strong Normalization

Three fundamental pillars of type theory:

I Church–Rosser: M = N ⇐⇒ M � Z � N
(“Consistency of computation”)

I Subject Reduction: Γ ` M : A, M � N =⇒ Γ ` N : A
(“Consistency between computation and logic”)

I Strong Normalization: Γ ` M : A =⇒ SN(M)
(“Consistency of logic”)

Strong Normalization

Assume Γ ` M : A.
To show: there is no infinite reduction sequence starting from M

M → M ′ → M ′′ → · · ·

Clearly, if t is strongly normalizing, then λx :A.t is too.
But why should application preserve SN?
(ω = λx .xx is a normal form, but Ω = ωω is unsolvable.)
The induction has to be higher-order: logical relations.

By induction on A, define the predicate CompA : A→ ∗:
I Compαt := SN(t)

I CompA→B f := ∀a:A.CompAa⇒ CompB(fa)

By definition, Comp is a logical relation.

Lemma

1. CompAt =⇒ SN(t).

2. ~t ∈ SN =⇒ CompAx~t

Proof.
For atomic types α, both points are trivial.
For function types A→ B, we suppose given f : A→ B such that,
if CompA holds at a:A, then CompB(fa). In particular, CompB(fx).
By inductive hypothesis, SN(fx). Hence SN(f).
Now let ~t ∈ SN, and suppose that CompAa. By inductive
hypothesis, we have SN(a), and thus also CompB(x~ta). Hence

CompA→B(x~t)

SN

Theorem
Γ ` t : A =⇒ SN(t)

Proof.
By 2, every variable of any type is computable. Hence, the
hypotheses CompΓ is satisfied for every Γ ` t : A. By the
logical-relations theorem, we have CompAt. By 1, SN(t).

Lemma
CompA(r [x :=s]~t), r , s,~t ∈ SN =⇒ CompA((λx .r)s~t).

Proof.
When α is atomic, this is just

r , s,~t, r [x :=s]~t ∈ SN =⇒ (λx .r)s~t ∈ SN

Given r , s,~t ∈ SN, suppose that CompA→B(r [x :=s]~t).
For a:A, we want to show that CompAa =⇒ CompB((λx .r)s~ta).
Indeed, CompAa gives CompB(r [x :=s]~ta). By inductive
hypothesis, CompB((λx .r)s~ta) as desired.

Extensions

This proof method easily extends to the full Gödel’s system T on
the slides before.
Girard extended it to second-order and higher-order logic.

