Semantics and Strong Normalization

Part |

Semantics

Set-theoretic semantics

We start with a family of sets {X,}aea-
> The types A € T are interpreted thus:

[o] = Xa
[A— Bl ={f:[Al = [B]} (=[BI")

» If T t: A then [t] : [T] — [A], where
[x1:A1, ..y xn:Ap] = [A1] x -+ x [An]

> In particular, if F t: A, then [t] is an element of [A].

Set-theoretic semantics

Let I = {x1:A1, ..., xp:Apn}.
The interpretation [t] proceeds by induction on t:

> rl—X,' . A;. Then

[l = [AL] x -~ > [Aa] = [A]]

[xi]d = a;

» [Fst:Bbylks: A—»Band '+ t: A Then, for
(a1,...,an) €[], [s]3 € [B]W, and [t]3 € [A].

[st]a = [s]a([t]4)
>»IT-t:A—Bbyl xxAFt:B. Then

[A:A.t] - [T] — [A— B]
[Ax:A.t]a = a— [t](F; a)

example

Example
Suppose A = {o}, and let X, = N. Then
[o— o] ={f:N—- N} =N
[(0 = 0) = (0 — 0)] = {® : NN — N"} = (NV)V"

[Mox] =[1] = (n+n)=Idy €N
[Ax:o—o0 Ay:0.x(xy)] = [c2] = (f — fof) € (NN)NN
A typed lambda term of type A — B should be interpreted as a

morphism between mathematical structures A and B.
How can we capture this generality?

Categories

» A category C consists of

» a collection Cy of objects
(representing some mathematical structure), and
> a collection C; of structure-preserving morphisms
(between objects in Cp)

» The collection of morphisms from object A to object B is
denoted as C(A, B). (Also popular: Hom(A, B), Mor(A, B))

» One writes f : A— B if f € C(A, B).

Categories

» Examples

G C(A, B)

Sets {f:A— B}

Groups {h:A— B| h(a1a2) = h(a1)h(a2)}
Top. spaces {f:A— B|f~1U open if U open}
Vector spaces | {L: A — B | L(ax + by) = al(x) + bL(y)}
Posets {m:A—=B|a<ad = m(a) < m(d)}

Categories

Axioms for a category:
» For every object X, there is a morphism Idx : X — X.

» For morphisms f : X — Y and g : Y — Z, there is the
composition morphism

gof: X—=>Z
» For f: A— X, g: X — B, the identity map Idx satisfies
f=Ildxof and g=goldx
» The composition operation satisfies:

(fog)oh=fo(goh)

Universal properties

Many constructions of classical mathematics are characterized by
their mapping properties:

> The free group on a set

» The Stone-Cech compactification of a space

v

The algebraic closure of a field
» The Cauchy-completion of a metric space

These are non-trivial examples.
However, even the most elementary constructs of the language of
mathematics can be captured by the “categorical perspective.”

A puzzle

What is the universal mapping property of the singleton set {x}
(a set 1 with only one element x € 1)?

A puzzle

What is the universal mapping property of the singleton set {x}
(a set 1 with only one element x € 1)?

Answer: For any set X, there is exactly one map ¢, : X — 1.
(The constant map with value x.)

Puzzle no. 2

For two sets A, B, what is the universal property of the product
Ax B?

Puzzle no. 2

For two sets A, B, what is the universal property of the product
Ax B?

Answer: there are maps m1 : AXx B — A and m: Ax B— B,
such that any pair of maps f: C = Aand g: C — B can be
factored through the product:

C

fv 1(f,g) g
A & AxB 2B B

> In Set Theory, the natural numbers are defined as
Ne=({X | 0eX, neX=nU{n}eX}

» Up to isomorphism, the natural numbers are determined by
any set NV which is freely generated from a distinguished
element 0 € N and a function S: N — N.

» The condition of being “freely generated” states the universal
property of the natural numbers: for any set X,
given an element xg € X and a function xs : X — X,
there is a canonical map h: N — X (it is given by recursion).

natural numbers

This leads to the notion of a natural numbers object.

Definition

Let N € Cy come with maps z:1 — N, s: N — N such that, for
any other object X with maps b:1 — X and f : X — X, there
exists a unique map /i : N — X satisfying

joz=>b

jos=foj

Such an N is called a natural numbers object (nno).

Function space

We have now seen abstract categorical descriptions of
» Singletons (generally, terminal objects)
» Products
» Natural numbers

To interpret the simply typed lambda calculus, we need the notion
of a “function space” object. The appropriate categorical setting
for this is that of Cartesian closed categories.

Idea: we want a category where, for any pair of objects A, B,

there is another object “A — B” which in a natural way represents
C(A, B), the collection of maps from A to B.

CCCs

Let C be a category with a terminal object 1.
C is a Cartesian category if, for any two objects A, B,
there is an object A x B with the following properties:

> there are maps m1 :AXx B — Aand m:AXx B— B,

» for any pair of maps f : C — A, g : C — B, there exists a
unique map (f,g) : C — A x B such that

7r10(f7g):f
mo(f,g) =g

> In other words, the following diagram commutes, for any f, g:

TheStupidDiagramGoesHere

CCC

Let C be a Cartesian category.

» Cis a Cartesian closed category if, for any two objects Y, Z,
there is an object ZY and a canonical isomorphism

{(f XxY =27} = {g: X=>2"}
fx,y) «— (x= fil(y))

» Taking X = ZY and g = Id,v yields the evaluation map

evyz: ZV xY = Z

Examples

Co Ax B BA
Sets Ax B {f:A— B}
Top. Spaces | X x Y, product topology | C(X, Y'), compact-open topolc
Posets X x Y, product order C(X,Y),ordered pointwise

Categorical Semantics

Let C be a ccc.
The simply typed lambda calculus is interpreted as follows.
Types are interpreted by objects of C:

» Choose X, € (y for each oo € A
» A € T is interpreted by induction
> Ha]] = Xa
> [A— B] =[B]"

A context I = {x1:A1,...,x,:An} is interpreted by the product
[M] = [A] > - - x [A]
A term t of type A in the context [is interpreted by an arrow
[¢] - [T = [A]

In particular, a closed term is interpreted by an arrow 1 — [A].

Categorical Semantics

Let ' = {x1:A1, ..., xp:Ap}.
The interpretation [t] proceeds by induction on t:

» Fx;: A;. Then
[l : [AL] x - x [As] = [A]
» [Fst:Bbyls:A—-»Bandl'Ft:A. Then

Ist] - (1] D eyl x) 2 gy

»Ht:A=-Bbyl,x:AFt:B. Then
[x:A.t] - 1] — [B]W

is the transpose of

1] x [A] 1% [B]

CCCs

Relationship between syntax and semantics.

» “Cartesian closed categories are the canonical semantic
universe of the simply typed lambda calculus. Conversely, the
internal language of Cartesian closed categories is that of
simple type theory.”

» There is a subtlety: CCCs have more structure than the

function space between two types: they also have products
and a terminal object (which acts as the unit element for the

product).

» Questsion: what should we add to the system of types and
terms in order to have the full language of cccs?

Simple type theory

Any type theory consists of three components

> Syntax:
Ti= « ‘ T—T
ti= x| AxTt|tt

. (x:A) el
> T les: A
yping rules A (Ax)
IxAFrB (1) -s:A—B r-tA (—E)
I+ st:B

M Ax:Ar: A—>B

» Computation rules:

B: (Ax:A.r)a = r[a/x]

Simple type theory

Any type theory consists of three components

> Syntax:
Ti= « ‘ T—T ‘ TxT ‘
tu= x| ATttt | (t,t) | mt | mot |
> Tvoi les: (x:A) el A
ypIng rules: A (Ax)
IxAFrB -s:A—B r-tA
(=) (—E)
M= Ax:A.r: A=B [st:B
: : M-p:AxB F-p:AxB
r-s:A r-eB (x1) p:AX (x1E) p (x2E)
M (s,t): AxB Mr-mp:A M-mp: B

» Computation rules:
B: (Ax:A.r)a = r[a/x]

T mi(a1, a2)= a ie{L,2}

Simple type theory

Any type theory consists of three components

> Syntax:
T:i= « ‘ T—T TxT N
tu= x| AxTt|te | (t,t) | mt|mat | O St|hptt
. (x:A) el
> T les: A
yping rules T A (A)
IxAFrB -s:A—B r-tA
(=0 (—E)
I Ax:A.r: A»B - st:B
: : N-p:AxB l-p: AxB
MFs:A r-tB (x1) P X (x,E) P X (x2E)
M (s,t): AxB Fr-mp:A M-mp:B
(v rFn:N_ Eb:X MEfXoX
Fr-0:N r-sn-n (o) TF Ixbf 1N — X ¢e)
» Computation rules:
B: (Ax:A.r)a = r[a/x]
T mi(a1, a2)= a ie{L,2}
L Ixbf0= b

L Ix bf (Sn)= f(Ix bfn)

Type theory provides a uniform term language for concepts defined
abstractly by their universal properties.

» The map appearing in the universal property of the natural
numbers, technically called the iteration functional

IxbfO=b
bef(Sn) == f(/xbfn)

is not sufficient to define the predecessor function.

» But one can use the product (present in any ccc) to define it
using Kleene's laughing gas trick:

Predn = ma (v« (0,0) (Ap:NxN.(S(m1p), m1p)) n)

It is more natural to simply allow f to know the iteration step n.
This results in the principle of primitive recursion:

[Fb:X THEFNSXoX o
[+ Rxbf : N — X

with reduction rules:

Rx bf0 = b
Rx bf (Sn) = fn(Rx bfn)

With a recursor, the predecessor can be defined directly

Predn = Rx 0 (Anx.n)

Induction

When X : N — x is a type which depends on the recursed variable,
the dependence of f on n cannot be avoided:

N=5b:X0 I f:VmN.Xn—X(Sn)
I Indx bf : Vn:N.Xn

(NE)

This is the induction principle. It is much more powerful than the
(non-dependent) recursion principle.

(Roughly, recursion says that N is a weakly initial {0, S}-algebra,
i.e. that the universal morphism exists; induction also says that it is
unique — that N is the “standard model” of Peano axioms.)

Dependent eliminators

Check nat_rect.
> nat_rect
: forall P : nat —> Type,
PO -> (forall n : nat, Pn -> P (S n))
-> forall n : nat, Pn

Any inductive definition has a corresponding induction principle,
giving the dependent version of its universal mapping property.

Puzzle no.3

What is the dependent elimination rule for the product type A x B?

Puzzle no.3

What is the dependent elimination rule for the product type A x B?
Hint. The projection operators 7; can be replaced by a
“product recursor”

RE:(A-B—=X)=»AxB— X
R$*E h(a, b) = hab

This presents A x B as an inductive type.

Puzzle no.3

What is the dependent elimination rule for the product type A x B?
Hint. The projection operators 7; can be replaced by a
“product recursor”

RE:(A-B—=X)=»AxB— X
R$*E h(a, b) = hab

This presents A x B as an inductive type.
Answer: Allowing X to be a dependent type over A x B
(so that X : A x B — x) yields

prod_rect
: forall (A B : Type) (P : A * B -> Type),
(forall (a : A) (b : B), P (a, b))
-> forall p : A *x B, Pp

The function type A—B is not inductive.

The map on types (A,B — A—B) is not monotone in the first
argument: as A gets bigger, A — B will generally get smaller.
So the universal property instead goes via the adjunction

Mor(C x A, B) = Mor(C,A — B)

(The negatively-occurring C encodes the context.)

The function type A—B is not inductive.

The map on types (A,B — A—B) is not monotone in the first
argument: as A gets bigger, A — B will generally get smaller.
So the universal property instead goes via the adjunction

Mor(C x A, B) = Mor(C,A — B)

(The negatively-occurring C encodes the context.)

Puzzle for the break:

How could a dependent version of this property be formulated?
(IOW, what is the “dependent elimination principle” for the simply
typed lambda calculus?)

Part 1l
Strong Normalization

Logical Relations

Solution to the puzzle:

For every type A € T, we are given a predicate PA: A — x

on terms of type A.

That is, we are given P : VA:T.A—x

The “elimination principle” specifies which conditions guarantee
that PA will hold of all terms of type A.

Its conclusion has type VA : T Va : A. PAa

P(A—B)f holds for a term f : A — B if

Va:A.PAa — PB(fa)

Logical Relations

Definition
A predicate P : VA:T.A—x is a logical relation if

P(A—B)f < Va:A.PAa — PB(fa)
If P is a logical relation, then

» P holds of an application st provided P(A—B)s and PAt
» P holds of an abstraction Ax:A.t provided PAa = PBt[x:=a]

Logical Relations

The variables of the context I now add hypotheses PT:
If I = x1:A1,...,Xxn:Ap, the typing [- £ : A eliminates into

V(al:Al, ey a,,:A,,) PAiai A --- A PAya, = PAt[)?:zg]

Theorem
Let P be a logical relation. LetT -t : A.
If PA;x; holds for each (x;:A;) € I', then PAt holds.

Strong Normalization

Three fundamental pillars of type theory:

» Church-Rosser: M =N <— M — Z « N
(“Consistency of computation”)

» Subject Reduction: TFM:A M —>N=THFN:A
(“Consistency between computation and logic")

» Strong Normalization: ' = M : A = SN(M)
(“Consistency of logic”)

Strong Normalization

Assume [= M : A.
To show: there is no infinite reduction sequence starting from M

MM =M — ...

Clearly, if t is strongly normalizing, then Ax:A.t is too.
But why should application preserve SN?

(w = Ax.xx is a normal form, but Q = ww is unsolvable.)
The induction has to be higher-order: logical relations.

By induction on A, define the predicate Comp, : A — *:
» Comp,t = SN(t)
» Compy_,gf := Va:A.Compya = Compg(fa)

By definition, Comp is a logical relation.

Lemma

1. Compyt = SN(t).
2. t € SN = Comppxt

Proof.

For atomic types «, both points are trivial.

For function types A — B, we suppose given f : A — B such that,
if Comp, holds at a:A, then Compg(fa). In particular, Compg(fx).
By inductive hypothesis, SN(fx). Hence SN(f).

Now let t € SN, and suppose that Comp4a. By inductive
hypothesis, we have SN(a), and thus also Compg(xta). Hence

Compy_,g(xt)

SN

Theorem
MFt: A= SN(t)

Proof.

By 2, every variable of any type is computable. Hence, the
hypotheses Compl is satisfied for every ' -t : A. By the
logical-relations theorem, we have Compt. By 1, SN(t).

Lemma
Comp,(r[x:=s]t), r,s,t € SN = Comp((A\x.r)st).

Proof.

When « is atomic, this is just
r,s, t, r[x:=s]t € SN = (\x.r)st € SN

Given r,s,t € SN, suppose that Comp,_, g(r[x:=s]t).

For a:A, we want to show that Compsa = Compg((\x.r)sta).
Indeed, Comp 4a gives Compg(r[x:=s]ta). By inductive
hypothesis, Compg((\x.r)sta) as desired.

Extensions

This proof method easily extends to the full Godel's system T on
the slides before.
Girard extended it to second-order and higher-order logic.

