
Chapter 18

Models 14.11.2006:1338

In this Chapter filter models, the main tool of Part III on the intersection types,
will be introduced. A filter is a collection of types closed under intersection (∩)
and expansion (≤). It turns out that there is a natural way to define application
on such filters. This depends on the order ≤ on types and it will be shown for
which of the type theories introduced in Chapter 15 the filters will turn out to
be models of the untyped lambda calculus.

In Section 18.2 the filter models will be introduced as an applicative structures.
Also it will be shown that the value of an untyped lambda term M in this
structure is the collection of types that can be assigned to M . In Section 18.3
the approximation theorem will be shown, i.e. the interpretation of a lambda
term is the supremum of those of its approximations.

18.1. Lambda models

Given a lambda structure DF,G = 〈D, F,G〉, i.e. a D∈ALG with continuous
F : D→D→D and G : [D→D]→D, it is well known how one can interprete
(untyped) lambda-terms in it. For lambda structures of the form D = FT

this interpretation turns out to have a simple form: the interpretation of a
lambda term equals the set (actually a filter) of its possible types (in TTT).
This will help us to determine for what T the corresponding filter structure is
a lambda-model. This characterization can also be given for the λI-calculus.

18.1.1. Definition. (i) Let D be a set and Var the set of variables of the
untyped lambda calculus. An environment in D is a total map

ρ : Var→D.

The set of environments in D is denoted by EnvD.
(ii) If ρ∈EnvD and d∈D, then ρ[x := d] is the ρ′ ∈EnvD defined by

ρ′(x) = d;

ρ′(y) = ρ(y), if y 6= x.

The definition of a syntactic lambda-models was given in Barendregt [1984]
(Definition 5.3.1) or Hindley and Longo [1980]. We simply call these λ-models.

99

100 CHAPTER 18. MODELS 14.11.2006:1338

We introduce also applicative structures (Definition 5.1.1 of Barendregt [1984])
and quasi λ-models.

18.1.2. Definition. (i) An applicative structure is a pair 〈D, ·〉, where D is a set
and · : D× D→D is a binary operation on D.

(ii) A quasi λ-model is of the form

D =〈D, ·, [[]]D〉,

where 〈D, ·〉 is an applicative structure and [[]]D : Λ × EnvD→D satisfies the
following.

(1) [[x]]Dρ = ρ(x)

(2) [[MN]]Dρ = [[M]]Dρ · [[N]]Dρ
(3) [[λx.M]]Dρ = [[λy.M [x := y]]]Dρ (α),

provided y /∈ FV(M),

(4) ∀d∈D.[[M]]Dρ[x:=d] = [[N]]Dρ[x:=d] ⇒ [[λx.M]]Dρ = [[λx.N]]Dρ (ξ)

(5) ρ ↾ FV(M) = ρ′ ↾ FV(N) ⇒ [[M]]Dρ = [[M]]Dρ′ .

(iii) A λ-model is a quasi λ-model which safisfies:

(6) [[λx.M]]Dρ · d = [[M]]Dρ[x:=d] (β)

(iv) A (quasi) λI-model is defined similarly but replacing Λ by ΛI, the set
of λI-terms that require for each abstraction term λx.M that x∈FV(M). The
corresponding clauses are denoted by (αI), (βI) and (ξI).

We will write simply [[]]ρ instead of [[]]Dρ when there is no danger of confusion.

We have the following implications.

D λ-model

��

=⇒ D λI-model

��
D quasi λ-model =⇒ D quasi λI-model

18.1.3. Definition. Let D = 〈D, ·, [[]]〉 be a (quasi) λ(I)-model.
(i) The statement M = N , for M,N untyped lambda terms, is true in D,

notation D |= M = N iff

∀ρ∈EnvD.[[M]]ρ = [[N]]ρ.

(ii) As usual one defines D |= χ, where χ is any statement built up using
first order predicate logic from equations between untyped lambda terms.

(iii) A λ(I)-model D is called extensional iff

D |= (∀x.Mx = Nx) ⇒ M = N.

(iv) A λ(I)-model D is called an η-model iff

D |= λx.Mx = M for x /∈ FV(M) (η)

18.1. LAMBDA MODELS 101

18.1.4. Definition. (i) Let DF,G = 〈D, F,G〉 be a lambda structure, Definition
17.4.1(i). Then DF,G induces a quasi λ-model 〈D, ·, [[]]F,G〉 as follows.

• First we obtain an applicative structure by setting for d, e∈ D

d · e = F (d)(e).

• Then the map [[]]F,G : Λ× EnvD → D as defined as follows.

[[x]]F,G
ρ = ρ(x);

[[MN]]F,G
ρ = F ([[M]]F,G

ρ)([[N]]F,G
ρ);

[[λx.M]]F,G
ρ = G(λλd∈D.[[M]]F,G

ρ[x:=d]).

Notice that the function λλd∈D.[[M]]ρ[x:=d] used for [[λx.M]]ρ is continuous.

(ii) Now let DF,G = 〈D, F,G〉 be a strict lambda structure, see Definition
17.4.1(ii). Then DF,G induces a quasi λI-model as above above, changing the

clause for [[λx.M]]F,G
ρ into

[[λx.M]]F,G
ρ = G(λλd∈D. if d = ⊥D then ⊥D else [[M]]F,G

ρ[x:=d]).

18.1.5. Proposition. (i) Let 〈D, F,G〉 be a lambda structure. Then
〈D, ·, [[]]F,G〉 is a λ-model.

(ii) Let 〈D, F,G〉 be a strict lambda structure. Then 〈D, ·, [[]]F,G〉 is a λI-model.

Proof. Easy.

The only requirement that a (strict) lambda structure misses to be a λ(I)-
model is the axiom (β(I)).

18.1.6. Proposition. (i) Let 〈D, F,G〉 with D∈ALG be a lambda structure.
Then the following statements are equivalent.

(1) D |= (λx.M)N = M [x: = N], for all M,N ∈Λ;

(2) [[λx.M]]ρ.d = [[M]]ρ(x:=d), for all M ∈Λ and d∈D;

(3) D is a λ-model;

(4) D |= {M = N | λβ ⊢M = N}.
(ii) Let 〈D, F,G〉 with D∈ALG be a strict lambda structure. Then the

following statements are equivalent.

(1) D |= (λx.M)N = M [x: = N], for all M,N ∈Λ with x∈FV(M);

(2) [[λx.M]]ρ.d = [[M]]ρ(x:=d), for all M ∈Λ, with with x∈FV(M), and d∈D;

(3) D is a λI-model;

(4) D |= {M = N | λβI ⊢M = N}.

102 CHAPTER 18. MODELS 14.11.2006:1338

Proof. (i) (1)⇒(2). By (1) one has [[(λx.M)N]]ρ = [[M [x: = N]]]ρ. Taking
N ≡ x and ρ′ = ρ(x: = d) one obtains

[[(λx.M)x]]ρ′ = [[M]]ρ′ ,

hence

[[λx.M]]ρ · d = [[M]]ρ′ ,

as ρ ↾ FV(λx.M) = ρ′ ↾ FV(λx.M).
(2)⇒(3). By (ii), Definition 18.1.4 and Proposition 18.1.5 all conditions to

be a λ-model, see Definition 18.1.2, are fulfilled.
(3)⇒(4). By Theorem 5.3.4 in Barendregt [1984].
(4)⇒(1). Trivial.

(ii) Similarly.

18.1.7. Corollary. Let DF,G = 〈D, F,G〉 be a (strict) lambda structure and a
λ(I)-model. Then

D is a λ(I)η-model ⇔ D is an extensional λ(I)-model.

Proof. (⇒) Suppose that for some ρ one has for all d∈D

[[Mx]]ρ[x:=d] = [[Nx]]ρ[x:=d].

Then by (η) and Proposition 18.1.5(ii) one has

[[M]]ρ = [[λx.Mx]]ρ = [[λx.Nx]]ρ = [[N]]ρ.

(⇐) Note that by (β(I)) one has D |= (λx.Mx)y = My, where x is fresh.
Hence by extensionality one has D |= λx.Mx = M.

Isomorphisms of λ-models

18.1.8. Definition. Let DF,G be a lambda structure.

(i) DF,G is called reflexive if F ◦G = Id [D→D].
(ii) DF,G is called extensional if G ◦ F = IdD.

18.1.9. Proposition. Let DF,G be a lambda structure.

(i) If DF,G is reflexive, then it is a λ-model.
(ii) If DF,G is moreover extensional, then it is an extensional λ-model.

Proof. This is Theorem 5.4.4 of Barendregt [1984].

18.1.10. Definition. (i) An isomorphism between two reflexive structures
〈D, F,G〉 and 〈D′, F ′, G′〉 is a bijective mapping m such that

(1) m(G(f)) = G′(m ◦ f ◦m−1)

(2) m(F (d)(e)) = F ′(m(d))(m(e))

18.2. FILTER MODELS 103

If we write fm = m ◦ f ◦m−1 then we can write these conditions as

m(G(f)) = G′(fm)

m(d ·F e) = m(d) ·F ′ m(e).

18.1.11. Proposition. (i) If D and D′ are isomorphic λ-models via m then for
all λ-terms M and environments ρ:

m([[M]]Dρ) = [[M]]D
′

m◦ρ

(ii) If two λ-models are isomorphic then they equal the same terms, i.e.
D |= M = N iff D′ |= M = N .

Proof. (i) By induction on M .

(ii) By (i).

18.2. Filter models

Now we introduce the fundamental notion of filter structure, which will be
used extensively in this Section. It is of paramount importance, and one can
say that all the preceding sections in this Chapter are a build-up to it. Since
the seminal paper Barendregt et al. [1983], this notion has played a major role
in the study of the mathematical semantics of lambda calculus.

Remember Definition 15.4.2(ii) where for T ∈TT ⊤ and X a non-empty
subset of T one defines the filter generated by X

↑X = {x∈T | ∃n ≥ 1∃x1 . . . xn ∈X.x1 ∩ . . . ∩ xn ≤ x}, if X 6= ∅;
↑∅ = {⊤}, else.

Now we extend this notion as follows.

18.2.1. Definition. (i) Let T ∈TT. Then we define ↑s X ∈FS
s by

↑s X = ↑X, if X 6= ∅;
↑s ∅ = ∅.

18.2.2. Definition. (i) Let T ∈TT⊤. Define

F T : [FT→[FT→FT]], and

GT : [[FT→FT]→FT]

as follows.

F T (X)(Y) = ↑{B ∈TTT | ∃A∈Y.(A→B)∈X};
GT (f) = ↑{A→B | B ∈ f(↑A)}.

104 CHAPTER 18. MODELS 14.11.2006:1338

(ii) Let T ∈TT. Define

F T
s : [FT

s →s[FT
s →sFT

s]], and

GT
s : [[FT

s →sFT
s]→sFT

s]

as follows.

F T
s (X)(Y) = ↑s {B ∈TTT | ∃A∈Y.(A→B)∈X};
GT

s (f) = ↑s {A→B | B ∈ f(↑A)}.

18.2.3. Lemma. (i) Let TT ∈TT ⊤. Then 〈FT , F T , GT 〉 is a lambda structure.

(ii) Let T ∈TT. Then FT
s = 〈FT

s , F
T
s , G

T
s 〉 is a strict lambda structure.

Proof. (i) It is easy to verify that F T , GT are continuous.

(ii) Similarly.

18.2.4. Definition. (i) Let T ∈TT ⊤. Then FT = 〈FT , F T , GT 〉 is called the
filter lambda structure over T .

(ii) Let T ∈TT. Then FT
s = 〈FT

s , F
T
s , G

T
s 〉 is called the strict filter lambda

structure over T .

Recall that by Proposition 15.3.3 a compatible element of TT ⊤ induces a
type structure in TS⊤. We can take advantage in this case of the equivalencies
between type and zip structures (Theorems 17.3.17 and 17.3.37).

18.2.5. Lemma. (i) If S ∈TS⊤, then FS = FZS and GS = GZS , where FZS

and GZS are defined in Definitions 17.3.10 and 17.4.12.

(ii) If S ∈TS, then FS
s = FZS

s
and GS

s = GZS
s
, where FZS

s
and GZS

s
are

defined in Definitions 17.3.26 and 17.4.32

Proof. (i) Taking the suprema in FS one has

FS(X)(Y) = ↑{↑A | ∃B ∈Y.(B→A)∈X}
= {↑A | ∃B ∈Y.↑(B→A) ⊆ X}
= {↑A | ∃↑B ⊆ Y.ZS(↑B, ↑A) ⊆ X}
= X ·ZS Y.

Moreover,

GS(f) = ↑{B→A | A∈ f(↑B)}
= {↑(B→A) | A∈ f(↑B)}
= {Z(↑B, ↑A) | ↑A ⊆ f(↑B)}.

(ii) Now the suprema are taken in FS
s and ∅ = ∅, the bottom of FS

s .

Now we work towards the characterization of those type theories T such that
FT is a λ(I)-model, a so-called filter λ-model. This happens in 18.2.6-18.2.14.

18.2. FILTER MODELS 105

The following type-semantics theorem is important. It has as consequence that
for a closed untyped lambda term M and a T ∈TT⊤ one has

[[M]]F
T

= {A | ⊢T∩⊤ M : A},

i.e. the semantical meaning of M in the filter λ-model corresponding to a
T ∈TT ⊤ is the collection of its types. For a T ∈TT one has

[[M]]F
T
s = {A | ⊢T∩ M : A}.

18.2.6. Definition. A context Γ agrees with an environment ρ∈Env
(s)

FT

(s)

, notation

Γ |= ρ, if

(x : A)∈Γ ⇒ A∈ ρ(x).

18.2.7. Proposition. (i) Γ |= ρ & Γ′ |= ρ ⇒ Γ ⊎ Γ′ |= ρ.

(ii) Γ |= ρ[x :=↑(s) A] ⇒ Γ\x |= ρ.

Proof. Immediate.

18.2.8. Theorem (Type-semantics Theorem). (i) Let T ∈TT⊤ and FT its cor-
responding filter structure. Then, for any lambda-term M and ρ∈EnvFT ,

[[M]]F
T

ρ = {A | Γ ⊢T∩⊤ M : A for some Γ |= ρ}.

(ii) Let T ∈TT and FT
s its corresponding strict filter structure. Then, for

any lambda-term M and ρ∈Envs
FT

s
,

[[M]]F
T
s

ρ = {A | Γ ⊢T∩ M : A for some Γ |= ρ}.

Proof. (i) By induction on the structure of M .
If M ≡ x, then

[[x]]F
T

ρ = ρ(x)

= {A | A∈ ρ(x)}
= {A | A∈ ρ(x) & x : A ⊢T∩⊤ x : A}
= {A | Γ ⊢T∩⊤ x : A for some Γ |= ρ}, by Definition 18.2.6 and the

Inversion Theorem 16.1.1(i).

If M ≡ NL, then

106 CHAPTER 18. MODELS 14.11.2006:1338

[[NL]]Tρ = [[N]]Tρ · [[L]]Tρ

= ↑{A | ∃B ∈ [[L]]Tρ .(B → A)∈ [[N]]Tρ }

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck.

[(Bi→Ci)∈ [[N]]Tρ & Bi ∈ [[L]]Tρ & (
⋂

1≤i≤k Ci) ≤ A]} ∪ ↑{⊤},
by definition of ↑,

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck,∃Γ1i,Γ2i

[Γ1i,Γ2i |= ρ & Γ1i ⊢T∩⊤ N : (Bi→Ci)

& Γ2i ⊢T∩⊤ L : Bi & C1 ∩ . . . ∩ Ck ≤ A]} ∪ ↑{⊤},
by the induction hypothesis,

= {A | Γ ⊢T
∩⊤ NL : A for some Γ |= ρ},

taking Γ = Γ11 ⊎ . . . ⊎ Γ1k ⊎ . . . ⊎ Γ21 ⊎ . . . ⊎ Γ2k,

by Theorem 16.1.1(ii) and Proposition 18.2.7(i).

If M ≡ λx.N , then

[[λx.N]]Tρ = GT (λλX ∈FT .[[N]]Tρ[x:=X])

= ↑ {(B→C) | C ∈ [[N]]Tρ[x:=↑B]}

= {A | ∃k>0∃B1, . . . ,Bk, C1, . . . ,Ck.∃Γi[Γi |= ρ[x: = ↑Bi] &

Γi, x:Bi ⊢T∩⊤ N : Ci & (B1→C1) ∩ . . . ∩ (Bk→Ck) ≤ A],

by the induction hypothesis,

= {A | Γ ⊢T∩⊤ λx.N : A for some Γ |= ρ},

taking Γ = (Γ1 ⊎ . . . ⊎ Γk)\x, by Theorem 16.1.1(iii), rule (≤)

and Proposition 18.2.7(ii).

(ii) Similarly, with ↑ replaced by ↑s. Note that in the case M = NL we drop

‘∪↑{⊤}’ both times. In case M = λx.N , using Definition 18.1.4, it follows that

[[λx.N]]Tρ =↑s {(B→C) | C ∈ [[N]]T }ρ[x:=↑B] holds, because ↑B 6= ∅.

18.2.9. Corollary. (i) Let T ∈TT ⊤. Then

FT is a λ-model ⇔ [Γ ⊢T∩⊤ (λx.M) : (B→A) ⇒ Γ, x:B ⊢T∩⊤ M : A].

(ii) Let T ∈TT. Then

FT
s is a λI-model ⇔

[Γ ⊢T∩ (λx.M) : (B→A) & x∈FV(M) ⇒ Γ, x:B ⊢T∩ M : A].

18.2. FILTER MODELS 107

Proof. (i) By Propositions 18.1.6(i), 16.2.1(ii) and Corollary 16.2.5(i).

(ii) By Propositions 18.1.6(ii), 16.2.1(i) and Corollary 16.2.5(ii).

18.2.10. Corollary. (i) Let T ∈TT ⊤. Then

T is β-sound ⇒ FT is a λ-model.

(ii) Let T ∈TT. Then

T is β-sound ⇒ FT
s is a λI-model.

Proof. By the Corollary above and Theorem 16.1.10(iii).

18.2.11. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM,BCD,AO,
Plotkin,Engeler,CDS}. Then

FT is a λ-model.

(ii) Let T ∈ {HL,CDV,CD}. Then

FT
s is a λI-model.

Proof. (i) By (i) of the previous Corollary and Theorem 16.1.8.

(ii) By (ii) of the Corollary, using Theorem 16.1.8.

18.2.12. Proposition. (i) Let T ∈TT ⊤. Then

T is natural and β- and η⊤-sound ⇒ FT is an extensional λ-model.

(ii) Let T ∈TT. Then

T is proper and β- and η-sound ⇒ FT
s is an extensional λI-model.

Proof. (i) and (ii). FT (FT
s) is a λ(I)-model by Corollary 18.2.10(i)((ii)). For

extensionality by Corollary 18.1.9 one needs to verify for x /∈ FV(M)

[[λx.Mx]]ρ = [[M]]ρ. (η)

This follows from Theorems 18.2.8(i), and 16.2.15(i).

18.2.13. Corollary. (i) Let T ∈ {Scott,Park,CDZ,HR,DHM}. Then

FT is an extensional λ-model.

(ii) Let T = HL. Then

FT
s is an extensional λI-model.

Proof. (i) and (ii) By Corollary 16.2.13.

