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In this Chapter filter models, the main tool of Part III on the intersection types,
will be introduced. A filter is a collection of types closed under intersection (M)
and expansion (<). It turns out that there is a natural way to define application
on such filters. This depends on the order < on types and it will be shown for
which of the type theories introduced in Chapter 15 the filters will turn out to
be models of the untyped lambda calculus.

In Section 18.2 the filter models will be introduced as an applicative structures.
Also it will be shown that the value of an untyped lambda term M in this
structure is the collection of types that can be assigned to M. In Section 18.3
the approximation theorem will be shown, i.e. the interpretation of a lambda
term is the supremum of those of its approximations.

18.1. Lambda models

Given a lambda structure Dpe = (D, F,G), i.e. a D€ ALG with continuous
F : D-D—D and G : [D—D]—D, it is well known how one can interprete
(untyped) lambda-terms in it. For lambda structures of the form D = F7
this interpretation turns out to have a simple form: the interpretation of a
lambda term equals the set (actually a filter) of its possible types (in T7).
This will help us to determine for what 7 the corresponding filter structure is
a lambda-model. This characterization can also be given for the Al-calculus.

18.1.1. DEFINITION. (i) Let D be a set and Var the set of variables of the
untyped lambda calculus. An environment in D is a total map

p: Var—D.

The set of environments in D is denoted by Envp.
(ii) If p€Envp and d € D, then p[x := d] is the p’ € Envp defined by

plz) = d
p'y) = ply), ify#z

The definition of a syntactic lambda-models was given in Barendregt [1984]
(Definition 5.3.1) or Hindley and Longo [1980]. We simply call these A\-models.
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We introduce also applicative structures (Definition 5.1.1 of Barendregt [1984])
and quasi A-models.

18.1.2. DEFINITION. (i) An applicative structure is a pair (D, -), where D is a set
and - : D x D—D is a binary operation on D.
(ii) A quasi A\-model is of the form

D :<D’ K [[ ]]D>’

where (D,-) is an applicative structure and [ ]P : A x Envp—D satisfies the
following.

(1) H% = plx)
(2) [MNT, = [M])-INTD
(3) DeM]) = [y.Mz =yl (@),

provided y ¢ FV(M),
(4) VdeD.M]y,_y =[N ey = DaM=DaND (9
(5) p I FV(M)=p [FV(N) = [M])=[M]}.

(iii) A A-model is a quasi A-model which safisfies:
(6) DaMp-d = Mg ()

(iv) A (quasi) M-model is defined similarly but replacing A by A', the set
of Al-terms that require for each abstraction term A\x.M that x € FV(M). The
corresponding clauses are denoted by (al), (381) and (&l).

We will write simply [ ] , instead of [ ]]2 when there is no danger of confusion.

We have the following implications.

D A-model — D Al-model

l I

D quasi A-model = D quasi A\l-model

18.1.3. DEFINITION. Let D = (D,-,[ ]) be a (quasi) A(I)-model.
(i) The statement M = N, for M, N untyped lambda terms, is true in D,
notation D = M = N iff
Vp € Envp.[M], = [N],.
(ii) As usual one defines D |= x, where y is any statement built up using

first order predicate logic from equations between untyped lambda terms.
(iii) A A(l)-model D is called extensional iff

DE (Ve.Mz = Nz) = M = N.
(iv) A A(l)-model D is called an n-model iff

Dk Ae.Mz = M for z ¢ FV(M) (n)
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18.1.4. DEFINITION. (i) Let Dp ¢ = (D, F, G) be a lambda structure, Definition
17.4.1(i). Then Dp ¢ induces a quasi A-model (D, -, [ [*“) as follows.

e First we obtain an applicative structure by setting for d,e €D
d-e=F(d)(e).

e Then the map [ ]©¢ : A x Envp — D as defined as follows.

[=]5¢ p(z);

[MN];S = F(IM]S)(INT,);
PaM]PY = GAdeD.[M]T ).

Notice that the function Ad € D.[[M]]p[m:

(ii) Now let Dp g = (D, F,G) be a strict lambda structure, see Definition
17.4.1(ii). Then Dp¢ induces a quasi Al-model as above above, changing the

clause for [Ax.M ]]E’G into

g used for [Az.M] , is continuous.

[re.M];¢ = G(Ad€D. if d = Lp then Lp else [M]}/7 ).

18.1.5. PROPOSITION. (i) Let (D, F,G) be a lambda structure. Then
(D, [ 1) is a \-model.
(ii) Let (D, F,G) be a strict lambda structure. Then (D, -, [ ") is a Al-model.

PrOOF. Easy. m

The only requirement that a (strict) lambda structure misses to be a A(l)-
model is the axiom (3(1)).

18.1.6. PROPOSITION. (i) Let (D, F,G) with D€ ALG be a lambda structure.
Then the following statements are equivalent.

(1) D = (\e.M)N = Mlz: = N], for all M,N € A;
(2) [Ae.M],.d = [M], gy for all M €A and deD;
(3) D is a A-model;

(4) D {M =N | A3+ M = N}.

(ii) Let (D, F,G) with D€ ALG be a strict lambda structure. Then the
following statements are equivalent.

(1) DE (Ae.M)N = M[z: = N, for all M, N € A with x € FV(M);
(2) [Me.M],.d=[M],._q), for all M € A, with withx € FV(M), and d € D;
(3) D is a Ml-model;
(4)

4) DE{M=N|A3I+M=N}.
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Proor. (i) (1)=+(2). By (1) one has [(Az.M)N], = [M[z: = N]],. Taking
N =z and p/ = p(x: = d) one obtains
[(ha2)a, = 1],
hence
[Mz.M],-d=[M]

as p | FV(Az. M) = p' | FV(A\x.M).

(2)=-(3). By (ii), Definition 18.1.4 and Proposition 18.1.5 all conditions to
be a A-model, see Definition 18.1.2, are fulfilled.

(3)=(4). By Theorem 5.3.4 in Barendregt [1984].

(4)=-(1). Trivial.

(ii) Similarly. m

P

18.1.7. COROLLARY. Let Dpg = (D, F,G) be a (strict) lambda structure and a
A()-model. Then

D is a A(I)n-model < D is an extensional A(1)-model.
PROOF. (=) Suppose that for some p one has for all d € D

[[Mx]]p[{L‘ZZd] = [[N‘T]]p[xtzcl]'
Then by (n) and Proposition 18.1.5(ii) one has

[M], = [Az.Mz], = [Ax.Nz], = [N],.

(<) Note that by (8(1)) one has D = (Az.Mz)y = My, where x is fresh.
Hence by extensionality one has D = Az.Mx = M. m

Isomorphisms of A-models

18.1.8. DEFINITION. Let Dp be a lambda structure.
(i) Drg is called reflerive if F'o G = Idp_p).
(ii) Dr is called extensional if G o F' = Idp.

18.1.9. PROPOSITION. Let Dr g be a lambda structure.
(i) If Dpq is reflexive, then it is a A\-model.
(ii) If Dr is moreover extensional, then it is an extensional A-model.

PRrROOF. This is Theorem 5.4.4 of Barendregt [1984].

18.1.10. DEFINITION. (i) An isomorphism between two reflexive structures
(D, F,G) and (D', F',G’) is a bijective mapping m such that

(1) m(G(f)) =G'(mo fom™)
(2) m(F(d)(e)) = F'(m(d))(m(e))



18.2. FILTER MODELS 103

If we write f™ = mo f om™! then we can write these conditions as
m(G(f) = G'(fM)
m(d-pe) = m(d) - m(e).

18.1.11. PROPOSITION. (i) If D and D’ are isomorphic A\-models via m then for
all \-terms M and environments p:

m([M]7) = [M]5.

mop

(ii) If two A-models are isomorphic then they equal the same terms, i.e.

DEM=N iff D' =M = N.

PRroOF. (i) By induction on M.
(ii) By (i). m

18.2. Filter models

Now we introduce the fundamental notion of filter structure, which will be
used extensively in this Section. It is of paramount importance, and one can
say that all the preceding sections in this Chapter are a build-up to it. Since
the seminal paper Barendregt et al. [1983], this notion has played a major role
in the study of the mathematical semantics of lambda calculus.

Remember Definition 15.4.2(ii) where for 7€ TT T and X a non-empty
subset of 7 one defines the filter generated by X

11X = {7 |In>132;...2p X1 N... Ny <}y if X #0;
0 = {T}, else.

Now we extend this notion as follows.
18.2.1. DEFINITION. (i) Let 7 € TT. Then we define 1° X € FS by

X = 1X, if X #0;
0 = 0.

18.2.2. DEFINITION. (i) Let 7 € TT'. Define

FT o [FT=[FT=FT)], and
GT o [[FT—FT-FT]

as follows.

FT(X)(v) = 1{BeT? |JAeY.(A—B)eX};
GT(f) = HA=B|Be[(1A)}.
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(ii) Let 7 € TT. Define

FI o [FI—=F7T—FT)),  and
GT « [[FI=Fl—FT
as follows.
FI(X)(Y) = 1°{BeT7? |34cY.(A-B)ecX};

GI(f) = 1°{A—=B|Bef(1A)}.

18.2.3. LEMMA. (i) Let TT € TT T. Then (FT,FT G7) is a lambda structure.
(ii) Let T €TT. Then FI = (FI,FT G7) is a strict lambda structure.

PRrROOF. (i) It is easy to verify that F7, G7 are continuous.
(ii) Similarly. m

18.2.4. DEFINITION. (i) Let 7€ TT T. Then F7 = (F7, F7,G7) is called the
filter lambda structure over 7T .

(ii) Let 7 € TT. Then FI = (FI,FT,G7) is called the strict filter lambda
structure over 7.

Recall that by Proposition 15.3.3 a compatible element of TT T induces a
type structure in TST. We can take advantage in this case of the equivalencies
between type and zip structures (Theorems 17.3.17 and 17.3.37).

18.2.5. LEMMA. (i) If S€TST, then FS = Fys and G° = Gys, where Fys
and Gzs are defined in Definitions 17.3.10 and 17.4.12.

(ii) If SETS, then F$ = Fys and GS = Gys, where Fys and Ggs are
defined in Definitions 17.3.26 and 17.4.52

PROOF. (i) Taking the suprema in F€ one has

FS(X)(Y) = 1{14|3BeY.(B—A)e X}
L{1A[3BeY.1(B—A) C X}
L{TA|31B CY.Z5(1B,14) € X}
X ysY.

Moreover,

GS(f) = M{B—A|A€f(1B)}
= W{1(B—A) | A f(1B)}
= W{z(1B,1A) | 1AC F(1B)}.

(ii) Now the suprema are taken in ¢ and LI} = ), the bottom of FS. m

Now we work towards the characterization of those type theories 7 such that
F7T is a A(I)-model, a so-called filter A-model. This happens in 18.2.6-18.2.14.
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The following type-semantics theorem is important. It has as consequence that
for a closed untyped lambda term M and a 7 € TT " one has

IM]T" = {A | M : A},

i.e. the semantical meaning of M in the filter A-model corresponding to a
T eTT T is the collection of its types. For a 7 € TT one has

(M) = {A|FL M : A).

(s)

T
Fs)

18.2.6. DEFINITION. A context I' agrees with an environment p € Env notation

I'E=p,if
(x:A)el = Aep(x).

18.2.7. PROPOSITION. (i) T'Ep &IV Ep = TWI' Ep.
(i) T = ple =10 A] = D\z = p.

Proor. Immediate. m

18.2.8. THEOREM (Type-semantics Theorem). (i) LetT € TT" and F7 its cor-
responding filter structure. Then, for any lambda-term M and p € Envgr,

[[M]]pr ={A|TF.r M: A for someT = p}.

(ii) Let T € TT and FI its corresponding strict filter structure. Then, for

S

any lambda-term M and p € EnvSFT,
[[Mﬂfg ={A|T L M: A for someT |= p}.

PROOF. (i) By induction on the structure of M.

If M =z, then
177 = plx)
{A]Aep()}

= {A\AGp(x)&x:Al—ng:A}
= {A|T I—gr x: A for some I' = p}, by Definition 18.2.6 and the

Inversion Theorem 16.1.1(i).

If M = NL, then
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[NTZ - [LT7

{A[3Be[L]?.(B— A)e[N]1}

{4 | 3k>03By,...,By,C4,...,Cy.

[(Bi=Ci) €[NT] & Bi € [LI] & (My<ier Co) < AP UT{T}
by definition of T,

{A | 3k>03By,...,B,Cy,...,Ck, 31, Ty

[T, Toi = p & Ty bl N2 (Bi—Cy)

&ToiFlr L:B; & CiN...NCpy < AJJUT{T},
by the induction hypothesis,

{A|T I—ZT NL: A for some I' = p},

taking ' =T'yW... W1k W.. . Wy W... Wy,
by Theorem 16.1.1(ii) and Proposition 18.2.7(i).

If M = \x.N, then

[[)\x.N]]Z =

GTAX eF NI x)

1{(B=C) | C € [NTpmy}

{A| Ik>03By,...,B,Cy,...,Cp. 3050 E plz: = 1B &

Ty, 2:B; FXr N : C; & (Bi—Ch)N...N (B—Cy) < A],

by the induction hypothesis,

{A|T I—gT Az.N : A for some I' = p},

taking I' = (I'1 ... W I'y)\z, by Theorem 16.1.1(iii), rule (<)

and Proposition 18.2.7(ii).

(ii) Similarly, with T replaced by 1¢. Note that in the case M = N L we drop
‘UT{T}’ both times. In case M = Az.N, using Definition 18.1.4, it follows that
[[)\x.N]]Z =1 {(B—=C)|Ce [[N]}T}p[x::TB} holds, because 1B # (). m

18.2.9. COROLLARY. (i) Let T € TT T. Then

FT is a A\-model < [T }—%—T (Ax.M): (B—A) = I',a:B l—gT M : Al

(ii) Let T € TT. Then

F7T s a M-model <

S

T HL (Ax.M) : (B—A) & 2 €FV(M) = T,z:B+FL M : Al
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PRrROOF. (i) By Propositions 18.1.6(i), 16.2.1(ii) and Corollary 16.2.5(i).
(ii) By Propositions 18.1.6(ii), 16.2.1(i) and Corollary 16.2.5(ii). m

18.2.10. COROLLARY. (i) Let T € TT '. Then
T is B-sound = F7 is a A\-model.
(ii) Let T € TT. Then

T is B-sound = FI is a M-model.

s

PRrROOF. By the Corollary above and Theorem 16.1.10(iii). m

18.2.11. COROLLARY. (i) Let 7 € {Scott, Park, CDZ, HR, DHM, BCD, AO,
Plotkin, Engeler, CDS}. Then

FT is a A\-model.
(ii) Let T € {HL,CDV,CD}. Then

FT is a M-model.

S

PROOF. (i) By (i) of the previous Corollary and Theorem 16.1.8.
(ii) By (ii) of the Corollary, using Theorem 16.1.8. m

18.2.12. PROPOSITION. (i) Let T€TT . Then
T is natural and B- and n' -sound = FT is an extensional A-model.
(ii) Let T € TT. Then

T is proper and B- and n-sound = .7-"37 18 an extensional N\l-model.

Proor. (i) and (ii). F7 (F7)is a A(l)-model by Corollary 18.2.10(i)((ii)). For
extensionality by Corollary 18.1.9 one needs to verify for x ¢ FV (M)

P Me], = [M],, ()
This follows from Theorems 18.2.8(i), and 16.2.15(i). =
18.2.13. COROLLARY. (i) Let T € {Scott, Park, CDZ,HR, DHM}. Then
FT is an extensional A-model.
(ii) Let 7 = HL. Then
FT

5 15 an extensional Al-model.

PROOF. (i) and (ii) By Corollary 16.2.13. m



