



Figure 17.3: Equivalences proved in Sections 17.3 and 17.4

17.1. Meet semi-lattices and algebraic lattices

Categories of meet semi-lattices

Remember the following notions, see Definitions 15.3.8-15.3.10. The category **MSL** has as objects at most countable meet semi-lattices and as morphisms maps preserving \leq and \cap .

The category **MSL**^T is as **MSL**, but based on top meet semi-lattices. So now morphisms also should preserve the top.

The category **TS** has as objects the at most countable type structures and as morphisms maps $f : \mathcal{S} \rightarrow \mathcal{S}'$, preserving \leq, \cap, \rightarrow

The category **TS**^T is as **TS**, but based on top type structures. Now also morphisms should preserve the top.

In Definition 15.3.10 we defined four full subcategories of **TS** by specifying in each case the objects: **GTS**^T with as objects the graph top type structures; **LTS**^T with as objects the lazy top type structures; **NTS**^T with as objects the natural top type structures; **PTS** with as objects the proper type structures.

Categories of algebraic lattices

Comment:

- indexes are denoted either by I or by \mathcal{I} , you must choose to give some meaning to this notational difference (I finite and \mathcal{I} possibly infinite?), state and respect it, or use the same notation.

The following has already been given in Definition 14.2.1, but now we treat in greater detail.

17.1.1. DEFINITION. (i) A *complete lattice* is a poset $\mathcal{D} = (\mathcal{D}, \sqsubseteq)$ such that for arbitrary $X \subseteq \mathcal{D}$ the supremum $\bigcup X \in \mathcal{D}$ exists. Then one has also a *top* element $\top_{\mathcal{D}} = \bigcup \mathcal{D}$, a *bottom* element $\perp_{\mathcal{D}} = \bigcup \emptyset$, arbitrary *infima*

$$\sqcap X = \bigcup \{z \mid \forall x \in X. z \sqsubseteq x\}$$

and the *sup* and *inf* of two elements

$$x \sqcup y = \bigsqcup\{x, y\}, \quad x \sqcap y = \bigsqcap\{x, y\}.$$

(ii) A subset $Z \subseteq \mathbb{D}$ is called *directed* if Z is non-empty and

$$\forall x, y \in Z \ \exists z \in Z. x \sqsubseteq z \ \& \ y \sqsubseteq z.$$

(iii) An element $d \in \mathbb{D}$ is called *compact* (also sometimes called *finite* in the literature) if for every directed $Z \subseteq \mathbb{D}$ one has

$$d \sqsubseteq \bigsqcup Z \Rightarrow \exists z \in Z. d \sqsubseteq z.$$

Note that if d, e are compact, then so is $d \sqcup e$ ³.

- (iv) $\mathcal{K}(\mathbb{D}) = \{d \in \mathbb{D} \mid d \text{ is compact}\}.$
- (v) $\mathcal{K}^s(\mathbb{D}) = \mathcal{K}(\mathbb{D}) - \{\perp_{\mathbb{D}}\}.$
- (vi) \mathbb{D} is called an *algebraic lattice* if

$$\forall x \in \mathbb{D}. x = \bigsqcup\{e \in \mathcal{K}(\mathbb{D}) \mid e \sqsubseteq x\}.$$

\mathbb{D} is called an ω -*algebraic lattice* if moreover $\mathcal{K}(\mathbb{D})$ is countable (finite or countably infinite).

Instead of $d \in \mathbb{D}$ or $X \subseteq \mathbb{D}$ we often write $d \in \mathbb{D}$ or $X \subseteq \mathbb{D}$, respectively. When useful we will decorate $\sqsubseteq, \bigsqcup, \bigsqcap, \perp, \top, \sqcup$ and \sqcap with \mathbb{D} , e.g. $\sqsubseteq_{\mathbb{D}}$ etcetera.

The following connects the notion of a compact element to the notion of compact subset of a topological space.

17.1.2. LEMMA. *Let \mathbb{D} be a complete lattice. Then $d \in \mathbb{D}$ is compact iff*

$$\forall Z \subseteq \mathbb{D}. [d \sqsubseteq Z \Rightarrow \exists Z_0 \subseteq Z. [Z_0 \text{ is finite} \ \& \ d \sqsubseteq \bigsqcup Z_0]].$$

PROOF. (\Rightarrow) Suppose $d \in \mathbb{D}$ is compact. Given $Z \subseteq \mathbb{D}$, let

$$Z^+ = \{\bigsqcup Z_0 \mid Z_0 \subseteq Z \ \& \ Z_0 \text{ finite}\}.$$

Then $Z \subseteq Z^+, \bigsqcup Z_0 = \bigsqcup Z$ and Z^+ is directed. Hence

$$\begin{aligned} d \sqsubseteq \bigsqcup Z &\Rightarrow d \sqsubseteq \bigsqcup Z^+ \\ &\Rightarrow \exists z^+ \in Z^+. d \sqsubseteq z^+ \\ &\Rightarrow \exists Z_0 \subseteq Z. d \sqsubseteq \bigsqcup Z_0 \ \& \ Z_0 \text{ is finite.} \end{aligned}$$

(\Leftarrow) Suppose $d \sqsubseteq \bigsqcup Z$ with $Z \subseteq \mathbb{D}$ directed. By the condition $d \sqsubseteq \bigsqcup Z_0$ for some finite $Z_0 \subseteq Z$. If Z_0 is non-empty, then by the directedness of Z there exists a $z \in Z$ such that $z \sqsupseteq \bigsqcup Z_0 \sqsupseteq d$. If Z_0 is empty, then $d = \perp$ and we can take an arbitrary element z in the non-empty Z satisfying $d \sqsubseteq z$. ■

³In general it is not true that if $d \sqsubseteq e \in \mathcal{K}(\mathbb{D})$, then $d \in \mathcal{K}(\mathbb{D})$; take for example $\omega + 1$ in the ordinal $\omega + \omega = \{0, 1, 2, \dots, \omega, \omega + 1, \omega + 2, \dots\}$. It is compact, but ω ($\sqsubseteq \omega + 1$) is not.

17.1.3. NOTATION. Let \mathcal{D} be an ω -algebraic lattice. For $x \in \mathcal{D}$, write

$$K(x) = \{d \in \mathcal{K}(\mathcal{D}) \mid d \sqsubseteq x\}.$$

In this Chapter $a, b, c, d \dots$ always denote compact elements in lattices. Generic elements are denoted by $x, y, z \dots$. **Comment:** I do not agree to cancel this, it helps the reader! Henk: But we are not consistent: in 17.1.9 a' is not compact. Also not in 17.1.7(ii).

17.1.4. DEFINITION. Let \mathcal{D}, \mathcal{E} be complete lattices and $f : \mathcal{D} \rightarrow \mathcal{E}$.

(i) f is called (*Scott*) *continuous* iff for all directed $X \subseteq \mathcal{D}$ one has

$$f(\bigsqcup X) = \bigsqcup f(X) (= \bigsqcup \{f(x) \mid x \in X\}).$$

(ii) $[\mathcal{D} \rightarrow \mathcal{E}] = \{f : \mathcal{D} \rightarrow \mathcal{E} \mid f \text{ is Scott continuous functions}\}$.

(iii) f is called *strict* iff $f(\perp) = \perp$.

(iv) Write $[\mathcal{D} \rightarrow_s \mathcal{E}]$ for the collection of continuous strict maps.

17.1.5. PROPOSITION. Let \mathcal{D}, \mathcal{E} be algebraic lattices.

(i) Let $f \in [\mathcal{D} \rightarrow \mathcal{E}]$. Then for $x \in \mathcal{D}$

$$f(x) = \bigsqcup \{f(e) \mid e \sqsubseteq x \ \& \ e \in \mathcal{K}(\mathcal{D})\}.$$

(ii) Let $f, g \in [\mathcal{D} \rightarrow \mathcal{E}]$. Suppose $f \upharpoonright \mathcal{K}(\mathcal{D}) = g \upharpoonright \mathcal{K}(\mathcal{D})$. Then $f = g$.

PROOF. (i) Use that $x = \bigsqcup \{e \mid e \sqsubseteq x\}$ is a directed sup and that f is continuous.

(ii) By (i). ■

17.1.6. DEFINITION. The category **ALG** has as objects the ω -algebraic complete lattices and as morphisms the continuous maps.

17.1.7. DEFINITION. (i) $[\mathcal{D} \rightarrow \mathcal{D}']$ is partially ordered pointwise as follows.

$$f \sqsubseteq g \Leftrightarrow \forall x \in \mathcal{D}. f(x) \sqsubseteq g(x).$$

(ii) If $a \in \mathcal{D}$, $a' \in \mathcal{D}'$, then $a \mapsto a'$ is the *step function* defined by

$$\begin{aligned} (a \mapsto a')(d) &= a', & \text{if } a \sqsubseteq d; \\ &= \perp_{\mathcal{D}'}, & \text{else.} \end{aligned}$$

17.1.8. LEMMA. $[\mathcal{D} \rightarrow \mathcal{D}']$ is a complete lattice with

$$(\bigsqcup_{f \in X} f)(d) = \bigsqcup_{f \in X} f(d).$$

17.1.9. LEMMA. For $a, b \in \mathcal{D}$, $a', b' \in \mathcal{D}'$ and $f \in [\mathcal{D} \rightarrow \mathcal{D}']$ one has

(i) a compact $\Rightarrow a \mapsto a'$ is continuous.

(ii) $a \mapsto a'$ is continuous and $a' \neq \perp \Rightarrow a$ is compact.

(iii) a' compact $\Leftrightarrow a \mapsto a'$ compact.

(iv) $a' \sqsubseteq f(a) \Leftrightarrow (a \mapsto a') \sqsubseteq f$.

- (v) $b \sqsubseteq a \ \& \ a' \sqsubseteq b' \Rightarrow (a \mapsto a') \sqsubseteq (b \mapsto b').$
- (vi) $(a \mapsto a') \sqcup (b \mapsto b') \sqsubseteq (a \sqcap b) \mapsto (a' \sqcup b').$

PROOF. Easy. ■

17.1.10. LEMMA. *For all $b, a_1, \dots, a_n \in \mathcal{D}$, $b', a'_1, \dots, a'_n \in \mathcal{D}'$, and $f \in [\mathcal{D} \rightarrow \mathcal{D}']$*

$$\begin{aligned} (b \mapsto b') \sqsubseteq (a_1 \mapsto a'_1) \sqcup \dots \sqcup (a_n \mapsto a'_n) &\Leftrightarrow \\ &\Leftrightarrow \exists I \subseteq \{1, \dots, n\} [\sqcup_{i \in I} a_i \sqsubseteq b \ \& \ b' \sqsubseteq \sqcup_{i \in I} a'_i]. \end{aligned}$$

Clearly in (\Rightarrow) we have $I \neq \emptyset$ if $d \neq \perp_{\mathcal{D}}$.

PROOF. Easy. ■

17.1.11. PROPOSITION. *Let $\mathcal{D}, \mathcal{D}' \in \mathbf{ALG}$.*

- (i) *For $f \in [\mathcal{D} \rightarrow \mathcal{D}']$ one has $f = \sqcup \{a \Rightarrow a' \mid a' \sqsubseteq f(a), a \in \mathcal{K}(\mathcal{D}), a' \in \mathcal{K}(\mathcal{D}')\}.$*
- (ii) *Let $\mathcal{D} \in \mathbf{ALG}$ and let $f : [\mathcal{D} \rightarrow \mathcal{D}']$ be compact. Then*

$$f = (a_1 \mapsto a'_1) \sqcup \dots \sqcup (a_n \mapsto a'_n),$$

for some $a_1, \dots, a_n \in \mathcal{K}(\mathcal{D}), a'_1, \dots, a'_n \in \mathcal{K}(\mathcal{D}')$.

- (iii) $[\mathcal{D} \rightarrow \mathcal{D}'] \in \mathbf{ALG}.$

PROOF. (i) It suffices to show that RHS and LHS are equal when applied to an arbitrary element $d \in \mathcal{D}$.

$$\begin{aligned} f(d) &= f(\sqcup \{a \mid a \sqsubseteq d \ \& \ a \in \mathcal{K}(\mathcal{D})\}) \\ &= \sqcup \{f(a) \mid a \sqsubseteq d \ \& \ a \in \mathcal{K}(\mathcal{D})\} \\ &= \sqcup \{a' \mid a' \sqsubseteq f(a) \ \& \ a \sqsubseteq d \ \& \ a \in \mathcal{K}(\mathcal{D}), a' \in \mathcal{K}(\mathcal{D}')\} \\ &= \sqcup \{(a \mapsto a')(d) \mid a' \sqsubseteq f(a) \ \& \ a \sqsubseteq d \ \& \ a \in \mathcal{K}(\mathcal{D}), a' \in \mathcal{K}(\mathcal{D}')\} \\ &= \sqcup \{(a \mapsto a')(d) \mid a' \sqsubseteq f(a) \ \& \ a \in \mathcal{K}(\mathcal{D}), a' \in \mathcal{K}(\mathcal{D}')\} \\ &= (\sqcup \{(a \mapsto a') \mid a' \sqsubseteq f(a) \ \& \ a \in \mathcal{K}(\mathcal{D}), a' \in \mathcal{K}(\mathcal{D}')(d)\}). \end{aligned}$$

(ii) For f compact one has $f = \sqcup \{a \mapsto a' \mid a' \sqsubseteq f(a) \ \& \ a \in \mathcal{K}(\mathcal{D}), a' \in \mathcal{K}(\mathcal{D}')\}$, by (i). Hence by Lemma 17.1.2 for some $a_1, \dots, a_n \in \mathcal{K}(\mathcal{D}), a'_1, \dots, a'_n \in \mathcal{K}(\mathcal{D}')$

$$f = (a_1 \mapsto a'_1) \sqcup \dots \sqcup (a_n \mapsto a'_n). \quad (17.1)$$

(iii) It remains to show that there are only countably many compact elements in $[\mathcal{D} \rightarrow \mathcal{D}]$. Since $\mathcal{K}(\mathcal{D})$ is countable, there are only countably many expressions in the RHS of (17.1). (The cardinality is $\leq \Sigma_n n \cdot \aleph_0^2 = \aleph_0$.) Therefore there are countable many compact $f \in [\mathcal{D} \rightarrow \mathcal{D}]$. (There may be more expressions on the RHS for one f , but this results in less compact elements.) ■

17.1.12. DEFINITION. (i) The category \mathbf{ALG}_a has the same objects as \mathbf{ALG} and as morphisms $\mathbf{ALG}_a(\mathcal{D}, \mathcal{D}')$ maps $f : \mathcal{D} \rightarrow \mathcal{D}'$ that satisfy the properties ‘compactness preserving’ and ‘additive’:

$$\begin{aligned} (\text{cmp-pres}) \quad &\forall a \in \mathcal{K}(\mathcal{D}). f(a) \in \mathcal{K}(\mathcal{D}'); \\ (\text{add}) \quad &\forall X \subseteq \mathcal{D}. f(\sqcup X) = \sqcup f(X). \end{aligned}$$