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Figure 17.3: Equivalences proved in Sections 17.3 and 17.4

17.1. Meet semi-lattices and algebraic lattices

Categories of meet semi-lattices

Remember the following notions, see Definitions 15.3.8-15.3.10. The category
MSL has as objects at most countable meet semi-lattices and as morphisms
maps preserving ≤ and ∩.

The category MSL⊤ is as MSL, but based on top meet semi-lattices. So
now morphisms also should preserve the top.

The category TS has as objects the at most countable type structures and
as morphisms maps f : S→S ′, preserving ≤,∩,→

The category TS⊤ is as TS, but based on top type structures. Now also
morphisms should preserve the top.

In Definition 15.3.10 we defined four full subcategories of TS by specifying
in each case the objects: GTS⊤ with as objects the graph top type structures;
LTS⊤ with as objects the lazy top type structures; NTS⊤ with as objects the
natural top type structures; PTS with as objects the proper type structures.

Categories of algebraic lattices

Comment:

• indexes are denoted either by I or by I, you must choose to give some
meaning to this notational difference (I finite and I possibly infinite?),
state and respect it, or use the same notation.

The following has already been given in Definition 14.2.1, but now we treat in
in greater detail.

17.1.1. Definition. (i) A complete lattice is a poset D = (D,⊑) such that for
arbitrary X ⊆ D the supremum X ∈ D exists. Then one has also a top element
⊤D = D, a bottom element ⊥D = ∅, arbitrary infima

X = {z | ∀x∈X.z ⊑ x}
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and the sup and inf of two elements

x ⊔ y = {x, y}, x ⊓ y = {x, y}.

(ii) A subset Z ⊆ D is called directed if Z is non-empty and

∀x, y ∈Z ∃z ∈Z.x ⊑ z & y ⊑ z.

(iii) An element d∈ D is called compact (also sometimes called finite in the
literature) if for every directed Z ⊆ D one has

d ⊑ Z ⇒ ∃z ∈Z.d ⊑ z.

Note that if d, e are compact, then so is d ⊔ e3.
(iv) K(D) = {d∈ D | d is compact}.
(v) Ks(D) = K(D)− {⊥D}.
(vi) D is called an algebraic lattice if

∀x∈ D.x = {e∈K(D) | e ⊑ x}.

D is called an ω-algebraic lattice if moreover K(D) is countable (finite or
countably infinite).

Instead of d∈ D or X ⊆ D we often write d∈D or X ⊆ D, respectively. When
useful we will decorate ⊑, , , ⊥,⊤, ⊔ and ⊓ with D, e.g. ⊑D etcetera.

The following connects the notion of a compact element to the notion of
compact subset of a topological space.

17.1.2. Lemma. Let D be a complete lattice. Then d∈D is compact iff

∀Z ⊆ D.[d ⊑ Z ⇒ ∃Z0 ⊆ Z.[Z0 is finite & d ⊑ Z0]].

Proof. (⇒) Suppose d∈D is compact. Given Z ⊆ D, let

Z+ = { Z0 | Z0 ⊆ Z & Z0 finite}.

Then Z ⊆ Z+, Z0 = Z and Z+ is directed. Hence

d ⊑ Z ⇒ d ⊑ Z+

⇒ ∃z+ ∈Z+.d ⊑ z+

⇒ ∃Z0 ⊆ Z.d ⊑ Z0 & Z0 is finite.

(⇐) Suppose d ⊑ Z with Z ⊆ D directed. By the condition d ⊑ Z0 for
some finite Z0 ⊆ Z. If Z0 is non-empty, then by the directedness of Z there
exists a z ∈Z such that z ⊒ Z0 ⊒ d. If Z0 is empty, then d = ⊥ and we can
take an arbitrary element z in the non-empty Z satisfying d ⊑ z.

3In general it is not true that if d ⊑ e∈K(D), then d∈K(D); take for example ω + 1 in
the ordinal ω + ω = {0, 1, 2, . . . ω, ω + 1, ω + 2, . . .}. It is compact, but ω (⊑ ω + 1) is not.
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17.1.3. Notation. Let D be an ω-algebraic lattice. For x∈D, write

K(x) = {d∈K(D) | d ⊑ x}.

In this Chapter a, b, c, d . . . always denote compact elements in lattices. Generic
elements are denoted by x, y, z . . . . Comment: I do not agree to cancel this, it
helps the reader! Henk: But we are not consistent: in 17.1.9 a′ is not compact.
Also not in 17.1.7(ii).

17.1.4. Definition. Let D, E be complete lattices and f : D→E .
(i) f is called (Scott) continuous iff for all directed X ⊆ D one has

f( X) = f(X) (= {f(x) | x∈X}).

(ii) [D→E ] = {f : D→E | f is Scott continuous functions}.
(iii) f is called strict iff f(⊥) = ⊥.
(iv) Write [D→sE ] for the collection of continuous strict maps.

17.1.5. Proposition. Let D, E be algebraic lattices.
(i) Let f ∈ [D→E ]. Then for x∈D

f(x) = {f(e) | e ⊑ x & e∈K(D)}.

(ii) Let f, g ∈ [D→E ]. Suppose f ↾ K(D) = g ↾ K(D). Then f = g.

Proof. (i) Use that x = {e | e ⊑ x} is a directed sup and that f is
continuous.

(ii) By (i).

17.1.6. Definition. The category ALG has as objects the ω-algebraic complete
lattices and as morphisms the continuous maps.

17.1.7. Definition. (i) [D→D′] is partially ordered pointwise as follows.

f ⊑ g ⇔ ∀x∈D.f(x) ⊑ g(x).

(ii) If a∈D, a′ ∈D′, then a7→a′ is the step function defined by

(a7→a′)(d) = a′, if a ⊑ d;
= ⊥D′ , else.

17.1.8. Lemma. [D→D′] is a complete lattice with

(
f ∈X

f)(d) =
f ∈X

f(d).

17.1.9. Lemma. For a, b∈D, a′, b′ ∈D′ and f ∈ [D→D′] one has
(i) a compact ⇒ a7→a′ is continuous.
(ii) a7→a′ is continuous and a′ 6= ⊥ ⇒ a is compact.
(iii) a′ compact ⇔ a7→a′ compact.
(iv) a′ ⊑ f(a) ⇔ (a7→a′) ⊑ f.
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(v) b ⊑ a & a′ ⊑ b′ ⇒ (a7→a′) ⊑ (b7→b′).
(vi) (a7→a′) ⊔ (b7→b′) ⊑ (a ⊓ b)7→(a′ ⊔ b′).

Proof. Easy.

17.1.10. Lemma. For all b, a1, . . . , an ∈D, b′, a′1, . . . , a
′
n ∈D′, and f ∈ [D→D′]

(b7→b′) ⊑ (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n) ⇔
⇔ ∃I⊆{1, . . . , n} [⊔i∈ Iai ⊑ b & b′ ⊑ ⊔i∈ Ia

′
i].

Clearly in (⇒) we have I 6= ∅ if d 6= ⊥D.

Proof. Easy.

17.1.11. Proposition. Let D,D′ ∈ALG.
(i) For f ∈ [D→D′] one has f = {a⇒ a′ | a′ ⊑ f(a), a∈K(D), a′ ∈K(D′)}.
(ii) Let D∈ALG and let f : [D→D′] be compact. Then

f = (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n),

for some a1, . . . ,an ∈K(D), a′1, . . . ,a
′
n ∈K(D′).

(iii) [D→D′]∈ALG.

Proof. (i) It suffices to show that RHS and LHS are equal when applied to
an arbitrary element d∈D.

f(d) = f( {a | a ⊑ d & a∈K(D)})
= {f(a) | a ⊑ d & a∈K(D)}
= {a′ | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a7→a′)(d) | a′ ⊑ f(a) & a ⊑ d & a∈K(D), a′ ∈K(D′)}
= {(a7→a′)(d) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)}
= ( {(a7→a′) | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)(d)}.

(ii) For f compact one has f = {a7→a′ | a′ ⊑ f(a) & a∈K(D), a′ ∈K(D′)},
by (i). Hence by Lemma 17.1.2 for some a1, . . . ,an ∈K(D), a′1, . . . ,a

′
n ∈K(D′)

f = (a1 7→a′1) ⊔ . . . ⊔ (an 7→a′n). (17.1)

(iii) It remains to show that there are only countably many compact elements
in [D→D]. Since K(D) is countable, there are only countably many expressions
in the RHS of (17.1). (The cardinality is ≤ Σnn.ℵ2

0 = ℵ0.) Therefore there are
countable many compact f ∈ [D→D]. (There may be more expressions on the
RHS for one f , but this results in less compact elements.)

17.1.12. Definition. (i) The category ALGa has the same objects as ALG
and as morphisms ALGa(D,D′) maps f : D→D′ that satisfy the properties
‘compactness preserving’ and ‘additive’:

(cmp-pres) ∀a∈K(D).f(a)∈K(D′);
(add) ∀X ⊆ D.f( X) = f(X).


