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We start with some simple examples, that explains the method. To make the
examples more readable we will use numbers to denote atomic types and we
will add to each inference rule used in the deduction the type equation which
makes it valid.

10.2.1. Example. (i) Let M ≡ λx.xx. In order to type M , we build from
below the following derivation.

x:1 ⊢ x : 1 x:1 ⊢ x : 1 1 = 1→2

x:1 ⊢ xx : 2 3 = 1→2

⊢ λx.xx : 3

This gives the triple

aM = 3, ΓM = ∅,AM = TTcM /EM ,

where cM = {1, 2, 3} and EM = {1 = 1→ 2, 3 = 1→ 2}. We can simplify this
triple to the isomorphic TM = 1, ΓM = ∅, AM = TT{1,2}/{1 = 1→2}. Indeed

⊢AM
(λx.xx) : 1

In order to show that this assignment is initial, suppose that Γ ⊢A M : a1.
Then one can reconstruct from below, using the generation Lemma 10.1.3.

x:a1 ⊢ x : a1 x:a1 ⊢ x : a1 a1 = a1→a2

x:a1 ⊢ xx : a2 a1 = a1→a2

⊢ λx.xx : a1

The required morphism is determined by h(k) = ak for k ≤ 2. Indeed one has
h(aM ) = a0 and h(ΓM ) ⊆ Γ.

(ii) If we consider the (open) term M ≡ x(xx) we have, using Church nota-
tion to represent deduction in a more compact way:

⊢AM
x1 (x1 x1)2 : 3,

where aM = 3, AM = TT{1,2,3}/{1 = 1→2 = 2→3} and ΓM = {x : 1}.
Moreover if we want to consider type assignment with respect to invertible

type algebras we can convert AM in a invertible type algebra Ainv
M . Assuming

invertibility we get 1 = 2 = 3 and then Ainv
M can be simplified to the trivial

type algebra TT{1}/{1 = 1→1}.
(iii) If we consider term having a simple type in (λ →) the construction

sketched above that does not imply recursive definitions as in case (i). Moreover
if we assume invertibility the resulting type algebra is isomorphic to a free one
and we get the same principal type as in (λ→). Let M ≡ c2 ≡ λfx.f(fx).

f :1, x:2 ⊢ f :1 f :1, x:2 ⊢ x : 2 1 = 2→3

f :1, x:3 ⊢ fx : 3 1 = 3→4

f :1, x:2 ⊢ f(fx) : 4 5 = 2→4

f :1 ⊢ λx.f(fx) : 5 6 = 1→5

⊢ λfx.f(fx) : 6
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Simplifying this gives the triple

⊢E c2 : (2→3)→(2→4), (1)

with Ec2 = {2→3 = 3→4}. We can understand this by looking at

⊢ λf (2→3)=(2→4) x2.(f2→4(f2→3x2)3)4 : (2→3)→2→4.

Also in λ→ this term M can be typed.

⊢λ→
c2 : (α→α)→α→α, (2)

Note that there is a morphism h : TT/Ec2 →TTα determined by

h(2) = h(3) = h(4) = α.

This h respects the equations in Ec2 . In this way the type assignment (2) is
seen to follow from (1), applying Lemma 8.1.18.

Note also in this case assuming invertibility we get 2 = 3 = 4 and so Ec2

contains only identities. We have than that Ainv
c2

is isomorphic to TT{α}, the
free type algebra over the atomic type α.

(iv) M ≡ II. Bottom-up we construct the following derivation-tree.

x:2 ⊢ x : 2 1 = 2→2

⊢ (λx.x) : 1

y:2′ ⊢ y : 2′ 1′ = 2′→2′

⊢ (λy.y) : 1′ 1 = 1′→0

⊢ (λx.x)(λy.y) : 0

Changeing names of type constants, this gives the following type assignment

⊢E II : 0, (3)

with E = {1 → 1 = (1′ → 1′) → 0} on TT{0,1,1′}. In λ→ this term has as
principal type α→α. This can be obtained as image of (3) under the morphism
h : TT{0,1,1′}→TT{α} defined by

h(0) = α→α;

h(1) = α→α;

h(1′) = α.

Note that it was important to keep the names of the bound variables of the two
occurrences of I different.

We present now the formal algorithm to build the principal triple for a term
M . To simplify its definition we make the assumption that the names of all
free and bound variables of M are distinct. This can always be achieved by
α-conversion.

10.2.2. Definition. [PTS]

Let M ∈Λ. Assume that all free and bound variables have maximally different
names. Define a set of type constants cM , a type aM , a basis ΓM , a set of



88 CHAPTER 10. PROPERTIES OF TERMS WITH TYPES 18.10.2008:1364

equations EM , and a type algebra AM with element aM as follows. We do this
by defining first for each subterm-occurrence L ⊆ M for L not a variable a type
atom αL. For variable subterms x we choose a fixed type αx independent of
the occurrence of x. Then we define EL for each for each subterm-occurrence
L ⊆ M , obtaining this notion also for M as highest subterm of itself.

L EL

x ∅
PQ EP ∪ EQ ∪ {αP = αQ→αPQ}
λx.P EP ∪ {αλx.P = αx→αP }

Define cM as the set of all atomic types occurring in αx, EM . Finally we define

ΓM = {x:αx | x∈FV(M)};
AM = TTcM /EM ;

aM = [αM ]EM
.

The type aM is called the principal type of M for recursive types and AM its
principal type algebra. ΓM is the principal context of M , which is empty if M
is closed.

Type inference

Of the following theorem part (iii) solves both versions of the type inference
problem.

10.2.3. Theorem. [PTS.TA]

[PTSuno]

For every M ∈Λ there exists a principal triple 〈ΓM , AM , aM 〉 such that the
following holds.

(i) ΓM ⊢AM
M : aM .

(ii) Γ ⊢A M : a ⇔ there is a morphism h : AM →A such that
h(ΓM ) ⊆ Γ and h(aM ) = a.

(iii) For M ∈Λø this simplifies to

⊢A M : a ⇔ ∃h:AM →A.h(aM ) = a.

Proof. Take as triple the one defined in the previous Definition.
(i) By induction on the structure of L ⊆ M we show that this statement

holds for M replaced by L and hence also for M itself. Case L ≡ x. Then
clearly x:αx ⊢ x : αx. Case L ≡ PQ, and ΓP ⊢TT/E P : αP , ΓQ ⊢TT/E Q : αQ.
Then ΓP ∪ ΓQ ⊢TT/E PQ : αPQ, as αP =E αQ → αPQ. Case L ≡ λx.P and
ΓP ⊢TT/E P : αP . Then ΓP − {x:αx} ⊢TT/E λx.P : αx→αP = αλx.P .

(ii) (⇐) By (i), Lemma 8.1.18 and weakening, Proposition 8.1.4.
(⇒) By Remark 8.2.6 it is enough to define a morphism h♮ : TTcM →A such
that h♮(aM ) = A and B = C ∈EM ⇒ h♮(B) = h♮(C), for all B, C ∈TTcM . As
in Definition 10.2.2 we can assume that all bound and free variables in M have
distinct names. Take a deduction D of Γ ⊢A M : a. Note that in definition
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10.2.2 for every L ⊆ M a type derivation DL is constructed in which each
variable x occurring in L is assigned type αx and to each subterm occurrence of
L, that is not a variable, a fresh type variable is assigned. Moreover DM and D
have the same shape corresponding to the structure of M . Now we define h♮.

(1) h♮(αx) = Γ(x) for each x∈dom(ΓM );

(2) h♮(αL) = α′
L for all αL assigned in DM to the non variable subterm occur-

rences L of M , where α′
L is assigned in D to the corresponding L.

It is easy to verify, using the generation Lemma 10.1.3, that all equations in
EM are preserved. Moreover, by construction, h♮(αM ) = a. Obviously we have
h(ΓM ) ⊆ Γ, since ΓM contains only assumptions for variables occurring in M .

(iii) By (ii), knowing that ΓM = ∅ for M ∈Λø.

If we want to consider only invertible type algebras, by Lemma 9.3.18, we
can take BM = TTcM /E inv

M as the initial type algebra for M . Let RM = E inv
M .

Note that, by Lemma 9.3.17, RM is a proper sr and we have BM = TTcM /RM .

10.2.4. Corollary. [PTS.ITA]

For every M ∈Λ there exists an invertible principal triple ΓM , BM , aM such
that the following holds.

(i) ΓM ⊢BM
M : bM , with BM invertible.

(ii) Γ ⊢B M : a, with B invertible ⇔ ∃h : BM →B
h(ΓM ) ⊆ Γ and h(aM ) = a.

Proof. Given M , consider its principal type ΓM ,AM , aM and replace AM

by BM = Ainv
M . Let k : AM → BM be the canonical morphism and take

Γ′
M = k(ΓM ), bM = k(aM ). Then (i) holds by the Theorem and Lemma 8.1.18.

Property (ii) follows by (ii) of the Theorem and Proposition 9.3.18.

The typeability problems

Theorem 10.2.3 provides the abstract answer to the question whether a term
has a type within a given type algebra A. The first typability question, i.e.
given M ∈Λø

does there exist A and a∈A such that ⊢A M : a,

is trivially checked: this is always the case. Indeed, take A = TT{α}/{α = α→α}
and a = [α]; then one has ⊢A M : a, see Exercise 8.6.12. However this problem
is not more trivial when term constants are considered, see the discussion in
Section 12.1.

The decidability of the second question, given M ∈Λø and type algebra A

does there exist an a∈A such that ⊢A M : a,

only makes sense if A is ‘finitely presented’, i.e. of the form TTA/E with A and
E finite. Then typability is decidable.


