

Chapter 2

Properties

2.1. First properties

In this section we will treat simple properties of the various systems λ_{\rightarrow} . Deeper properties—like strong normalization of typeable terms—will be considered in Section 2.2.

Properties of $\lambda_{\rightarrow}^{\text{Cu}}$, $\lambda_{\rightarrow}^{\text{Ch}}$ and $\lambda_{\rightarrow}^{\text{dB}}$

Unless stated otherwise, properties stated for λ_{\rightarrow} apply to both systems.

2.1.1. PROPOSITION (Weakening lemma for λ_{\rightarrow}).

Suppose $\Gamma \vdash M : A$ and Γ' is a basis with $\Gamma \subseteq \Gamma'$. Then $\Gamma' \vdash M : A$.

PROOF. By induction on the derivation of $\Gamma \vdash M : A$. ■

2.1.2. LEMMA (Free variable lemma). (i) *Suppose $\Gamma \vdash M : A$. Then $\text{FV}(M) \subseteq \text{dom}(\Gamma)$.*

(ii) If $\Gamma \vdash M : A$, then $\Gamma \upharpoonright \text{FV}(M) \vdash A : M$, where for a set X of variables one has $\Gamma \upharpoonright \text{FV}(M) = \{x : A \in \Gamma \mid x \in X\}$.

PROOF. (i), (ii) By induction on the generation of $\Gamma \vdash M : A$. ■

The following result is related to the fact that the system λ_{\rightarrow} is ‘syntax directed’, i.e. statements $\Gamma \vdash M : A$ have a unique proof.

2.1.3. PROPOSITION (Generation lemma for $\lambda_{\rightarrow}^{\text{Cu}}$).

- (i) $\Gamma \vdash x : A \Rightarrow (x : A) \in \Gamma$.
- (ii) $\Gamma \vdash MN : A \Rightarrow \exists B \in \mathbb{T} [\Gamma \vdash M : B \rightarrow A \& \Gamma \vdash N : B]$.
- (iii) $\Gamma \vdash \lambda x. M : A \Rightarrow \exists B, C \in \mathbb{T} [A \equiv B \rightarrow C \& \Gamma, x : B \vdash M : C]$.

PROOF. (i) Suppose $\Gamma \vdash x : A$ holds in λ_{\rightarrow} . The last rule in a derivation of this statement cannot be an application or an abstraction, since x is not of the right form. Therefore it must be an axiom, i.e. $(x : A) \in \Gamma$.

(ii), (iii) The other two implications are proved similarly. ■

2.1.4. PROPOSITION (Generation lemma for $\lambda_{\rightarrow}^{\text{dB}}$).

- (i) $\Gamma \vdash x : A \Rightarrow (x:A) \in \Gamma$.
- (ii) $\Gamma \vdash MN : A \Rightarrow \exists B \in \mathbb{T} [\Gamma \vdash M : B \rightarrow A \& \Gamma \vdash N : B]$.
- (iii) $\Gamma \vdash \lambda x : B. M : A \Rightarrow \exists C \in \mathbb{T} [A \equiv B \rightarrow C \& \Gamma, x : B \vdash M : C]$.

PROOF. Similarly. ■

2.1.5. PROPOSITION (Generation lemma for $\lambda_{\rightarrow}^{\text{Ch}}$).

- (i) $x^B \in \Lambda_{\rightarrow}^{\text{Ch}}(A) \Rightarrow B = A$.
- (ii) $(MN) \in \Lambda_{\rightarrow}^{\text{Ch}}(A) \Rightarrow \exists B \in \mathbb{T}. [M \in \Lambda_{\rightarrow}^{\text{Ch}}(B \rightarrow A) \& N \in \Lambda_{\rightarrow}^{\text{Ch}}(B)]$.
- (iii) $(\lambda x^B. M) \in \Lambda_{\rightarrow}^{\text{Ch}}(A) \Rightarrow \exists C \in \mathbb{T}. [A = (B \rightarrow C) \& M \in \Lambda_{\rightarrow}^{\text{Ch}}(C)]$.

PROOF. As before. ■

The following two results hold for $\lambda_{\rightarrow}^{\text{Cu}}$ and $\lambda_{\rightarrow}^{\text{dB}}$. Variants already have been proved for $\lambda_{\rightarrow}^{\text{Ch}}$, Propositions 1.4.2 and 1.4.4(iii).

2.1.6. PROPOSITION (Substitution lemma for $\lambda_{\rightarrow}^{\text{Cu}}$ and $\lambda_{\rightarrow}^{\text{dB}}$).

- (i) $\Gamma, x : A \vdash M : B \& \Gamma \vdash N : A \Rightarrow \Gamma \vdash M[x := N] : B$.
- (ii) $\Gamma \vdash M : A \Rightarrow \Gamma[\alpha := B] \vdash M : A[\alpha := B]$.

PROOF. The proof will be given for $\lambda_{\rightarrow}^{\text{Cu}}$, for $\lambda_{\rightarrow}^{\text{dB}}$ it is similar.

- (i) By induction on the derivation of $\Gamma, x : A \vdash M : B$. Write $P^* \equiv P[x := N]$.

Case 1. $\Gamma, x : A \vdash M : B$ is an axiom, hence $M \equiv y$ and $(y : B) \in \Gamma \cup \{x : A\}$.

Subcase 1.1. $(y : B) \in \Gamma$. Then $y \not\equiv x$ and $\Gamma \vdash M^* \equiv y[x : N] \equiv y : B$.

Subcase 1.2. $y : B \equiv x : A$. Then $y \equiv x$ and $B \equiv A$, hence $\Gamma \vdash M^* \equiv N : A \equiv B$.

Case 2. $\Gamma, x : A \vdash M : B$ follows from $\Gamma, x : A \vdash F : C \rightarrow B$, $\Gamma, x : A \vdash G : C$ and $FG \equiv M$. By the induction hypothesis one has $\Gamma \vdash F^* : C \rightarrow B$ and $\Gamma \vdash G^* : C$. Hence $\Gamma \vdash (FG)^* \equiv F^*G^* : B$.

Case 3. $\Gamma, x : A \vdash M : B$ follows from $\Gamma, x : A, y : D \vdash G : E$, $B \equiv D \rightarrow E$ and $\lambda y. G \equiv M$. By the induction hypothesis $\Gamma, y : D \vdash G^* : E$, hence $\Gamma \vdash (\lambda y. G)^* \equiv \lambda y. G^* : D \rightarrow E \equiv B$.

- (ii) Similarly. ■

2.1.7. PROPOSITION (Subject reduction property for $\lambda_{\rightarrow}^{\text{Cu}}$ and $\lambda_{\rightarrow}^{\text{dB}}$).

Suppose

$M \rightarrow_{\beta\eta} M'$. Then $\Gamma \vdash M : A \Rightarrow \Gamma \vdash M' : A$.

PROOF. The proof will be given for $\lambda_{\rightarrow}^{\text{dB}}$, for $\lambda_{\rightarrow}^{\text{Cu}}$ it is similar. Suppose $\Gamma \vdash M : A$ and $M \rightarrow M'$ in order to show that $\Gamma \vdash M' : A$; then the result follows by induction on the derivation of $\Gamma \vdash M : A$.

Case 1. $\Gamma \vdash M : A$ is an axiom. Then M is a variable, contradicting $M \rightarrow M'$. Hence this case cannot occur.

Case 2. $\Gamma \vdash M : A$ is $\Gamma \vdash FN : A$ and is a direct consequence of $\Gamma \vdash F : B \rightarrow A$ and $\Gamma \vdash N : B$. Since $FN \equiv M \rightarrow M'$ we can have three subcases.

Subcase 2.1. $M' \equiv F'N$ with $F \rightarrow F'$.

Subcase 2.2. $M' \equiv FN'$ with $N \rightarrow N'$.

In these two subcases it follows by the induction hypothesis that $\Gamma \vdash M' : A$.

Subcase 2.3. $F \equiv \lambda x:B.G$ and $M' \equiv G[x := N]$. Since

$$\Gamma \vdash \lambda x.G : B \rightarrow A \ \& \ \Gamma \vdash N : B$$

it follows by the generation lemma 2.1.3 for λ_{\rightarrow} that

$$\Gamma, x:B \vdash G : A \ \& \ \Gamma \vdash N : B.$$

Therefore by the substitution lemma 2.1.6 for λ_{\rightarrow} it follows that

$\Gamma \vdash G[x := N] : A$, i.e. $\Gamma \vdash M' : A$.

Case 3. $\Gamma \vdash M : A$ is $\Gamma \vdash \lambda x:B.N : B \rightarrow C$ and follows from $\Gamma, x:B \vdash N : C$. Since $M \rightarrow M'$ we have $M' \equiv \lambda x:B.N'$ with $N \rightarrow N'$. By the induction hypothesis one has $\Gamma, x:B \vdash N' : C$, hence $\Gamma \vdash \lambda x:B.N' : B \rightarrow C$, i.e. $\Gamma \vdash M' : A$. ■

The following result also holds for $\lambda_{\rightarrow}^{\text{Ch}}$ and $\lambda_{\rightarrow}^{\text{dB}}$, Exercise 2.5.4.

2.1.8. COROLLARY (Church-Rosser Theorem for $\lambda_{\rightarrow}^{\text{Cu}}$). *On typable terms of $\lambda_{\rightarrow}^{\text{Cu}}$ the Church-Rosser theorem holds for the notions of reduction \rightarrow_{β} and $\rightarrow_{\beta\eta}$.*

(i) *Let $M, N \in \Lambda_{\rightarrow}^{\Gamma}(A)$. Then*

$$M =_{\beta(\eta)} N \Rightarrow \exists Z \in \Lambda_{\rightarrow}^{\Gamma}(A). M \rightarrow_{\beta(\eta)} Z \ \& \ N \rightarrow_{\beta(\eta)} Z.$$

(ii) *Let $M, N_1, N_2 \in \Lambda_{\rightarrow}^{\Gamma}(A)$. Then*

$$M \rightarrow_{\beta\eta} N_1 \ \& \ M \rightarrow_{\beta\eta} N_2 \Rightarrow \exists Z \in \Lambda_{\rightarrow}^{\Gamma}(A). N_1 \rightarrow_{\beta(\eta)} Z \ \& \ N_2 \rightarrow_{\beta(\eta)} Z.$$

PROOF. By the Church-Rosser theorems for \rightarrow_{β} and $\rightarrow_{\beta\eta}$ on untyped terms, Theorem 1.1.7, and Proposition 2.1.7. ■

The following property of uniqueness of types only holds for the Church and de Bruijn versions of λ_{\rightarrow} . It is instructive to find out where the proof brakes down for $\lambda_{\rightarrow}^{\text{Cu}}$ and also that the two contexts in (ii) should be the same.

2.1.9. PROPOSITION (Unicity of types for $\lambda_{\rightarrow}^{\text{Ch}}$ and $\lambda_{\rightarrow}^{\text{dB}}$).

- (i) $M \in \Lambda_{\rightarrow}^{\text{Ch}}(A) \ \& \ M \in \Lambda_{\rightarrow}^{\text{Ch}}(B) \Rightarrow A = B.$
- (ii) $\Gamma \vdash_{\lambda_{\rightarrow}}^{\text{dB}} M : A \ \& \ \Gamma \vdash_{\lambda_{\rightarrow}}^{\text{dB}} M : B \Rightarrow A = B.$

PROOF. (i), (ii) By induction on the structure of M , using the generation lemma 2.1.4. ■

Normalization

For several applications, for example for the problem to find all possible inhabitants of a given type, we will need the weak normalization theorem, stating that all typable terms do have a $\beta\eta$ -nf (normal form). The result is valid for all versions of λ_\rightarrow and *a fortiori* for the subsystems λ_\rightarrow^o . The proof is due to Turing and is published posthumously in Gandy [1980]. In fact all typable terms in these systems are $\beta\eta$ strongly normalizing, which means that all $\beta\eta$ -reductions are terminating. This fact requires more work and will be proved in §12.2.

The notion of ‘abstract reduction system’, see Klop [1992], is useful for the understanding of the proof of the normalization theorem.

2.1.10. DEFINITION. (i) An *abstract reduction system* is a pair (X, \rightarrow_R) , where X is a set and \rightarrow_R is a binary relation on X .

(ii) An element $x \in X$ is said to be in R -normal form (R -nf) if for no $y \in X$ one has $x \rightarrow_R y$.

(iii) (X, R) is called *weakly normalizing* (R -WN, or simply WN) if every element has an R -nf.

(iv) (X, R) is said to be *strongly normalizing* (R -SN, or simply SN) if every R -reduction path

$$x_0 \rightarrow_R x_1 \rightarrow_R x_2 \rightarrow_R \dots$$

is finite.

2.1.11. DEFINITION. (i) A *multiset over nat* can be thought of as a generalized set S in which each element may occur more than once. For example

$$S = \{3, 3, 1, 0\}$$

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1; etcetera.

More formally, the above multiset S can be identified with a function $f \in \mathbb{N}^\mathbb{N}$ that is almost everywhere 0, except

$$f(0) = 1, f(1) = 1, f(3) = 2.$$

This S is finite if f has *finite support*, where

$$\text{support}(f) = \{x \in \mathbb{N} \mid f(x) \neq 0\}.$$

(ii) Let $\mathcal{S}(\mathbb{N})$ be the collection of all finite multisets over \mathbb{N} . $\mathcal{S}(\mathbb{N})$ can be identified with $\{f \in \mathbb{N}^\mathbb{N} \mid \text{support}(f) \text{ is finite}\}$.

2.1.12. DEFINITION. Let $S_1, S_2 \in \mathcal{S}(\mathbb{N})$. Write

$$S_1 \rightarrow_{\mathcal{S}} S_2$$

if S_2 results from S_1 by replacing some elements (just one occurrence) by finitely many lower elements (in the usual ordering of \mathbb{N}). For example

$$\{3, \underline{3}, 1, 0\} \rightarrow_{\mathcal{S}} \{3, \underline{2}, \underline{2}, 1, 0\}.$$

2.1.13. LEMMA. *We define a particular (non-deterministic) reduction strategy F on $\mathcal{S}(\mathbb{N})$. A multi-set S is contracted to $F(S)$ by taking a maximal element $n \in S$ and replacing it by finitely many numbers $< n$. Then F is a normalizing reduction strategy, i.e. for every $S \in \mathcal{S}(\mathbb{N})$ the \mathcal{S} -reduction sequence*

$$S \rightarrow_{\mathcal{S}} F(S) \rightarrow_{\mathcal{S}} F^2(S) \rightarrow_{\mathcal{S}} \dots$$

is terminating.

PROOF. By induction on the highest number n occurring in S . If $n = 0$, then we are done. If $n = k+1$, then we can successively replace in S all occurrences of n by numbers $\leq k$ obtaining S_1 with maximal number $\leq k$. Then we are done by the induction hypothesis. ■

In fact $(\mathcal{S}(\mathbb{N}), \rightarrow_{\mathcal{S}})$ is SN. Although we do not strictly need this fact, we will give even two proofs of it. In the first place it is something one ought to know; in the second place it is instructive to see that the result does not imply that λ_{\rightarrow} satisfies SN.

2.1.14. LEMMA. *The reduction system $(\mathcal{S}(\mathbb{N}), \rightarrow_{\mathcal{S}})$ is SN.*

We will give two proofs of this lemma. The first one uses ordinals; the second one is from first principles.

PROOF₁. Assign to every $S \in \mathcal{S}(\mathbb{N})$ an ordinal $\#S < \omega^\omega$ as suggested by the following examples.

$$\begin{aligned} \#\{3, 3, 1, 0, 0, 0\} &= 2\omega^3 + \omega + 3; \\ \#\{3, 2, 2, 2, 1, 1, 0\} &= \omega^3 + 3\omega^2 + 2\omega + 1. \end{aligned}$$

More formally, if S is represented by $f \in \mathbb{N}^{\mathbb{N}}$ with finite support, then

$$\#S = \sum_{i \in \mathbb{N}} f(i) \cdot \omega^i.$$

Notice that

$$S_1 \rightarrow_{\mathcal{S}} S_2 \Rightarrow \#S_1 > \#S_2$$

(in the example because $\omega^3 > 3\omega^2 + \omega$). Hence by the well-foundedness of the ordinals the result follows. ■₁

PROOF₂. Define

$$\begin{aligned} \mathcal{F}_k &= \{f \in \mathbb{N}^{\mathbb{N}} \mid \forall n \geq k f(n) = 0\}; \\ \mathcal{F} &= \bigcup_{k \in \mathbb{N}} \mathcal{F}_k. \end{aligned}$$

The set \mathcal{F} is the set of functions with finite support. Define on \mathcal{F} the relation $>$ corresponding to the relation $\rightarrow_{\mathcal{S}}$ for the formal definition of $\mathcal{S}(\mathbb{N})$.

$$f > g \iff f(k) > g(k), \text{ where } k \in \mathbb{N} \text{ is largest such that } f(k) \neq g(k).$$

It is easy to see that $(\mathcal{F}, >)$ is a linear ordering. We will show that it is even a well-ordering, i.e. for every non-empty set $X \subseteq \mathcal{F}$ there is a least element $f_0 \in X$. This implies that there are no infinite descending chains in \mathcal{F} .

To show this claim it suffices to prove that each \mathcal{F}_k is well-ordered, since

$$\dots > (\mathcal{F}_{k+1} \setminus \mathcal{F}_k) > \mathcal{F}_k$$

element-wise. This will be proved by induction on k . If $k = 0$, then this is trivial, since $\mathcal{F}_0 = \{\lambda n. 0\}$. Now assume (induction hypothesis) that \mathcal{F}_k is well-ordered in order to show the same for \mathcal{F}_{k+1} . Let $X \subseteq \mathcal{F}_{k+1}$ be non-empty. Define

$$\begin{aligned} X(k) &= \{f(k) \mid f \in X\} \subseteq \mathbb{N}; \\ X_k &= \{f \in X \mid f(k) \text{ minimal in } X(k)\} \subseteq \mathcal{F}_{k+1}; \\ X_k|k &= \{g \in \mathcal{F}_k \mid \exists f \in X_k \ f|k = g\} \subseteq \mathcal{F}_k, \end{aligned}$$

where

$$\begin{aligned} f|k(i) &= f(i), & \text{if } i < k; \\ &= 0, & \text{else.} \end{aligned}$$

By the induction hypothesis $X_k|k$ has a least element g_0 . Then $g_0 = f_0|k$ for some $f_0 \in X_k$. This f_0 is then the least element of X_k and hence of X . \blacksquare_2

2.1.15. REMARK. The second proof shows in fact that if $(D, >)$ is a well-ordered set, then so is $(\mathcal{S}(D), >)$, defined analogously to $(\mathcal{S}(\mathbb{N}), >)$. In fact the argument can be carried out in Peano Arithmetic, showing

$$\vdash_{\mathbf{PA}} \mathbf{TI}(\alpha) \rightarrow \mathbf{TI}(\alpha^\omega),$$

where $\mathbf{TI}(\alpha)$ is the principle of transfinite induction for the ordinal α . Since $\mathbf{TI}(\omega)$ is in fact ordinary induction we have in PA

$$\mathbf{TI}(\omega), \mathbf{TI}(\omega^\omega), \mathbf{TI}(\omega^{(\omega^\omega)}), \dots$$

This implies that the proof of $\mathbf{TI}(\alpha)$ can be carried out in Peano Arithmetic for every $\alpha < \epsilon_0$. Gentzen [1936] shows that $\mathbf{TI}(\epsilon_0)$, where $\epsilon_0 = \omega^{\omega^{\omega^{\dots}}}$, cannot be carried out in PA.

In order to prove the λ_{\rightarrow} is WN it suffices to work with $\lambda_{\rightarrow}^{\text{Ch}}$. We will use the following notation. We write terms with extra type information, decorating each subterm with its type. For example, instead of $(\lambda x^A.M)N \in \mathbf{term}_B$ we write $(\lambda x^A.M^B)^{A \rightarrow B}N^A$.

2.1.16. DEFINITION. (i) Let $R \equiv (\lambda x^A.M^B)^{A \rightarrow B}N^A$ be a redex. The *depth* of R , notation $\#R$, is defined as follows.

$$\#R = \#(A \rightarrow B)$$

where $\#$ on types is defined inductively by

$$\begin{aligned} \#\alpha &= 0; \\ \#(A \rightarrow B) &= \max(\#A, \#B) + 1. \end{aligned}$$

(ii) To each M in $\lambda_{\rightarrow}^{\text{Ch}}$ we assign a multi-set S_M as follows

$$S_M = \{\#R \mid R \text{ is a redex occurrence in } M\},$$

with the understanding that the multiplicity of R in M is copied in S_M .

In the following example we study how the contraction of one redex can duplicate other redexes or create new redexes.

2.1.17. EXAMPLE. (i) Let R be a redex occurrence in a typed term M . Assume

$$M \xrightarrow{\beta} R N,$$

i.e. N results from M by contracting R . This contraction can duplicate other redexes. For example (we write $M[P]$, or $M[P, Q]$ to display subterms of M)

$$(\lambda x.M[x, x])R_1 \rightarrow_{\beta} M[R_1, R_1]$$

duplicates the other redex R_1 .

(ii) (J.J. Lévy [1978]) Contraction of a β -redex may also create new redexes. For example

$$\begin{aligned} (\lambda x^{A \rightarrow B}.M[x^{A \rightarrow B}P^A]^C)^{(A \rightarrow B) \rightarrow C}(\lambda y^A.Q^B) &\rightarrow_{\beta} M[(\lambda y^A.Q^B)^{A \rightarrow B}P^A]^C; \\ (\lambda x^A.(\lambda y^B.M[x^A, y^B]^C)^{B \rightarrow C})^{A \rightarrow (B \rightarrow C)}P^A Q^B &\rightarrow_{\beta} (\lambda y^B.M[P^A, y^B]^C)^{B \rightarrow C}Q^B; \\ (\lambda x^{A \rightarrow B}.x^{A \rightarrow B})^{(A \rightarrow B) \rightarrow (A \rightarrow B)}(\lambda y^A.P^B)^{A \rightarrow B}Q^A &\rightarrow_{\beta} (\lambda y^A.P^B)^{A \rightarrow B}Q^A. \end{aligned}$$

2.1.18. LEMMA. Assume $M \xrightarrow{\beta} R N$ and let R_1 be a created redex in N . Then $\#R > \#R_1$.

PROOF. In Lévy [1978] it is proved that the three ways of creating redexes in example 2.1.17(ii) are the only possibilities. For a proof do exercise 14.5.3 in B[1984]. In each of three cases we can inspect that the statement holds. ■

2.1.19. THEOREM (Weak normalization theorem for λ_{\rightarrow}). If $M \in \Lambda$ is typable in λ_{\rightarrow} , then M is $\beta\eta$ -WN, i.e. has a $\beta\eta$ -nf.

PROOF. By Proposition 1.4.9(ii) it suffices to show this for terms in $\lambda_{\rightarrow}^{\text{Ch}}$. Note η -reductions decreases the length of a term; moreover, for β -normal terms η -contractions do not create β -redexes. Therefore in order to establish $\beta\eta$ -WN it is sufficient to prove that M has a β -nf.

Define the following β -reduction strategy F . If M is in nf, then $F(M) = M$. Otherwise, let R be the *rightmost redex of maximal depth n* in M . Then

$$F(M) = N$$

where $M \xrightarrow{R} \beta N$. Contracting a redex can only duplicate other redexes that are to the right of that redex. Therefore by the choice of R there can only be redexes of M duplicated in $F(M)$ of depth $< n$. By lemma 2.1.18 redexes created in $F(M)$ by the contraction $M \rightarrow \beta F(M)$ are also of depth $< n$. Therefore in case M is not in β -nf we have

$$S_M \rightarrow_{\mathcal{S}} S_{F(M)}.$$

Since $\rightarrow_{\mathcal{S}}$ is SN, it follows that the reduction

$$M \rightarrow \beta F(M) \rightarrow \beta F^2(M) \rightarrow \beta F^3(M) \rightarrow \beta \dots$$

must terminate in a β -nf. ■

For β -reduction this weak normalization theorem was first proved by Turing, see Gandy [1980b]. The proof does not really need SN for \mathcal{S} -reduction. One may also use the simpler result lemma 2.1.13.

It is easy to see that a different reduction strategy does not yield a \mathcal{S} -reduction chain. For example the two terms

$$\begin{aligned} & (\lambda x^A.y^{A \rightarrow A \rightarrow A}x^A x^A)^{A \rightarrow A}((\lambda x^A.x^A)^{A \rightarrow A}x^A) \rightarrow \beta \\ & y^{A \rightarrow A \rightarrow A}((\lambda x^A.x^A)^{A \rightarrow A}x^A)((\lambda x^A.x^A)^{A \rightarrow A}x^A) \end{aligned}$$

give the multisets $\{1, 1\}$ and $\{1, 1\}$. Nevertheless, SN does hold for all systems λ_{\rightarrow} , as will be proved in Section 2.2. It is an open problem whether ordinals can be assigned in a natural and simple way to terms of λ_{\rightarrow} such that

$$M \rightarrow \beta N \Rightarrow \text{ord}(M) > \text{ord}(N).$$

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will prove that normal terms inhabiting the represented data types (Bool , Nat , Σ^* and T_B) are standard, i.e. correspond to the intended elements. From WN for λ_{\rightarrow} and the subject reduction theorem it then follows that all inhabitants of the mentioned data types are standard.

2.1.20. PROPOSITION. *Let $M \in \Lambda$ be in nf. Then $M \equiv \lambda x_1 \dots x_n.y M_1 \dots M_m$, with $n, m \geq 0$ and the M_1, \dots, M_m again in nf.*

PROOF. By induction on the structure of M . See Barendregt [1984], proposition 8.3.8 for some details if necessary. ■

2.1.21. PROPOSITION. *Let $\text{Bool} \equiv \text{Bool}_\alpha$, with α a type variable. Then for M in nf one has*

$$\vdash M : \text{Bool} \Rightarrow M \in \{\text{true}, \text{false}\}.$$

PROOF. By repeated use of proposition 2.1.20, the free variable lemma 2.1.2 and the generation lemma for $\lambda_{\rightarrow}^{\text{Cu}}$, proposition 2.1.3, one has the following chain of arguments.

$$\begin{aligned} \vdash M : \alpha \rightarrow \alpha \rightarrow \alpha &\Rightarrow M \equiv \lambda x. M_1 \\ &\Rightarrow x : \alpha \vdash M_1 : \alpha \rightarrow \alpha \\ &\Rightarrow M_1 \equiv \lambda y. M_2 \\ &\Rightarrow x : \alpha, y : \alpha \vdash M_2 : \alpha \\ &\Rightarrow M_2 \equiv x \text{ or } M_2 \equiv y. \end{aligned}$$

So $M \equiv \lambda xy. x \equiv \text{true}$ or $M \equiv \lambda xy. y \equiv \text{false}$. ■

2.1.22. PROPOSITION. *Let $\text{Nat} \equiv \text{Nat}_\alpha$. Then for M in nf one has*

$$\vdash M : \text{Nat} \Rightarrow M \in \{\lceil n \rceil \mid n \in \mathbb{N}\}.$$

PROOF. Again we have

$$\begin{aligned} \vdash M : \alpha \rightarrow (\alpha \rightarrow \alpha) \rightarrow \alpha &\Rightarrow M \equiv \lambda x. M_1 \\ &\Rightarrow x : \alpha \vdash M_1 : (\alpha \rightarrow \alpha) \rightarrow \alpha \\ &\Rightarrow M_1 \equiv \lambda f. M_2 \\ &\Rightarrow x : \alpha, f : \alpha \rightarrow \alpha \vdash M_2 : \alpha. \end{aligned}$$

Now we have

$$\begin{aligned} x : \alpha, f : \alpha \rightarrow \alpha \vdash M_2 : \alpha &\Rightarrow [M_2 \equiv x \vee \\ &\quad [M_2 \equiv f M_3 \& x : \alpha, f : \alpha \rightarrow \alpha \vdash M_3 : \alpha]]. \end{aligned}$$

Therefore by induction on the structure of M_2 it follows that

$$x : \alpha, f : \alpha \rightarrow \alpha \vdash M_2 : \alpha \Rightarrow M_2 \equiv f^n(x),$$

with $n \geq 0$. So $M \equiv \lambda x f. f^n(x) \equiv \lceil n \rceil$. ■

2.1.23. PROPOSITION. *Let $\text{Sigma}^* \equiv \text{Sigma}_\alpha^*$. Then for M in nf one has*

$$\vdash M : \text{Sigma}^* \Rightarrow M \in \{\underline{w} \mid w \in \Sigma^*\}.$$

PROOF. Again we have

$$\begin{aligned}
\vdash M : \alpha \rightarrow (\alpha \rightarrow \alpha)^k \rightarrow \alpha &\Rightarrow M \equiv \lambda x. N \\
&\Rightarrow x : \alpha \vdash N : (\alpha \rightarrow \alpha)^k \rightarrow \alpha \\
&\Rightarrow N \equiv \lambda a_1. N_1 \ \& \ x : \alpha, a_1 : \alpha \rightarrow \alpha \vdash N_1 : (\alpha \rightarrow \alpha)^{k-1} \rightarrow \alpha \\
&\dots \\
&\Rightarrow N \equiv \lambda a_1 \cdots a_k. N \ \& \ x : \alpha, a_1, \dots, a_k : \alpha \rightarrow \alpha \vdash N_k : \alpha \\
&\Rightarrow [N_k \equiv x \vee \\
&\quad [N_k \equiv a_{i_j} N'_k \ \& \ x : \alpha, a_1, \dots, a_k : \alpha \rightarrow \alpha \vdash N'_k : \alpha]] \\
&\Rightarrow N_k \equiv a_{i_1}(a_{i_2}(\cdots(a_{i_p}x)\cdots)) \\
&\Rightarrow M \equiv \lambda x a_1 \cdots a_k. a_{i_1}(a_{i_2}(\cdots(a_{i_p}x)\cdots)) \\
&\equiv \underline{a_{i_1} a_{i_2} \cdots a_{i_p}}. \blacksquare
\end{aligned}$$

Before we can prove that inhabitants of $\text{tree}[\beta]$ are standard, we have to introduce an auxiliary notion.

2.1.24. DEFINITION. Given $t \in T[b_1, \dots, b_n]$ define $[t]^{p,l} \in \Lambda$ as follows.

$$\begin{aligned}
[b_i]^{p,l} &= lb_i; \\
[P(t_1, t_2)]^{p,l} &= p[t_1]^{p,l}[t_2]^{p,l}.
\end{aligned}$$

2.1.25. LEMMA. For $t \in T[b_1, \dots, b_n]$ we have

$$[t] =_{\beta} \lambda pl. [t]^{p,l}.$$

PROOF. By induction on the structure of t .

$$\begin{aligned}
[b_i] &\equiv \lambda pl. lb_i \\
&\equiv \lambda pl. [b_i]^{p,l}; \\
[P(t_1, t_2)] &\equiv \lambda pl. p([t_1]pl)([t_2]pl) \\
&= \lambda pl. p[t_1]^{p,l}[t_2]^{p,l}, \quad \text{by the IH,} \\
&\equiv \lambda pl. [P(t_1, t_2)]^{p,l}. \blacksquare
\end{aligned}$$

2.1.26. PROPOSITION. Let $\text{tree}[\beta] \equiv \text{tree}_{\alpha}[\beta]$. Then for M in nf one has

$$b_1, \dots, b_n : \beta \vdash M : \text{tree}[\beta] \Rightarrow M \in \{[t] \mid t \in T[b_1, \dots, b_n]\}.$$

PROOF. We have $\vec{b}:\beta \vdash M : (\alpha \rightarrow \alpha \rightarrow \alpha) \rightarrow (\beta \rightarrow \alpha) \rightarrow \alpha \Rightarrow$

$$\begin{aligned}
 \Rightarrow & M \equiv \lambda p. M' \\
 \Rightarrow & \vec{b}:\beta, p:\alpha \rightarrow \alpha \rightarrow \alpha \vdash M' : (\beta \rightarrow \alpha) \rightarrow \alpha \\
 \Rightarrow & M' \equiv \lambda l. M'' \\
 \Rightarrow & \vec{b}:\beta, p:(\alpha \rightarrow \alpha \rightarrow \alpha), l:(\beta \rightarrow \alpha) \vdash M'' : \alpha \\
 \Rightarrow & M'' \equiv lb_i \vee [M'' \equiv pM_1M_2 \ \& \\
 & \vec{b}:\beta, p:(\alpha \rightarrow \alpha \rightarrow \alpha), l:(\beta \rightarrow \alpha) \vdash M_j : \alpha], \quad j=1,2, \\
 \Rightarrow & M'' \equiv [t]^{p,l}, \text{ for some } t \in T[\vec{b}], \\
 \Rightarrow & M \equiv \lambda pl. [t]^{p,l} =_\beta [t], \quad \text{by lemma 2.1.25. } \blacksquare
 \end{aligned}$$

2.2. Proofs of strong normalization

We now will give two proofs showing that λ_\rightarrow is strongly normalizing. The first one is the classical proof due to Tait [1967] that needs little technique, but uses set theoretic comprehension. The second proof due to Statman is elementary, but needs results about reduction.

2.2.1. THEOREM (SN for $\lambda_\rightarrow^{\text{Ch}}$). *For all $A \in \mathbb{T}_\infty$, $M \in \Lambda_\rightarrow^{\text{Ch}}(A)$ one has $\text{SN}_{\beta\eta}(M)$.*

PROOF. We use an induction loading. First we add to λ_\rightarrow constants $d_\alpha \in \Lambda_\rightarrow^{\text{Ch}}(\alpha)$ for each atom α , obtaining $\lambda_\rightarrow^{\text{Ch}}$. Then we prove SN for the extended system. It follows *a fortiori* that the system without the constants is SN.

One first defines for $A \in \mathbb{T}_\infty$ the following class \mathcal{C}_A of *computable* terms of type A . We write SN for $\text{SN}_{\beta\eta}$.

$$\begin{aligned}
 \mathcal{C}_\alpha &= \{M \in \Lambda_{\rightarrow\text{Ch}}^\emptyset(\alpha) \mid \text{SN}(M)\}; \\
 \mathcal{C}_{A \rightarrow B} &= \{M \in \Lambda_{\rightarrow\text{Ch}}^\emptyset(A \rightarrow B) \mid \forall P \in \mathcal{C}_A. MP \in \mathcal{C}_B\}.
 \end{aligned}$$

Then one defines the classes \mathcal{C}_A^* of terms that are *computable under substitution*

$$\mathcal{C}_A^* = \{M \in \Lambda_{\rightarrow\text{Ch}}(A) \mid \forall \vec{Q} \in \mathcal{C}. [M[\vec{x} := \vec{Q}] \in \Lambda_{\rightarrow\text{Ch}}^\emptyset(A) \Rightarrow M[\vec{x} := \vec{Q}] \in \mathcal{C}_A]\}.$$

Write $\mathcal{C}^{(*)} = \bigcup \{\mathcal{C}_A^{(*)} \mid A \in \mathbb{T}(\lambda_\rightarrow^+)^*\}$. For $A = A_1 \rightarrow \dots \rightarrow A_n \rightarrow \alpha$ define

$$d_A \equiv \lambda x_1:A_1 \dots \lambda x_n:A_n. d_\alpha.$$

Then for A one has

$$M \in \mathcal{C}_A \iff \forall \vec{P} \in \mathcal{C}. M\vec{P} \in \text{SN}, \quad (0)$$

$$M \in \mathcal{C}_A^* \iff \forall \vec{P}, \vec{Q} \in \mathcal{C}. M[\vec{x} := \vec{Q}]\vec{P} \in \text{SN}, \quad (1)$$

where the \vec{P}, \vec{Q} should have the right types and $M\vec{P}$ and $M[\vec{x} := \vec{Q}]\vec{P}$ are of type α , respectively. By an easy simultaneous induction on A one can show

$$M \in \mathcal{C}_A \Rightarrow \text{SN}(M); \quad (2)$$