Chapter 2

Properties

2.1. First properties

In this section we will treat simple properties of the various systems A_,. Deeper
properties—Ilike strong normalization of typeable terms—will be considered in Section
2.2.

Properties of \¢, A" and \1B
Unless stated otherwise, properties stated for A_, apply to both systems.

2.1.1. PROPOSITION (Weakening lemma for A_,).
Suppose '+ M : A and T' is a basis with T CT'. Then T" = M : A.

PROOF. By induction on the derivation of ' M : A. m

2.1.2. LEMMA (Free variable lemma). (i) Suppose I' = M : A. Then FV (M) C dom(T").
(i) IfT'FM: A, thenT | FV(M)F A: M, where for a set X of variables one has
F'MFV(M) ={x:AeT |z X}.

PRrROOF. (i), (ii) By induction on the generation of ' M : A. m

The following result is related to the fact that the system A_. is ‘syntax directed’, i.e.
statements I' = M : A have a unique proof.

2.1.3. PROPOSITION (Generation lemma for AC1).

(1) 'kFz:A = (1:A)el.
i) TFMN:A = 3BeT[+M:B-A&TFN:B|.
(ii) THFXM:A = 3B,CeT[A=B-C&T,x:B+M:C(C].

PROOF. (i) SupposeI' -z : Aholdsin A_,. The last rule in a derivation of this statement
cannot be an application or an abstraction, since x is not of the right form. Therefore
it must be an axiom, i.e. (z:A)€T.

(ii), (iii) The other two implications are proved similarly. m
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2.1.4. PROPOSITION (Generation lemma for \4B).

(i) 'kFz:A = (2:A)el.
i) TFMN:A = 3BeT[+M:B-A&TFN:B]
(ii) TFAMB.M:A = 3ICeM[A=B-C&TI',©:B+M:C].

PrOOF. Similarly. m

2.1.5. PROPOSITION (Generation lemma for A°1).

(i) tBeAh(A) = B=A
(ii) (MN)eA®MA) = 3IBecT.[McA?(B—A)& NecA®M(B).
(i) (AP .M)eACh(A) = 3CeT.[A=(B—C)& McAHO).

PROOF. As before. m

The following two results hold for A" and A\B. Variants already have been proved
for A" Propositions 1.4.2 and 1.4.4(iii).

2.1.6. PROPOSITION (Substitution lemma for A" and \1B).
(i) ,e:AFM:B&THFN:A = T'F M[xz: = N]|: B.
(i) TFM:A = Tla:=B|FM: Ala:= B].

PROOF. The proof will be given for A", for 9B it is similar.

(i) By induction on the derivation of I',x:A = M : B. Write
P* = Plx: = NJ.

Case 1. I',x:AF M : B is an axiom, hence M =y and (y:B) €' U {z:A}.

Subcase 1.1. (y:B)€T. Theny Zz and I' - M* = y[x:N] =y : B.
Subcase 1.2. y:B = z:A. Then y =x and B= A, hence ' M*= N : A= B.

Case 2. I'©:A + M : B follows from I''z:A+ F : C—B, I'z:A F G : C and
FG = M. By the induction hypothesis one has I' - F* : C—B and I' - G* : C'. Hence
' (FG)* = F*G* : B.

Case 3. I'yx:A+ M : B follows from I', x:A,y:D G : E, B= D—F and \y.G = M.
By the induction hypothesis I',y:D = G* : E, hence I' - (\y.G)* = \y.G* : D—FE = B.

(ii) Similarly. m

2.1.7. PROPOSITION (Subject reduction property for A" and \4B). Suppose
M —gy M'. ThenTHM:A = TFM : A

PROOF. The proof will be given for A48, for A" it is similar. Suppose I' -+ M : A and
M — M’ in order to show that I' = M’ : A; then the result follows by induction on the
derivation of ' - M : A.

Case 1. ' = M : Ais an axiom. Then M is a variable, contradicting M — M’.
Hence this case cannot occur.

Case 2. 'F M :AisT'F FN : A and is a direct consequence of I' - F' : B—A and

' N : B. Since FN = M — M’ we can have three subcases.
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Subcase 2.1. M’ = F'N with ' — F".
Subcase 2.2. M’ = FN' with N — N'.

In these two subcases it follows by the induction hypothesis that I' = M’ : A.
Subcase 2.3. F = \x:B.G and M’ = G[z: = N]. Since

'FXe.G:B—A&THFN:B
it follows by the generation lemma 2.1.3 for A_, that
INae:BFG:A&THN:B.
Therefore by the substitution lemma 2.1.6 for A_, it follows that
'FGlxz:=N]: A jie. THM: A
Case 3. ' M : Ais ' - Ax:B.N : B—C and follows from I'yz:B - N : C. Since
M — M’ we have M’ = \z:B.N’ with N — N’. By the induction hypothesis one has
I,z:BFN':C,henceI' - \e:B.N' : B—C,ie. TFM : A m

The following result also holds for A" and \1B, Exercise 2.5.4.

2.1.8. COROLLARY (Church-Rosser Theorem for A°%). On typable terms of A° the Church-
Rosser theorem holds for the notions of reduction —g and —»gy,.

(i) Let M, N € AL (A). Then
M =g N = 3Ze A (A).M g4, Z & N —gm) Z.
(ii) Let M, Ny, No€ AL (A). Then
M —sgn N1 & M —gy No = 3Z €AY (A).N1 =g Z & Na — () Z.

Proor. By the Church-Rosser theorems for — g and —» g, on untyped terms, Theorem
1.1.7, and Proposition 2.1.7. m

The following property of uniqueness of types only holds for the Church and de
Bruijn versions of A_,. It is instructive to find out where the proof brakes down for AC"
and also that the two contexts in (ii) should be the same.

2.1.9. PROPOSITION (Unicity of types for A°M and \4B).
(i) MeAPA)&MeANB) = A=B.
(i) THE M:A&THE M:B = A=B.

PROOF. (i), (ii) By induction on the structure of M, using the generation lemma 2.1.4. m
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Normalization

For several applications, for example for the problem to find all possible inhabitants of a
given type, we will need the weak normalization theorem, stating that all typable terms

do have a Bn-nf (normal form). The result is valid for all versions of A_, and a fortiori
for the subsystems A\°,. The proof is due to Turing and is published posthumously in
Gandy [1980]. In fact all typable terms in these systems are 8n strongly normalizing,
which means that all 8n-reductions are terminating. This fact requires more work and
will be proved in §12.2.

The notion of ‘abstract reduction system’, see Klop [1992], is useful for the understanding

of the proof of the normalization theorem.

2.1.10. DEFINITION. (i) An abstract reduction system is a pair (X, —pg), where X is a
set and — g is a binary relation on X.
ii) An element z € X is said to be in R-normal form (R-nf) if for no y € X one has

r —RUY.
(iii) (X, R) is called weakly normalizing (R-WN, or simply WN) if every element has
an R-nf.
(iv) (X, R) is said to be strongly normalizing (R-SN, or simply SN) if every R-
reduction path
o —R X1 —RI2 —R ...

is finite.

2.1.11. DEFINITION. (i) A multiset over nat can be thought of as a generalized set S in
which each element may occur more than once. For example

S =4{3,3,1,0}

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1;
etcetera.

More formally, the above multiset S can be identified with a function f € NY that is
almost everywhere 0, except

This S is finite if f has finite support, where
support(f) = {z e N| f(z) # 0}.

(ii) Let S(N) be the collection of all finite multisets over N. S(N) can be identified
with {f € NV | support(f) is finite}.

2.1.12. DEFINITION. Let S1,S53 € S(N). Write

S1 —s S2
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if So results from S; by replacing some elements (just one occurrence) by finitely many
lower elements (in the usual ordering of N). For example

{37§7 17 0} —S {37 27 27 27 17 17 0}

2.1.13. LEMMA. We define a particular (non-deterministic) reduction strategy F' on S(N).
A multi-set S is contracted to F(S) by taking a mazimal element n€ S and replacing
it by finitely many numbers < n. Then F is a normalizing reduction strategy, i.e. for
every S € S(N) the S-reduction sequence

S —s F(S) —s F?(S) —s ...
1s terminating.

PrOOF. By induction on the highest number n occuring in S. If n = 0, then we are
done. If n = k+1, then we can successively replace in S all occurrences of n by numbers
< k obtaining S7 with maximal number < k. Then we are done by the induction
hypothesis. ®

In fact (S(N),—s) is SN. Although we do not strictly need this fact, we will give
even two proofs of it. In the first place it is something one ought to know; in the second
place it is instructive to see that the result does not imply that A_, satisfies SN.

2.1.14. LEMMA. The reduction system (S(N),—gs) is SN.

We will give two proofs of this lemma. The first one uses ordinals; the second one is
from first principles.

PROOF;. Assign to every S € S(N) an ordinal #S < w® as suggested by the following
examples.

#{3,3,1,0,0,0} = 2w +w+3;
#{3,2,2,2,1,1,0} = w3+3w?+2w+1.
More formally, if S is represented by f € NN with finite support, then
#S = Tienf(i) - w'.

Notice that
S1 —s S = #51 > #55

(in the example because w® > 3w? + w). Hence by the well-foundedness of the ordinals
the result follows. m;

PROOFy. Define

Fr = {feNV|vn>kf(n)=0};
F = UgenFi.
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The set F is the set of functions with finite support. Define on F the relation >
corresponding to the relation —s for the formal definition of S(N).

f>g9 <= f(k)>g(k), where k€N is largest
such that f(k) # g(k).

It is easy to see that (F,>) is a linear ordering. We will show that it is even a well-
ordering, i.e. for every non-empty set X C F there is a least element fy€ X. This
implies that there are no infinite descending chains in F.

To show this claim it suffices to prove that each Fj is well-ordered, since

o> (fk+1\fk) > Fi

element-wise. This will be proved by induction on k. If kK = 0, then this is trivial, since
Fo = {AMn.0}. Now assume (induction hypothesis) that F is well-ordered in order to
show the same for Fjy1. Let X C Fiy1 be non-empty. Define

X(k) = {f(k)|feX}CN;
Xi = {feX|f(k) minimal in X(k)} C Fri1;
Xlk = {ge€Fi|3f € Xiflk =g} S Fi,

where

fIk@) = fG), i<k

= 0, else.

By the induction hypothesis Xy|k has a least element gg. Then gy = fo|k for some
fo € Xg. This fy is then the least element of X and hence of X. mo

2.1.15. REMARK. The second proof shows in fact that if (D,>) is a well-ordered set,
then so is (S(D),>), defined analogously to (S(N),>). In fact the argument can be
carried out in Peano Arithmetic, showing

Fpa TI(a) — TI(a”),

where TI(«) is the principle of transfinite induction for the ordinal a. Since TI(w) is in
fact ordinary induction we have in PA

TI(w), TI(w®), TI(w“)),.. .

This implies that the proof of TI(a) can be carried out in Peano Arithmetic for every
a < €. Gentzen [1936] shows that TI(eg), where ¢ = w*" , cannot be carried out in
PA.

In order to prove the A_, is WN it suffices to work with A". We will use the following
notation. We write terms with extra type information, decorating each subterm with its
type. For example, instead of (A\z4.M)N € termp we write (\z?.MB)A=BNA,
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2.1.16. DEFINITION. (i) Let R = (Az4.MP)4~BN4 be a redex. The depth of R,
notation # R, is defined as follows.

#R = #(A—B)
where # on types is defined inductively by

#a = 0;
#(A—B) = max(#A,#B)+ 1.

(ii) To each M in A°M we assign a multi-set Sy as follows
Sy = {#R|R is a redex occurrence in M},

with the understanding that the multiplicity of R in M is copied in Syy.

In the following example we study how the contraction of one redex can duplicate
other redexes or create new redexes.

2.1.17. EXAMPLE. (i) Let R be a redex occurrence in a typed term M. Assume
R
M—>ﬁ N,

i.e. N results form M by contracting R. This contraction can duplicate other redexes.
For example (we write M[P], or M[P, Q)] to display subterms of M)

(Az.Mlz,z]) Ry —g MRy, R]

duplicates the other redex R;.

(i) (J.J. Lévy [1978]) Contraction of a B-redex may also create new redexes. For
example

(AIA.()\yB.M[.IA,yB]C)B_)C)A_)(B_}C)PAQB —3 ()\yBM[PA,yB]C)B_}CQB,
(AIAHB“IAHB)(AHB)H(AHB) (AyA'PB)AHBQA —p ()\yA'PB)AHBQA.

2.1.18. LEMMA. Assume Miﬁ N and let Ry be a created redex in N. Then #R > #R;.
PROOF. In Lévy [1978] it is proved that the three ways of creating redexes in example
2.1.17(ii) are the only possibilities. For a proof do exercise 14.5.3 in B[1984]. In each of

three cases we can inspect that the statement holds. m

2.1.19. THEOREM (Weak normalization theorem for A\_,). If M € A is typable in A_,, then
M is Bn-WN, i.e. has a Bn-nf.
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PROOF. By Proposition 1.4.9(ii) it suffices to show this for terms in A“". Note 7-
reductions decreases the length of a term; moreover, for B-normal terms n-contractions
do not create B-redexes. Therefore in order to establish 3n-WN it is sufficient to prove
that M has a B-nf.

Define the following B-reduction strategy F. If M is in nf, then F(M) = M.
Otherwise, let R be the rightmost redex of mazimal depth n in M. Then

F(M)=N

where M iﬁ N. Contracting a redex can only duplicate other redexes that are to
the right of that redex. Therefore by the choice of R there can only be redexes of M
duplicated in F'(M) of depth < n. By lemma 2.1.18 redexes created in F(M) by the
contraction M —g F(M) are also of depth < n. Therefore in case M is not in B-nf we
have

Sy —s Sr(u)-

Since —g is SN, it follows that the reduction
M —g F(M) =g F}(M) =g F*(M) —p ...
must terminate in a G-nf. m

For B-reduction this weak normalization theorem was first proved by Turing, see Gandy
[1980b]. The proof does not really need SN for S-reduction. One may also use the
simpler result lemma 2.1.13.

It is easy to see that a different reduction strategy does not yield a S-reduction chain.

For example the two terms
()\‘rAlyAHA‘?AxAIA)A‘?A((AIA .IA)A*}AIA)
IA.IA)AHA:EA)

B

yAHAHA(()\xA':EA)AHAIA)((/\

give the multisets {1,1} and {1,1}. Nevertheless, SN does hold for all systems A_,, as
will be proved in Section 2.2. It is an open problem whether ordinals can be assigned in
a natural and simple way to terms of A_, such that

M —g N = ord(M) > ord(N).

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will prove that normal terms inhabiting the represented data types (Bool, Nat, ¥*
and Tp) are standard, i.e. correspond to the intended elements. From WN for \_, and
the subject reduction theorem it then follows that all inhabitants of the mentioned data
types are standard.

2.1.20. PROPOSITION. Let M €A be in nf. Then M = Axy---xpyMy... My, with
n,m >0 and the My, ..., My, again in nf.
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PROOF. By induction on the structure of M. See Barendregt [1984], proposition 8.3.8
for some details if necessary. m

2.1.21. PROPOSITION. Let Bool = Bool,, with a a type variable. Then for M in nf one
has

F M : Bool = M € {true, false}.

PROOF. By repeated use of proposition 2.1.20, the free variable lemma 2.1.2 and the
generation lemma for A", proposition 2.1.3, one has the following chain of arguments.

FM:a—a—a M = \x. My
Tz My a—«o
My = \y.Ms
o, y:a b My«

= My=xor My=y.

R

So M = Axy.x = true or M = Axy.y = false. m

2.1.22. PROPOSITION. Let Nat = Nat,. Then for M in nf one has
FM:Nat = Me{'n |[neN}L

PROOF. Again we have

FM:a—(a—a)—a M = \x.M;y

r:ak M (a—a)—a
Ml = /\fM2

T, fra—a bt My a.

R

Now we have

ra, framabkMy:a = [My=aV
[My = fM3 & z:c, fra—a b Ms : o]

Therefore by induction on the structure of My it follows that
ro, fra—mak My oo = My = f"(x),
withn >0. So M =Xz f.f"(z)='n .m
2.1.23. PROPOSITION. Let Sigma* = Sigma},. Then for M in nf one has

F M : Sigma* = Mec{w|weX*}.
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PROOF. Again we have

FM:a—(a—a)f—a = M=Xx.N

= zab N:(a—a)f—a
= N =MXa1.N1 & z:a,a1:a—a - Ny : (a—>a)k_1ﬁa
= N=Xai---ap.N &z:a,aq,...,a0:a0—a bk Ni @«
= [Ny==aV

[Ni = a; N} & z:v,aq,. .. ap:a—a = N 2 of]
= N = a;(ai, (- (a,z) - )
= M = Azay - ag.a; (ai, (- (a,7) - -))

= A4y Qg - - - Q. B

Before we can prove that inhabitants of tree[3] are standard, we have to intoduce
an auxiliary notion.

2.1.24. DEFINITION. Given t € T[by,...,b,] define [t]P! € A as follows.

[bi]p’l = b
[Pl t2)P! = plt [l

2.1.25. LEMMA. Forte€Tby,...,b,] we have

[t] =5 Apl.[t]P".

PRrROOF. By induction on the structure of ¢.

= Apl.[b;]P;
[P(t1,t2)] = Apl.p([t:]pl)([t=]pl)
= Apl.p[t]P![t2]P, by the IH,

= Mpl.[P(t1,t2)]"!. m

2.1.26. PROPOSITION. Let tree[3] = tree,[B]. Then for M in nf one has

bi,...,bp:BF M : tree[3] = Me{[t]|teT[bi,..., by}
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PROOF. We have b:8 F M : (a—a—a)—(B—a)—a =

= M= p.M
= bB,pa—a—at M : (B—a)—a
= M =\N.M'
= b8, p:(a—a—a),l:(B—a)F M" : «
= M'=1b; v [M'"=pM M &
b:8, p:(a—a—a), l:(B—a) - M;:aof, j=12,
= M" =[t]"!, for some t € T[b],
= M=l =5 [t], by lemma 2.1.25. m

2.2. Proofs of strong normalization

We now will give two proofs showing that \_, is strongly normalizing. The first one is
the classical proof due to Tait [1967] that needs little technique, but uses set theoretic
comprehension. The second proof due to Statman is elementary, but needs results about
reduction.

2.2.1. THEOREM (SN for A1), For all A€ Ty, M € AC"(A) one has SNgy,(M).

Proor. We use an induction loading. First we add to A_, constants d, € A" () for
each atom «, obtaining )\iCh. Then we prove SN for the extended system. It follows a
fortiori that the system without the constants is SN.

One first defines for A € T, the following class C4 of computable terms of type A.
We write SN for SNg,,.

Ca = {M€A®—>Ch(a) | SN(M)}
Cap = {MeA  (A=B)|VYPeCs.MPeCp}.
Then one defines the classes C of terms that are computable under substitution
Ch={MeA _cn(A) | VQeC.M[i:= Qe A, (4) = M[z:=Q]eCal}.
Write € = J{C) | Ae T(AY.)}. For A = Aj— ... —A,—a define
da = Ax1:A1 ...zt A,dg.

Then for A one has B B
MeCy < VPeC.MP €SN, (0)
MeCy < VYP,QeC.M[z: = Q]P SN, (1)

where the 13, Q should have the right types and M P and M (@ = @]15 are of type «,
respectively. By an easy simultaneous induction on A one can show

MeCy = SN(M); (2)



