
Chapter 2

Properties

2.1. First properties

In this section we will treat simple properties of the various systems λ→. Deeper
properties—like strong normalization of typeable terms—will be considered in Section
2.2.

Properties of λCu
→ , λCh

→ and λdB
→

Unless stated otherwise, properties stated for λ→ apply to both systems.

2.1.1. Proposition (Weakening lemma for λ→).
Suppose Γ ⊢ M : A and Γ′ is a basis with Γ ⊆ Γ′. Then Γ′ ⊢ M : A.

Proof. By induction on the derivation of Γ ⊢ M : A.

2.1.2. Lemma (Free variable lemma). (i) Suppose Γ ⊢ M : A. Then FV (M) ⊆ dom(Γ).
(ii) If Γ ⊢ M : A, then Γ ↾ FV(M) ⊢ A : M , where for a set X of variables one has

Γ ↾ FV(M) = {x:A∈Γ |x∈X}.

Proof. (i), (ii) By induction on the generation of Γ ⊢ M : A.

The following result is related to the fact that the system λ→ is ‘syntax directed’, i.e.
statements Γ ⊢ M : A have a unique proof.

2.1.3. Proposition (Generation lemma for λCu
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.

(ii) Γ ⊢ MN : A ⇒ ∃B ∈TT [Γ ⊢ M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx.M : A ⇒ ∃B,C ∈TT [A ≡ B→C & Γ, x:B ⊢ M : C].

Proof. (i) Suppose Γ ⊢ x : A holds in λ→. The last rule in a derivation of this statement
cannot be an application or an abstraction, since x is not of the right form. Therefore
it must be an axiom, i.e. (x:A)∈Γ.

(ii), (iii) The other two implications are proved similarly.

49



50 CHAPTER 2. PROPERTIES

2.1.4. Proposition (Generation lemma for λdB
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.

(ii) Γ ⊢ MN : A ⇒ ∃B ∈TT [Γ ⊢ M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx:B.M : A ⇒ ∃C ∈TT [A ≡ B→C & Γ, x:B ⊢ M : C].

Proof. Similarly.

2.1.5. Proposition (Generation lemma for λCh
→ ).

(i) xB ∈ΛCh
→ (A) ⇒ B = A.

(ii) (MN)∈ΛCh
→ (A) ⇒ ∃B ∈TT.[M ∈ΛCh

→ (B→A) & N ∈ΛCh
→ (B)].

(iii) (λxB .M)∈ΛCh
→ (A) ⇒ ∃C ∈TT.[A = (B→C) & M ∈ΛCh

→ (C)].

Proof. As before.

The following two results hold for λCu
→ and λdB

→ . Variants already have been proved
for λCh

→ , Propositions 1.4.2 and 1.4.4(iii).

2.1.6. Proposition (Substitution lemma for λCu
→ and λdB

→ ).
(i) Γ, x:A ⊢ M : B & Γ ⊢ N : A ⇒ Γ ⊢ M [x: = N ] : B.
(ii) Γ ⊢ M : A ⇒ Γ[α := B] ⊢ M : A[α := B].

Proof. The proof will be given for λCu
→ , for λdB

→ it is similar.
(i) By induction on the derivation of Γ, x:A ⊢ M : B. Write

P ∗ ≡ P [x: = N ].
Case 1. Γ, x:A ⊢ M : B is an axiom, hence M ≡ y and (y:B)∈Γ ∪ {x:A}.

Subcase 1.1. (y:B)∈Γ. Then y 6≡ x and Γ ⊢ M∗ ≡ y[x:N ] ≡ y : B.
Subcase 1.2. y:B ≡ x:A. Then y ≡ x and B ≡ A, hence Γ ⊢ M∗ ≡ N : A ≡ B.

Case 2. Γ, x:A ⊢ M : B follows from Γ, x:A ⊢ F : C→B, Γ, x:A ⊢ G : C and
FG ≡ M . By the induction hypothesis one has Γ ⊢ F ∗ : C→B and Γ ⊢ G∗ : C. Hence
Γ ⊢ (FG)∗ ≡ F ∗G∗ : B.

Case 3. Γ, x:A ⊢ M : B follows from Γ, x:A, y:D ⊢ G : E, B ≡ D→E and λy.G ≡ M .
By the induction hypothesis Γ, y:D ⊢ G∗ : E, hence Γ ⊢ (λy.G)∗ ≡ λy.G∗ : D→E ≡ B.

(ii) Similarly.

2.1.7. Proposition (Subject reduction property for λCu
→ and λdB

→ ). Suppose
M →→βη M ′. Then Γ ⊢ M : A ⇒ Γ ⊢ M ′ : A.

Proof. The proof will be given for λdB
→ , for λCu

→ it is similar. Suppose Γ ⊢ M : A and
M → M ′ in order to show that Γ ⊢ M ′ : A; then the result follows by induction on the
derivation of Γ ⊢ M : A.

Case 1. Γ ⊢ M : A is an axiom. Then M is a variable, contradicting M → M ′.
Hence this case cannot occur.

Case 2. Γ ⊢ M : A is Γ ⊢ FN : A and is a direct consequence of Γ ⊢ F : B→A and
Γ ⊢ N : B. Since FN ≡ M → M ′ we can have three subcases.



2.1. FIRST PROPERTIES 51

Subcase 2.1. M ′ ≡ F ′N with F → F ′.

Subcase 2.2. M ′ ≡ FN ′ with N → N ′.
In these two subcases it follows by the induction hypothesis that Γ ⊢ M ′ : A.

Subcase 2.3. F ≡ λx:B.G and M ′ ≡ G[x: = N ]. Since

Γ ⊢ λx.G : B→A & Γ ⊢ N : B

it follows by the generation lemma 2.1.3 for λ→ that

Γ, x:B ⊢ G : A & Γ ⊢ N : B.

Therefore by the substitution lemma 2.1.6 for λ→ it follows that
Γ ⊢ G[x: = N ] : A, i.e. Γ ⊢ M ′ : A.

Case 3. Γ ⊢ M : A is Γ ⊢ λx:B.N : B→C and follows from Γ, x:B ⊢ N : C. Since
M → M ′ we have M ′ ≡ λx:B.N ′ with N → N ′. By the induction hypothesis one has
Γ, x:B ⊢ N ′ : C, hence Γ ⊢ λx:B.N ′ : B→C, i.e. Γ ⊢ M ′ : A.

The following result also holds for λCh
→ and λdB

→ , Exercise 2.5.4.

2.1.8. Corollary (Church-Rosser Theorem for λCu
→ ). On typable terms of λCu

→ the Church-
Rosser theorem holds for the notions of reduction →→β and →→βη.

(i) Let M,N ∈ΛΓ
→(A). Then

M =β(η) N ⇒ ∃Z ∈ΛΓ
→(A).M →→β(η) Z & N →→β(η) Z.

(ii) Let M,N1, N2 ∈ΛΓ
→(A). Then

M →→βη N1 & M →→β(η) N2 ⇒ ∃Z ∈ΛΓ
→(A).N1 →→β(η) Z & N2 →→β(η) Z.

Proof. By the Church-Rosser theorems for →→β and →→βη on untyped terms, Theorem
1.1.7, and Proposition 2.1.7.

The following property of uniqueness of types only holds for the Church and de
Bruijn versions of λ→. It is instructive to find out where the proof brakes down for λCu

→

and also that the two contexts in (ii) should be the same.

2.1.9. Proposition (Unicity of types for λCh
→ and λdB

→ ).

(i) M ∈ΛCh
→ (A) & M ∈ΛCh

→ (B) ⇒ A = B.

(ii) Γ ⊢dB
λ→

M : A & Γ ⊢dB
λ→

M : B ⇒ A = B.

Proof. (i), (ii) By induction on the structure of M , using the generation lemma 2.1.4.



52 CHAPTER 2. PROPERTIES

Normalization

For several applications, for example for the problem to find all possible inhabitants of a
given type, we will need the weak normalization theorem, stating that all typable terms
do have a βη-nf (normal form). The result is valid for all versions of λ→ and a fortiori
for the subsystems λo

→. The proof is due to Turing and is published posthumously in
Gandy [1980]. In fact all typable terms in these systems are βη strongly normalizing,
which means that all βη-reductions are terminating. This fact requires more work and
will be proved in §12.2.

The notion of ‘abstract reduction system’, see Klop [1992], is useful for the understanding
of the proof of the normalization theorem.

2.1.10. Definition. (i) An abstract reduction system is a pair (X,→R), where X is a
set and →R is a binary relation on X.

(ii) An element x∈X is said to be in R-normal form (R-nf) if for no y ∈X one has
x →R y.

(iii) (X,R) is called weakly normalizing (R-WN, or simply WN) if every element has
an R-nf.

(iv) (X,R) is said to be strongly normalizing (R-SN, or simply SN) if every R-
reduction path

x0 →R x1 →R x2 →R . . . .

is finite.

2.1.11. Definition. (i) A multiset over nat can be thought of as a generalized set S in
which each element may occur more than once. For example

S = {3, 3, 1, 0}

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1;
etcetera.

More formally, the above multiset S can be identified with a function f ∈N
N that is

almost everywhere 0, except

f(0) = 1, f(1) = 1, f(3) = 2.

This S is finite if f has finite support , where

support(f) = {x∈N | f(x) 6= 0}.

(ii) Let S(N) be the collection of all finite multisets over N. S(N) can be identified
with {f ∈N

N | support(f) is finite}.

2.1.12. Definition. Let S1, S2 ∈S(N). Write

S1 →S S2



2.1. FIRST PROPERTIES 53

if S2 results from S1 by replacing some elements (just one occurrence) by finitely many
lower elements (in the usual ordering of N). For example

{3, 3, 1, 0} →S {3, 2, 2, 2, 1, 1, 0}.

2.1.13. Lemma. We define a particular (non-deterministic) reduction strategy F on S(N).
A multi-set S is contracted to F (S) by taking a maximal element n∈S and replacing
it by finitely many numbers < n. Then F is a normalizing reduction strategy, i.e. for
every S ∈S(N) the S-reduction sequence

S →S F (S) →S F 2(S) →S . . .

is terminating.

Proof. By induction on the highest number n occuring in S. If n = 0, then we are
done. If n = k+1, then we can successively replace in S all occurrences of n by numbers
≤ k obtaining S1 with maximal number ≤ k. Then we are done by the induction
hypothesis.

In fact (S(N),→→S) is SN. Although we do not strictly need this fact, we will give
even two proofs of it. In the first place it is something one ought to know; in the second
place it is instructive to see that the result does not imply that λ→ satisfies SN.

2.1.14. Lemma. The reduction system (S(N),→S) is SN.

We will give two proofs of this lemma. The first one uses ordinals; the second one is
from first principles.

Proof1. Assign to every S ∈S(N) an ordinal #S < ωω as suggested by the following
examples.

#{3, 3, 1, 0, 0, 0} = 2ω3 + ω + 3;

#{3, 2, 2, 2, 1, 1, 0} = ω3 + 3ω2 + 2ω + 1.

More formally, if S is represented by f ∈N
N with finite support, then

#S = Σi∈Nf(i) · ωi.

Notice that
S1 →S S2 ⇒ #S1 > #S2

(in the example because ω3 > 3ω2 + ω). Hence by the well-foundedness of the ordinals
the result follows. 1

Proof2. Define

Fk = {f ∈N
N | ∀n ≥ k f(n) = 0};

F = ∪k∈NFk.



54 CHAPTER 2. PROPERTIES

The set F is the set of functions with finite support. Define on F the relation >

corresponding to the relation →S for the formal definition of S(N).

f > g ⇐⇒ f(k) > g(k), where k∈N is largest

such that f(k) 6= g(k).

It is easy to see that (F , >) is a linear ordering. We will show that it is even a well-
ordering, i.e. for every non-empty set X ⊆ F there is a least element f0 ∈ X. This
implies that there are no infinite descending chains in F .

To show this claim it suffices to prove that each Fk is well-ordered, since

. . . > (Fk+1 \ Fk) > Fk

element-wise. This will be proved by induction on k. If k = 0, then this is trivial, since
F0 = {λλn.0}. Now assume (induction hypothesis) that Fk is well-ordered in order to
show the same for Fk+1. Let X ⊆ Fk+1 be non-empty. Define

X(k) = {f(k) | f ∈X} ⊆ N;

Xk = {f ∈X | f(k) minimal in X(k)} ⊆ Fk+1;

Xk|k = {g ∈Fk | ∃f ∈Xk f |k = g} ⊆ Fk,

where

f |k(i) = f(i), if i < k;

= 0, else.

By the induction hypothesis Xk|k has a least element g0. Then g0 = f0|k for some
f0 ∈Xk. This f0 is then the least element of Xk and hence of X. 2

2.1.15. Remark. The second proof shows in fact that if (D,>) is a well-ordered set,
then so is (S(D), >), defined analogously to (S(N), >). In fact the argument can be
carried out in Peano Arithmetic, showing

⊢PA TI(α) → TI(αω),

where TI(α) is the principle of transfinite induction for the ordinal α. Since TI(ω) is in
fact ordinary induction we have in PA

TI(ω), TI(ωω), TI(ω(ωω)), . . . .

This implies that the proof of TI(α) can be carried out in Peano Arithmetic for every
α < ǫ0. Gentzen [1936] shows that TI(ǫ0), where ǫ0 = ωωω...

, cannot be carried out in
PA.

In order to prove the λ→ is WN it suffices to work with λCh
→ . We will use the following

notation. We write terms with extra type information, decorating each subterm with its
type. For example, instead of (λxA.M)N ∈ termB we write (λxA.MB)A→BNA.



2.1. FIRST PROPERTIES 55

2.1.16. Definition. (i) Let R ≡ (λxA.MB)A→BNA be a redex. The depth of R,
notation #R, is defined as follows.

#R = #(A→B)

where # on types is defined inductively by

#α = 0;

#(A→B) = max(#A,#B) + 1.

(ii) To each M in λCh
→ we assign a multi-set SM as follows

SM = {#R |R is a redex occurrence in M},

with the understanding that the multiplicity of R in M is copied in SM .

In the following example we study how the contraction of one redex can duplicate
other redexes or create new redexes.

2.1.17. Example. (i) Let R be a redex occurrence in a typed term M . Assume

M−→R β N,

i.e. N results form M by contracting R. This contraction can duplicate other redexes.
For example (we write M [P ], or M [P,Q] to display subterms of M)

(λx.M [x, x])R1 →β M [R1, R1]

duplicates the other redex R1.
(ii) (J.J. Lévy [1978]) Contraction of a β-redex may also create new redexes. For

example

(λxA→B.M [xA→BPA]C)(A→B)→C(λyA.QB) →β M [(λyA.QB)A→BPA]C ;

(λxA.(λyB .M [xA, yB]C)B→C)A→(B→C)PAQB →β (λyB.M [PA, yB]C)B→CQB;

(λxA→B.xA→B)(A→B)→(A→B)(λyA.PB)A→BQA →β (λyA.PB)A→BQA.

2.1.18. Lemma. Assume M−→R β N and let R1 be a created redex in N . Then #R > #R1.

Proof. In Lévy [1978] it is proved that the three ways of creating redexes in example
2.1.17(ii) are the only possibilities. For a proof do exercise 14.5.3 in B[1984]. In each of
three cases we can inspect that the statement holds.

2.1.19. Theorem (Weak normalization theorem for λ→). If M ∈Λ is typable in λ→, then
M is βη-WN, i.e. has a βη-nf.



56 CHAPTER 2. PROPERTIES

Proof. By Proposition 1.4.9(ii) it suffices to show this for terms in λCh
→ . Note η-

reductions decreases the length of a term; moreover, for β-normal terms η-contractions
do not create β-redexes. Therefore in order to establish βη-WN it is sufficient to prove
that M has a β-nf.

Define the following β-reduction strategy F . If M is in nf, then F (M) = M .
Otherwise, let R be the rightmost redex of maximal depth n in M . Then

F (M) = N

where M−→R β N . Contracting a redex can only duplicate other redexes that are to
the right of that redex. Therefore by the choice of R there can only be redexes of M

duplicated in F (M) of depth < n. By lemma 2.1.18 redexes created in F (M) by the
contraction M →β F (M) are also of depth < n. Therefore in case M is not in β-nf we
have

SM →S SF (M).

Since →S is SN, it follows that the reduction

M →β F (M) →β F 2(M) →β F 3(M) →β . . .

must terminate in a β-nf.

For β-reduction this weak normalization theorem was first proved by Turing, see Gandy
[1980b]. The proof does not really need SN for S-reduction. One may also use the
simpler result lemma 2.1.13.

It is easy to see that a different reduction strategy does not yield a S-reduction chain.
For example the two terms

(λxA.yA→A→AxAxA)A→A((λxA.xA)A→AxA) →β

yA→A→A((λxA.xA)A→AxA)((λxA.xA)A→AxA)

give the multisets {1, 1} and {1, 1}. Nevertheless, SN does hold for all systems λ→, as
will be proved in Section 2.2. It is an open problem whether ordinals can be assigned in
a natural and simple way to terms of λ→ such that

M →β N ⇒ ord(M) > ord(N).

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will prove that normal terms inhabiting the represented data types (Bool, Nat, Σ∗

and TB) are standard, i.e. correspond to the intended elements. From WN for λ→ and
the subject reduction theorem it then follows that all inhabitants of the mentioned data
types are standard.

2.1.20. Proposition. Let M ∈Λ be in nf. Then M ≡ λx1 · · · xn.yM1 . . . Mm, with
n,m ≥ 0 and the M1, . . . ,Mm again in nf.



2.1. FIRST PROPERTIES 57

Proof. By induction on the structure of M . See Barendregt [1984], proposition 8.3.8
for some details if necessary.

2.1.21. Proposition. Let Bool ≡ Boolα, with α a type variable. Then for M in nf one
has

⊢ M : Bool ⇒ M ∈{true , false}.

Proof. By repeated use of proposition 2.1.20, the free variable lemma 2.1.2 and the
generation lemma for λCu

→ , proposition 2.1.3, one has the following chain of arguments.

⊢ M : α→α→α ⇒ M ≡ λx.M1

⇒ x:α ⊢ M1 : α→α

⇒ M1 ≡ λy.M2

⇒ x:α, y:α ⊢ M2 : α

⇒ M2 ≡ x or M2 ≡ y.

So M ≡ λxy.x ≡ true or M ≡ λxy.y ≡ false.

2.1.22. Proposition. Let Nat ≡ Natα. Then for M in nf one has

⊢ M : Nat ⇒ M ∈{ n |n∈N}.

Proof. Again we have

⊢ M : α→(α→α)→α ⇒ M ≡ λx.M1

⇒ x:α ⊢ M1 : (α→α)→α

⇒ M1 ≡ λf.M2

⇒ x:α, f :α→α ⊢ M2 : α.

Now we have

x:α, f :α→α ⊢ M2 : α ⇒ [M2 ≡ x ∨

[M2 ≡ fM3 & x:α, f :α→α ⊢ M3 : α]].

Therefore by induction on the structure of M2 it follows that

x:α, f :α→α ⊢ M2 : α ⇒ M2 ≡ fn(x),

with n ≥ 0. So M ≡ λxf.fn(x) ≡ n .

2.1.23. Proposition. Let Sigma∗ ≡ Sigma∗
α. Then for M in nf one has

⊢ M : Sigma∗ ⇒ M ∈{w |w∈Σ∗}.



58 CHAPTER 2. PROPERTIES

Proof. Again we have

⊢ M : α→(α→α)k→α ⇒ M ≡ λx.N

⇒ x:α ⊢ N : (α→α)k→α

⇒ N ≡ λa1.N1 & x:α, a1:α→α ⊢ N1 : (α→α)k−1→α

. . .

⇒ N ≡ λa1 · · · ak.N & x:α, a1, . . . , ak:α→α ⊢ Nk : α

⇒ [Nk ≡ x ∨

[Nk ≡ aijN
′
k & x:α, a1, . . . , ak:α→α ⊢ Nk

′ : α]]

⇒ Nk ≡ ai1(ai2(· · · (aipx) · ·))

⇒ M ≡ λxa1 · · · ak.ai1(ai2(· · · (aipx) · ·))

≡ ai1ai2 · · · aip .

Before we can prove that inhabitants of tree [β] are standard, we have to intoduce
an auxiliary notion.

2.1.24. Definition. Given t∈T [b1, . . . , bn] define [t]p,l ∈Λ as follows.

[bi]
p,l = lbi;

[P (t1, t2)]
p,l = p[t1]

p,l[t2]
p,l.

2.1.25. Lemma. For t∈T [b1, . . . , bn] we have

[t] =β λpl.[t]p,l.

Proof. By induction on the structure of t.

[bi] ≡ λpl.lbi

≡ λpl.[bi]
p,l;

[P (t1, t2)] ≡ λpl.p([t1]pl)([t2]pl)

= λpl.p[t1]
p,l[t2]

p.l, by the IH,

≡ λpl.[P (t1, t2)]
p,l.

2.1.26. Proposition. Let tree [β] ≡ treeα[β]. Then for M in nf one has

b1, . . . , bn:β ⊢ M : tree [β] ⇒ M ∈{[t] | t∈ T [b1, . . . , bn]}.



2.2. PROOFS OF STRONG NORMALIZATION 59

Proof. We have ~b:β ⊢ M : (α→α→α)→(β→α)→α ⇒

⇒ M ≡ λp.M ′

⇒ ~b:β, p:α→α→α ⊢ M ′ : (β→α)→α

⇒ M ′ ≡ λl.M ′′

⇒ ~b:β, p:(α→α→α), l:(β→α) ⊢ M ′′ : α

⇒ M ′′ ≡ lbi ∨ [M ′′ ≡ pM1M2 &

~b:β, p:(α→α→α), l:(β→α) ⊢ Mj : α], j=1,2,

⇒ M ′′ ≡ [t]p,l, for some t∈T [~b],

⇒ M ≡ λpl.[t]p,l =β [t], by lemma 2.1.25.

2.2. Proofs of strong normalization

We now will give two proofs showing that λ→ is strongly normalizing. The first one is
the classical proof due to Tait [1967] that needs little technique, but uses set theoretic
comprehension. The second proof due to Statman is elementary, but needs results about
reduction.

2.2.1. Theorem (SN for λCh
→ ). For all A∈TT∞, M ∈ΛCh

→ (A) one has SNβη(M).

Proof. We use an induction loading. First we add to λ→ constants dα ∈ΛCh
→ (α) for

each atom α, obtaining λ+
→Ch. Then we prove SN for the extended system. It follows a

fortiori that the system without the constants is SN.
One first defines for A∈TT∞ the following class CA of computable terms of type A.

We write SN for SNβη.

Cα = {M ∈Λ∅
→Ch(α) | SN(M)};

CA→B = {M ∈Λ∅
→Ch(A→B) | ∀P ∈CA.MP ∈CB}.

Then one defines the classes C∗
A of terms that are computable under substitution

C∗
A = {M ∈Λ→Ch(A) | ∀ ~Q∈C.[M [~x: = ~Q]∈Λ∅

→Ch(A) ⇒ M [~x: = ~Q]∈CA]}.

Write C(∗) =
⋃
{C

(∗)
A | A∈TT(λ+

→)}. For A = A1→ . . .→An→α define

dA ≡ λx1:A1 . . . λxn:An.dα.

Then for A one has
M ∈CA ⇐⇒ ∀~P ∈C.M ~P ∈ SN, (0)

M ∈C∗
A ⇐⇒ ∀~P , ~Q∈C.M [~x: = ~Q]~P ∈SN, (1)

where the ~P , ~Q should have the right types and M ~P and M [~x: = ~Q]~P are of type α,
respectively. By an easy simultaneous induction on A one can show

M ∈CA ⇒ SN(M); (2)


