14 H.P. Barendregt

As an application, terms F' and G can be constructed such that for all
terms X and Y

X = XF,
GXY = YG(YXG).

2.2 Lambda definability

In the lambda calculus one can define numerals and represent numeric
functions on them.

Definition 2.2.1.

1. F"(M) with n € N (the set of natural numbers) and F, M € A, is
defined inductively as follows:

I
<

FO(M)
FrHY M)y = F(F™(M)).

2. The Church numerals cg, ¢y, ca, ... are defined by

cn = Afa.f7(x).

Proposition 2.2.2 (J. B. Rosser). Define

Ar = Aaypq.ap(ype);
A. = Jdwyz.a(yz);
Ay = Azyyz.

Then one has for all n,m e N

1. Ajcpem = Cnym.
2. AvcnCm = Cpom-

3. AcepCnCm = C(pm), except for m = 0 (Rosser starts at 1).

Proof. We need the following lemma.

Lambda Calculi with Types 15

Lemma 2.2.3.
1 (enz)™(y) = 2™ (y);
2. (cn)"(x) = cpmy(x), for m > 0.

Proof. 1. By induction on m. If m = 0, then LHS = y = RHS. Assume
(1) is correct for m (Induction Hypothesis: TH). Then

(cnz)™*(y) = enx((enz)™ ()
cn (2™ (y))
xn+n*m(y)
xn*(m+1)(y).

[l
—~
s

2. By induction on m > 0. If m = 1, then LHS = ¢,z = RHS. If (2) is
correct for m, then

cpti@) = enle](2))
=11 CalC(nm)(v))
= /\y.(c%m)(x))”(y)
=1y Ay.x" (y)
= Clnm+1)T. ||
| |
Now the proof of the proposition.
1. By induction on m.
2. Use the lemma (1).
3. By the lemma (2) we have for m >0
AcrpCnCm = ey = Ax.c,," (T) = AT.Cpm)T = C(nm),
since Av. Mz =M if M = Ay.M'[y] and z ¢ FV(M). Indeed,
Az Mz = dz.(dy.M'[y)z
= Ar.M'[z]
= \y.M'[y]
M.
| |

We have seen that the functions plus, times and exponentiation on N
can be represented in the A-calculus using Church’s numerals. We will show
that all computable (recursive) functions can be represented.

16 H.P. Barendregt

Boolean truth values and a conditional can be represented in the A-
calculus.

Definition 2.2.4 (Booleans, conditional).
1. true = Azy.z, false = Azy.y.
2. If B 1s a Boolean, i.e. a term that is either true, or false, then
if B then P else)
can be represented by BP(Q. Indeed, trueP() = P and falseP(Q =
Q.
Definition 2.2.5 (Pairing). For M, N € A write
[M,N]=Az.zMN.

Then
[M, N]true= M

[M, N]false = N

and hence [M, N] can serve as an ordered pair.

Definition 2.2.6.

1. A numeric function is a map [: NP —N for some p.

2. A numeric function f with p arguments is called A-definable if one
has for some combinator ¥

Fep, oo ceny = Chiny,iny) (D)

for all ny,...,n, € N. If (1) holds, then f is said to be A-defined by
F.

Definition 2.2.7.
1. The initial functions are the numeric functions U?, ST, Z defined by:

Ul(zy, ... x,) = x4, 1<i<r
St(n) = n+1;
Z(n) = 0.

2. Let P(n) be a numeric relation. As usual
um.P(m)
denotes the least number m such that P(m) holds if there is such a

number; otherwise it is undefined.

As we know from Chapter 2 in this handbook, the class R of recur-
sive functions is the smallest class of numeric functions that contains all

Lambda Calculi with Types 17

initial functions and is closed under composition, primitive recursion and
minimalization. So R is an inductively defined class. The proof that all re-
cursive functions are A-definable is by a corresponding induction argument.
The result is originally due to Kleene (1936).

Lemma 2.2.8. The initial functions are A-definable.

Proof. Take as defining terms

Ui = dag-- Xp .
S£ = dvyzy(eyz) (= Agpcy);
/ = Az.cp. m

Lemma 2.2.9. The A-definable functions are closed under composition.

Proof. Let g, hy,..., hy be A-defined by G, Hy, ..., H,, respectively. Then

f

—_
31

) = g(h (), .., b (7))

1s A-defined by
F=X.G(HLZ)...(Hpt). |

Lemma 2.2.10. The A-definable functions are closed under primitive re-
cursion.

Proof. Let f be defined by

where g, h are A-defined by G, H respectively. We have to show that f is A-
definable. For notational simplicity we assume that there are no parameters
it (hence G = cf(0).) The proof for general 7 is similar.

If £ is not an argument of &, then we have the scheme of iteration.
Iteration can be represented easily in the A-calculus, because the Church
numerals are iterators. The construction of the representation of f is done

18 H.P. Barendregt

in two steps. First primitive recursion is reduced to iteration using ordered
pairs; then iteration is represented. Here are the details. Consider

T = A\p.[ST (ptrue), H(pfalse)(ptrue)].
Then for all k& one has
T([er, erar))

[fS+ck,Hcf(k)ck]
[Crt1, Cf(k+1)]~
By induction on £ it follows that

[Ck, Cf(k)] = Tk [Co, Cf(o)].

Therefore
ci(k) = cx1[co, cp(0)] false,

and f can be A-defined by
F = Ak .kT[co, G] false. m

Lemma 2.2.11. The A-definable functions are closed under minimaliza-
tion.

Proof. Let f be defined by f(7) = pm[g(7i, m) = 0], where @ = ny,...,ng
and ¢ is A-defined by G. We have to show that f is A-definable. Define

zero = An.n(true false)true.

Then
Z€ero cy = true,

zero cp41 = false.

By Corollary 2.1.10 there is a term H such that
Hity = if (zero(Giiy)) then y else Hi(S1y).
Set F' = Afi.HZc0. Then F' A-defines f:

Fecz = Hcejeg
= c¢g, if Gezep = co,
= Heczeqp else;
= cq, if Gezey = co,
= Heczco else;
= Ca, if ...
Here ¢z stands for ¢, ...cp,. | |

Theorem 2.2.12. All recursive functions are A-definable.

Lambda Calculi with Types 19
Proof. By 2.2.8-2.2.11.m [|

The converse also holds. The idea is that if a function is A-definable,
then its graph is recursively enumerable because equations derivable in the
A-calculus can be enumerated. It then follows that the function is recur-
sive. So for numeric functions we have f is recursive iff f is A-definable.
Moreover also for partial functions a notion of A-definability exists and one
has 1 is partial recursive iff ¢) is A-definable. The notions A-definable and
recursive both are intended to be formalizations of the intuitive concept of
computability. Another formalization was proposed by Turing in the form
of Turing computable. The equivalence of the notions recursive, A-definable
and Turing computable (for the latter see besides the original Turing, 1937,
e.g., Davis 1958) Davis provides some evidence for the Church-Turing the-
sis that states that ‘recursive’ is the proper formalization of the intuitive
notion ‘computable’.

We end this subsection with some undecidability results. First we

need the coding of A-terms. Remember that the collection of variables
is {v, v, 0", ..}

Definition 2.2.13.
1. Notation. v(?) = v; v(?*1) = ()7,

2. Let {,) be a recursive coding of pairs of natural numbers as a natural
number. Define

Bo)) = (0,n);
HMN) = (2,(8(M),8(N)));
BAe M) = (3, (8(x), 4(M))).

3. Notation

Definition 2.2.14. Let A C A.

1. A is closed under = 1f

McA MDM=N = NcA.

2. A is non-trivial if A # 0 and A # A.
3. A is recursive if 4 = {§M | M € A} is recursive.

The following result due to Scott 1s quite useful for proving undecidability
results.

20 H.P. Barendregt

Theorem 2.2.15. Let A C A be non-triwvial and closed under =. Then A
15 not recursive.

Proof. (J. Terlouw) Define
B={M|M"M"c A}.

Suppose A is recursive; then by the effectiveness of the coding also B is
recursive (indeed, n € 8 < (2, (n,fc,)) € §.4). Tt follows that there is an
F € A° with

MeB < FM"=cgy;

M¢B & F'M'=c.
Let My e A, My ¢ A. We can find a G € A such that

MeB & G"M'=DM ¢&A,
M¢B & G™M = M,€A.

[Take Gz = if zero(F'z) then M; else My, with zero defined in the proof
of 2.2.11.] In particular

GeB & G G¢A opg GEB,
G¢gB & G'G'eAd opg GeB,

a contradiction. W [|

The following application shows that the lambda calculus is not a de-
cidable theory.

Corollary 2.2.16 (Church). The set
{M | M = true}
is not recursive.

Proof. Note that the set 1s closed under = and 1s nontrivial. B [|
2.3 Reduction

There is a certain asymmetry in the basic scheme (). The statement
(Az.z? +1)3 =10

can be interpreted as ‘10 is the result of computing (Az.2% + 1)3’, but not
vice versa. This computational aspect will be expressed by writing

(Ar.z® +1)3 — 10

which reads ‘(Az.x? + 1)3 reduces to 10’.

