
ARTICLE IN PRESS

Information and Computation xxx (2009) xxx–xxx

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Applications of infinitary lambda calculus

Henk Barendregt a,*, Jan Willem Klopa,b

a Faculty of Science, Radboud University, P.O. Box 9010, 6500GL Nijmegen, The Netherlands
b Department of Computer Science, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

A R T I C L E I N F O A B S T R A C T

Article history:

Received 21 October 2007

Revised 4 September 2008

Available online xx xx xxx

Dedicated toGiuseppe Longo at the occasionof his

60th birthday

We present an introduction to infinitary lambda calculus, highlighting its main properties.

Subsequently we give three applications of infinitary lambda calculus. The first addresses

the non-definability of Surjective Pairing, which was shown by the first author not to be

definable in lambda calculus. We show how this result follows easily as an application

of Berry’s Sequentiality Theorem, which itself can be proved in the setting of infinitary

lambda calculus. The second pertains to the notion of relative recursiveness of number-

theoretic functions. The third application concerns an explanation of counterexamples to

confluence of lambda calculus extended with non-left-linear reduction rules: Adding non-

left-linear reduction rules suchas δxx→ x or the reduction rules for Surjective Pairing to the

lambda calculus yields non-confluence, as proved by the second author. Wediscuss howan

extension to the infinitary lambda calculus, where Böhm trees can be directly manipulated

as infinite terms, yields a more simple and intuitive explanation of the correctness of these

Church-Rosser counterexamples.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The aim of this paper is to present some well-known results in λ-calculus from the point of view of infinitary λ-calculus,

where terms may be infinitely deep and reduction sequences may be of transfinite length α, for a countable ordinal α.

Infinitary λ-terms are already familiar in λ-calculus in the form of Böhm trees (BTs), but in the extended setting of infinitary

λ-calculus (or λ∞ for short) BTs are just a particular kind of infinite normal forms, and in this extended setting we can even

apply a BT to another BT. In Section 2 we will give a somewhat more detailed exposition of λ∞ with β-reduction, λ∞β for

short. (We will not consider η-reduction in this paper.) First we will describe why in our view infinitary λ-calculus is of

interest.

The first reason pertains to semantics of λ-calculus. By now it is classic that infinite λ-terms constitute a syntactic approach

to the semantics of finite λ-terms with (e.g.) β-reduction, in various forms, in particular the semantics given by the three

families of infinite λ-trees known as Böhm trees, Lévy-Longo trees, and Berarducci trees.Whereas the first family seems to be

themost important, the second family is instrumental for a closer connection to the practice of functional programmingusing

notions as lazy reduction and weak head normal form, see Abramsky and Ong [1], while the third family is a sophisticated

tool for consistency studies as demonstrated in Berarducci and Intrigila [13].

The second reason concerns the pragmatics of computingwith λ-terms. Some computations aremost naturally presented

as transfinite sequences, rather than as compressed sequences of length at most ordinal ω, even though this always can be

done by dove-tailing. Below we give some illustrating examples.

* Corresponding author.

E-mail address: henk@cs.ru.nl (H. Barendregt).

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2008.09.003

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic

ARTICLE IN PRESS

2 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

The third reason is found in the feature of expressivity. Infinite λ-terms can be nonrecursive. This can be used to give a

direct representation of notions that otherwise need some circumlocution for their definition: a recursion-theoretic oracle,

used in the definition of relative computability, can be defined in various ways, but the representation as an infinite λ-term

has an appealing directness, since the oracle can now directly be processed by a finite λ-term, standing for a finite program.

Below, in Section 4, we will substantiate this.

The last reason, illustrated by Section 3 on Berry’s Sequentiality Theorem (BST) and Section 5 on the failure of confluence

in extensions of λ-calculus with non-left linear reduction rules, is theoretical coherence and transparency, including a better

understanding of phenomena in finite (!) λ-calculus. The section on BST provides such a better understanding for the

inherent sequentiality of finitary λ-calculus, with as corollaries some non-definability results treated there, among them

the fundamental fact that (just like parallel-or), it is not possible to define Surjective Pairing in λ-calculus. We present a

succinct and new proof of this non-definability fact. Finally, Section 5 contributes to a better understanding of the extension

of λ-calculus with rules like δxx→ x, encoding a discriminator δ for syntactic equality (of its two arguments); such an

extension λ+ δ looses the confluence property, but the deeper reason is best understood via an excursion to the realm of

infinite λ-terms.

Concluding this Introduction, let us point out once more that our paper has in part the character of a survey and intro-

duction, albeit of modest scope. This entails that our primary concern is not to communicate new results on this subject. Yet

there are some new elements. Next to some new proofs, such as for the undefinability of Surjective Pairing in (finitary and

now also in infinitary) λ-calculus, and for the non-confluence of this same system viewed as a rewrite system, there are a

few new results, notably the short solution of an open problem of Scott [37], and a theorem building on work of Kleene [30],

capturing the notion of relative recursiveness directly in (infinitary) λ-calculus.

2. Preliminaries

In this section we will lay out various notions and notations, and some basic properties, of finitary as well as infinitary

λ-calculus.

2.1. Lambda calculus and two extensions

We assume familiarity with ordinary untyped λ-calculus, see e.g. Barendregt [8]. In particular the following notations

will be used. The notation follows common practise. Closed λ-terms are usually denoted by Roman capitals, but sometimes

by Greek letters (upper or lower case). As often in mathematics and programming languages, there are sometimes innocent

examples of overloading: for example ω is a λ-term, but also the first infinite ordinal, in which sense it is used in the notation

Mω , an infinite λ-term.

Notation 2.1. M ≡ N stands for syntactic equality between the (possibly infinitary) termsM,N andM = N for their convert-

ibility (w.r.t. a notion of reduction clear from the context, usually β or an extension).We use the combinators (closed λ-terms)

I ≡ λx.x, K ≡ λxy.x, S ≡ λxyz.xz(yz), Y ≡ λf .(λx.f (xx))(λx.f (xx)), B ≡ λxyz.x(yz), � ≡ (λxy.y(xxy))(λxy.y(xxy)). We also often

use the combinators ω ≡ (λx.xx), in some papers denoted by 	, and
 ≡ (ωω).
The set of λ-terms is denoted by�, that of normal forms (under β-reduction) by�NF. The set of closed λ-terms is denoted

by �ø. For M,N ∈� the following notations are used. For pairing [M,N] ≡ λz.zMN, with z a fresh variable; for applicative

iterationMnN is defined recursively:M0N ≡ N; Mk+1N ≡ M(MkN). Using this notation, theChurchnumerals are cn ≡ λfx.f nx.
For iterated argumentsMN∼n is also defined recursively: MN∼0 ≡ M; MN∼(k+1) ≡ MN∼kN.

Definition 2.2. (i) Extend the set of λ-terms�with a constant f, intended to represent an f :N→N. The resulting set of terms

will be denoted by �(f).

(ii) On �(f) one can extend β-reduction with the notion of reduction f axiomatized by the contraction rule: fcn →f cf (n).

Lemma 2.3. The notions of reduction f and βf are Church-Rosser.

Proof. Similar to the proof of Mitschke’s Theorem 15.3.3 in Barendregt [8]. Alternatively, observe that f and βf constitute
orthogonal higher-order rewriting systems (in the form of CRSs or HRSs) and use Theorem 11.6.19 in Terese [39]. �

Remember that every λ-term M is of one of the following forms:

M ≡ λx1 . . . xn.yM1 . . . Mm or λx1 . . . xn.(λy.P)QM1 . . . Mk.

In the first case M is said to be a head normal form (hnf); in the second caseM has the head-redex (λy.P)Q .

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 3

Definition 2.4. (i) Another extension with one constant is �(⊥).
(ii) On �(⊥) one defines the notion of reduction � by the contraction rules:

M →� ⊥, ifM �≡ ⊥ and does not β-reduce to a hnf;

⊥M →� ⊥;
λx.⊥ →� ⊥.

Lemma 2.5. The notion of reduction β� is Church-Rosser.

Proof. See Barendregt [8] Lemma 15.2.5. �

Below we will use Definition 2.4 and Lemma 2.5 in our dealings with Böhm Trees (BTs). We mention also at this point

two notions related to hnf’s, to be used below for two variants of BTs, to wit the Lévy-Longo trees (LLTs) and the Berarducci

trees (BeTs). For the moment, the next Definition 2.6 and Remark 2.7 can be skipped.

Definition 2.6. (i) A term M is a weak head normal form (weak hnf or whnf) if it is an abstraction λx.P or vector xM1 . . . Mm,

where x is a variable.

(ii) A λ-term M is root stable, if it is a variable, an abstraction λx.P, or an application PQ where P does not reduce to an

abstraction. Equivalently: M is root stable if it has no infinite reduction in which infinitely often a root reduction step is

performed. A β-reduction step C[(λx.A(x))B] → A(B) is a root step when the context C[] is empty, so the contracted redex is

‘at the root’.

Remark 2.7. So, in a sense, whnf’s as ‘semantics building blocks’ are parts of the hnf building blocks. This is not a coincidence,

but is connected to the relationship between the various notions of semantics of λ-terms, regarding BTs, LLTs andBeTs thatwe

briefly mentioned above, and on which we will elaborate below. The BeT building blocks are just abstractors λx, application

nodes, and variables; in turn these building blocks are fragments of the whnf building blocks. The refinement of the ‘bases

of building blocks’ can be seen as reflecting the coarseness of the corresponding semantical notions, which is stated more

precisely in Remark 3.6.

2.2. Infinite λ-terms

In this sectionwewill introduce infinite λ-terms.Wefirst present the general notational format, called applicative notation,

and then a specialized notation for a subset of the infinite λ-terms, where an abbreviated notation is more convenient, called

the hnf notation.

Definition 2.8. (i) �∞ is the set of (possibly) infinite λ-terms coinductively defined by

term ::= x | term @ term | λx term

(ii) �∞(⊥) is defined similarly, also allowing the constant ⊥.
(iii) Certain elements of�∞(⊥) are known as Böhm trees of finite λ-termsM ∈�, defined in Barendregt [8] by the following

coinductive definition.

So BT is a map from � to �∞(⊥). Below we extend this map to all of �∞(⊥), but this requires the definitions of infinitary

β-reduction and hnf on �∞(⊥).
Often we will present (both finite and infinite) λ-terms as unary–binary branching trees, with application nodes binary

branching and abstraction nodes λx unary branching, and with variables or constants as terminal nodes. Such trees are

displayed in Fig. 1 (left window) and Fig. 2 (left window).

Remark 2.9. Note that in this last definitionwe have introduced an abbreviated notational format, introduced in Barendregt

[8], that we will call the hnf notation, which is especially suitable for terms that do not contain redexes. The BTs are among

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

4 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

Fig. 1. Two views ofM ≡ [a1, a2, [a3]] ≡ λz.za1a2(λz.za3).

Fig. 2. Two views of BT(Y) and its approximant Y2.

such terms. In Figs. 1 and 2 it is shown how this hnf-notation can be ‘expanded’ to the general applicative notation, which

costs several more application and abstraction nodes.

Example 2.10. (i) LetM ≡ [a1, a2, [a3]] ≡ λz.za1a2(λz.za3). ThenM has the two views displayed in Fig. 1.

(ii) Let Y2 ≡ λf .f (f⊥) and Y as in 2.1. Then Y2, BT(Y) have the two views displayed in Fig. 2.

(iii) A notation that we will sometimes use for M ∈�∞(⊥), is Mω , defined coinductively by Mω ≡ M(Mω). For instance

BT(Y) ≡ λf .f ω .
(iv) An interesting term is Iω . It will play a role in Lemma 2.20. In applicative notation one has

Note that this term contains infinitely many β-redexes; as we will see later, it reduces in one step to itself. There is no hnf

view of Iω .
(v) We generalize (ii), especially for use in Section 5, to the well-known μ-notation; in this notation we haveMω ≡ μx.Mx,

with x a fresh variable (i.e. /∈ FV(M)). This in accordance with the well-known μ-rule

μx.M→μ M[x: = μx.M].

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 5

Note that μx.M can be emulated as �(λx.M). So A ≡ μx.xx∈�∞(⊥) is the binary tree consisting of application nodes only.

Moreover, one has

The following remark needs Definition 2.29 and can be skipped at first reading.

Remark 2.11. Whether a term such as μx.xx is useless (i.e. its ‘semantics’ equals ⊥) depends from the semantical view that

one is adopting. More precisely: let M ∈� be such that M→→β MM. To this end, take M ≡ Yω, where ω ≡ λx.xx. It is an easy

exercise to show thatMhas no hnf, and thus BT(M) ≡ ⊥.We could also take the BT after reducingM to its infinite normal form

in�∞(⊥); as we will see later, this infinite normal form ofM is μx.xx. Now, residing in�∞(⊥), we again have BT(μx.xx) ≡ ⊥,
for the extension of BT to�∞(⊥) to be defined below. This is so because μx.xx is a normal form, which is not a hnf, hence has

no hnf.

Also in the semantics of Lévy-Longo trees (LLTs), this term and its infinite normal form μx.xx, both have LLT ≡ ⊥.
However, in the Berarducci tree semantics, which gives a syntactic model of λ-calculus, these terms do have a non-trivial

semantical value, viz. μx.xx, see Example 2.37.

In this paper we will focus on the coarsest of the three semantical views, namely that of the BTs. See also Remark 3.6.

2.3. β-Reduction on �∞(⊥)

The notion of β-reduction extends in a straightforward manner from �(⊥) to �∞(⊥), bearing in mind that a β-redex has

a finite ‘redex-pattern’ that makes it recognizable as such, namely

Of course one has to define the usual notions of free and bound variable occurrences, and substitution without variable

capture. But it is a matter of routine to spell out these details, from which we will refrain here; instead we refer to a

detailed treatment in Terese [39], Section 12.4, where also α-conversion is treated, using Barendregt’s variable convention,

and including a proof of the Substitution Lemma as in Barendregt [8], 2.1.16. Important is to realize that the contraction of

a β-redex (λx.M)N to the reduct or contractum M[x := N] now may require infinitely many copies of N to be substituted in

as many occurrences of the free variable x in M. Examples are below in Examples 1.3.1 and 1.3.2. As pointed out in Terese

[39], in practice one will avoid such ‘ω-tasks’, by adopting some computational scheme like explicit substitution, allowing

a finite part of the reduct to be computed in finite time. Having defined single β-reduction steps on �∞(⊥), with notation

→β , we define the transitive-reflexive closure of→β , written as→→β , just as for finite λ-terms, but now for possibly infinite

terms, that is on�∞(⊥). With this notion of reduction, the definition of head normal form (hnf) and thereby the coinductive

definition of BT extends in an analogous way to all of the domain �∞(⊥); we will not repeat the definitions as they are

verbatim the same.

The definition of normal form with respect to β-reduction (β-nf) is simple: M ∈�∞(⊥) is a β-normal form if it contains

no β-redex. As an advance warning, elaborated below after Lemma 2.30, we mention that every BT is a β-normal form, but

not vice versa.

Nextwe introduce infiniteβ-reduction sequences.Wewill do this in an informalway, referring for a full detailed treatment

to Terese [39], Kennaway et al. [22,27,23], Ketema and Simonsen [28,29], Klop and de Vrijer [34]. Reduction sequences now

may have transfinite length:

M0 →β M1 →β ... Mω →β Mω+1 →β . . .Mω.2 →β ... Mα.

Here M0,M1, . . . ∈�∞(⊥). We have single β-steps Mγ →β Mγ+1. The term Mλ is for a limit ordinal λ the Cauchy limit of the

earlier Mμ, with μ < λ, with the usual distance metric d on the finite and infinite term trees: d(M,N) = 2−n if M,N coincide

only up to depth n, and d(M,M) = 0.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

6 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

At this point in our introduction, we would have reduction sequences of every ordinal length α, e.g. forM0 ≡
wewould

have

M0 ≡
→β
→β . . . Mω ≡
→β
→β . . .
 ≡ Mα.

However, in addition to Cauchy convergence we impose a crucial further requirement on the limit behaviour of reduction

sequences: when approaching a limit λ, the depth dγ of the contracted redex rγ in step Mγ →β Mγ+1 must tend to infinity:

limγ<λdγ = ∞. Here the depth of a redex r inM ∈�∞(⊥) is the number of steps (edges) in the term tree ofM from the root to r.

Nowour reduction sequence in spe
→
→ . . .
of arbitrary lengthα is not allowed, since there the contracted redexdepth

stays at level 0, and is not going down at each limit λ; the action is ‘stagnating’ at level 0. Reduction sequences satisfying our

crucial redex-depth-to-infinity requirement, are called strongly convergent. The point of the redex depth requirement, i.e. of

strong convergence, is that it entails a natural notion of ‘descendant’ or ‘residual’ carrying over to transfinite reductions, and

the notion of descendant is a backbone of the theory of orthogonal rewriting, including λ-calculus. Actually, our definition

above is in fact redundant, since the redex depth requirement already implies Cauchy convergence. It is not hard to see that

strongly convergent reductions can have atmost a countable ordinal as length; if not, wewould have some level at which the

action (redex contraction) would stagnate forever—but the depth requirement prohibits that. Reductions that are stagnating

at some finite level, i.e. that are not strongly convergent, are called divergent. There is a helpful analogy between finitary

reductions and infinitary (transfinite) reductions: in the former we have finite versus infinite reductions, to be compared

with, in the latter, strongly convergent versus divergent reductions.

Notation 2.12 (Infinitary β-reduction and conversion). (i) Let M, N be terms in �∞(⊥) and suppose that there is a transfinite

strongly convergent R-reduction from M to N. Then we write

M→→→R N.

(i) M −→α
R N (respectivelyM −→�α

R N,M −→<α
R N) denotes that there is a strongly convergent infinitary R-reduction from

M to N with length α (respectively �α, <α).
(ii) =R∞ is the infinitary conversion relation corresponding to→→→R. In fact=R∞ is (R←←← ◦→→→R)

*, where ‘◦’ denotes relational
composition and * transitive closure.

Definition 2.13. (i) A term M ∈�∞ is in β-normal form (β-nf) if it does not contain a β-redex.

(ii) M has a β∞-nf ifM→→→β N and N is in β-nf.

(iii) �∞NF = {M ∈�∞ | M is in β-nf}.

Example 2.14 (An infinite fixed point combinator). In this example and the next we will present some brief excursions in the

infinitary λ-calculus as introduced up to now. Next to illustrating the notions defined above, we also aim in these two

examples to suggest the convenience of having available the additional infinitary domain for computations, and moreover

that this leads to some observations thatmay be of interest on their own. In the present examplewewill encounter an infinite

fixed point combinator (fpc). Using the notations for S, I, Y above, consider δ ≡ λab.b(ab). Note that δ = SI. The following is

an observation of C. Böhm and G. van der Mey: if Y is a ‘reducing fpc’, i.e. Yx→→β x(Yx) for a variable x, then Yδ is again a

reducing fpc. Indeed, we have

Yδx→→β δ(Yδ)x→→β x(Yδx)→→β xn(Yδx).

Now let us perform this reduction in an infinitary way, in ω + ω steps:

Yδx→→→β (λf .f
ω)δx→β δ

ωx ≡ δ(δω)x→→β x(δωx)→→→β xω.

Hence Yδ is indeed behaving as a fpc, and we have Yδ =β∞ λx.x
ω =β∞ Y .

Starting with the fpc Y, define the Böhm-van der Mey sequence Y0 = Y , Y (n+1) = Ynδ. Then each Yn is a fpc.

Note that the above reduction of length ω.2 could have been ‘compressed’ to one of length ω between the same terms

Yδx and xω , but the resulting reduction would be less natural and informative.

In fact the infinite term δω ≡ δ(δω) is itself already a reducing fpc, as the reduction above shows, and we also have

δω =β∞ λx.x
ω =β∞ Y . So we have encountered a new infinite fpc, δω , or in μ-notation: μx.δx. As an illustration of the richness

of the infinitary domain, �∞(⊥), we mention that one can find many more infinite fpcs, e.g., for every n the infinite term

(SS)ωS∼nI is a fpc. Here S∼n denotes a string of n occurrences of S’s, with brackets associated to the left; thus for n = 3 we

have (SS)ωSSSI. The simple verification is left to the reader or can be found in Klop [33].

Example 2.15 (The equation B YS = B Y and Scott’s Induction Rule). In Scott [38, p. 20], the following principle (Scott’s In-

duction Rule) was introduced.

, ax � bx � a(ux) � b(ux)
,

, a⊥ � b⊥ � a(Yu) � b(Yu)

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 7

where x /∈ FV(
). Scott mentions that the equation B YS = B Y can be proved using this rule. In Scott [37, , p. 360], it is

conjectured that, using techniques of Böhm, it can be shown that this equation cannot be proved in (finite) λ-calculus, i.e.

B YS �=β B Y . We first show this inconvertibility and then the validity of B YS = B Y under infinitary conversion =β∞ .

Proposition 2.16. (i) For Curry’s fixed point combinator Y one has

B YS �=β B Y .

(ii) For every fixed point combinator Y one has BYS �=β BY .

Proof. (i) That B YS �=β B Y follows immediately from the observation that applying an I to both sides of the equation

in question, with result B YSI and B YI, we have B YSI =β � and B YI =β Y , respectively Turing’s and Curry’s fixed point

combinator (see Notations in Section 2.1). It is well-known that � �=β Y; a non-trivial but easy exercise establishes this. It

follows that B YS �=β B Y .
Note that Scott [37] refers in this discussion to Curry’s fpc Y .What if we take another fpc Y in the equation BYS = BY?

Let Yn be in the Böhm-van der Mey sequence defined in Example 2.15, starting with Curry’s Y ;

Y0 ≡ Y , Y1 ≡ � =β Yδ, Y2 ≡ Yδδ, Y3 ≡ Yδδδ, . . . ,

then B YnS �=β B Yn follows similarly from the fact that Yn �=β Yn+1. In fact we even have Yn �=β Yn+k , for all n ≥ 0,K > 0.

For a proof of this result, see Böhm [16] or Klop [33].

(ii) Muchmore difficult it is to prove BYS �=β BY for an arbitrary fixed point combinator Y! The proof runs via a deep result

of Intrigila [20], affirming a conjecture by Statman, stating that for no fpc Y we have Y =β Yδ. Indeed, suppose BYS =β BY ,

for the fpc Y . Then BYSI =β BY I. Hence

Yδ =β Y(SI) =β BYSI =β BY I ≡ (λabc.a(bc))Y I =β λc.Y(Ic) =β λc.Yc =β Y .

The last step is justified as follows: Y(KI) =β KI(Y(KI)) =β I, hence Y is solvable, and hence has a hnf, by Barendregt [8],

Theorem 8.3.14. Therefore Y , being closed is β-convertible to λx.Z. Then

λc.Yc =β λc.(λx.Z)c =β λc.Z[x: = c] ≡α λx.Z =β Y .

Therefore the assumption entails Yδ =β Y , contradicting Intrigila [20]. �

Proposition 2.17. For every fixed point combinator Y one has BYS =β∞ BY .

Proof. BYS = BY (for an arbitrary fpc Y) can be proved conveniently in the framework of infinitary reductions. By a simple

computation BY →→→β λab.(ab)
ω and also BYS→→→β λab.(ab)

ω . So

BY =β∞ λab.(ab)
ω =β∞ BYS.

Note that en passant, we have established that =β∞ is not conservative over =β . In Klop [33] several other equations of this

type are discussed, that do not hold with respect to =β , but do hold with respect to =β∞ . �

2.4. Basic properties of infinitary λ-calculus

We will briefly present some basic properties of the extended calculus, referring to Terese [39] Chapter 12 for complete

proofs.

In finitary λ-calculus, the two main notions for reduction are the confluence property or Church-Rosser property (CR),

stating that two coinitial reductions can be prolonged to a common reduct, and the termination property in the strong

variant of Strong Normalization (SN), stating that all reduction sequences eventually must terminate in a normal form, and

the weak variant ofWeak Normalization (WN), statingmerely the existence of a normalizing reduction. The CR property has

an important corollary, namely the uniqueness of normal forms (UN). For connections between these and other properties

we refer to Barendregt [8], Chapter 1 of Terese [39], Klop [32].

Naturally, the question arises how these notions generalize to the infinitary calculus λ∞β. Notationally the extension is

easy, and we will consider the properties of infinitary confluence (CR∞), strong and weak infinitary normalization (SN∞,

WN∞ respectively), and uniqueness of infinitary nomal forms (UN∞). Connected to the property CR∞ we also may consider

PML∞, the infinitary generalization of the fundamental Parallel Moves Lemma (PML), which for finite λ-calculus is the key

lemma on the way to CR. Let us define these notions formally.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

8 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

Definition 2.18. (i) The infinitary Church-Rosser (or confluence) property CR∞ for→→→R is: for allM0,M1,M2 ∈�∞(⊥) there
exists an M3 ∈�∞(⊥) such that

M0 →→→R M1 & M0 →→→R M2 ⇒ M1 →→→R M3 & M2 →→→R M3.

(Note: we could have given the CR∞ propertymentioning explicitly the length in ordinals of the reductions involved; in view

of the Compression property, appearing later, this amounts to the same as the present definition.)

(ii) PML∞ for→→→R is theproperty similar toCR∞, butbutwithoneof thecoinitial reductionsfinite: forallM0,M1,M2 ∈�∞(⊥)
there exists a M3 ∈�∞(⊥) such that

M0 →→R M1 & M0 →→→R M2 ⇒ M1 →→→R M3 & M2 →→→R M3.

(iii) A term M ∈�∞(⊥) has the infinitary Strong Normalization Property, notation M is SN∞, if M admits no divergent

reductions. In otherwords all reductions ofM eventually terminate in a normal form, possibly after a transfinite β-reduction.

(iv) M ∈�∞(⊥) has the WN∞ property if there exists a λ∞β-nf N ∈�∞(⊥) such thatM→→→β N.

Example 2.19. (i) Every fpc Y is WN∞, its normal form being λa.aω . For the fpcs Y0 ≡ Y , Y1 ≡ � =β Yδ, Yn ≡ Yδ∼n, con-
sidered in Example 2.14, we even have SN∞.

(ii) A term which is WN∞ but not SN∞ is KI
. This involves a term which is ‘erasing’, i.e. not a λI-term, so one may ask

whether possibly Church’s theorem, stating that for λI-termsM one has the equivalence

M is SN ⇐⇒ M is WN,

generalizes to the infinitary setting. However, this is not the case, and a counterexample to this generalization is the fpc

Y
 ≡ ζ ζ
, where ζ ≡ λxpf .f (xxpf), mentioned in Klop [33]. This fpc is WN∞ but not SN∞, and it is a λI-term.

The following counterexample was independently given in Ariola and Klop [3] and Berarducci [12]. The latter paper

moreover presented a method to restore CR∞ by equating a class of problematic terms, namely the ones that have no root

stable form (in Berarducci’s paper called ‘mute’ terms) as will be discussed below.

Lemma 2.20 (Failure of PML∞ and CR∞). The properties PML∞ and a fortiori CR∞, do not hold for infinitary λ∞β-calculus.

Proof. Consider YI. Then on the one hand

YI→β (λx.I(xx))(λx.I(xx))→→→β Iω ,

and on the other hand

YI→β (λx.I(xx))(λx.I(xx))→→β (λx.xx)(λx.xx) ≡
.

Both Iω and
 only reduce to themselves, so they have no common reduct and PML∞ and hence also CR∞ fail. �

After these negative findings, we now turn in two ways to the positive state of affairs.

The first way of restoring aspects of confluence is as follows. Note that both Iω and
 in the proof of Lemma 2.20 are not

normal forms. Now, when we impose that one of the terms that are the end points of the coinitial reductions considered for

the confluence is a normal form, then confluence does hold.

This fundamental theorem has some beneficial consequences, among which the property UN∞, the unique normal form

property. It was proved in Kennaway et al. [27] for first order infinitary TRSs, there called iTRSs, and extended by Ketema and

Simonsen [28] to a wider context, generalizing iTRSs and also our present framework, namely for all orthogonal and ‘fully-

extended’ infinitary Combinatory Reduction Systems (iCRSs, as they are called in Ketema and Simonsen [29,28]). The notion

‘fully extended’ excludes a variable condition such as present in the η-reduction rule. For our purpose, we only mention

that infinitary λ-calculus extended with the oracle f-rules λ∞βf, is among this large class of higher-order rewrite systems.

First we will state formally the unique normal form property together with two variants. We will do this in Definition 2.21

in a general way, namely for Abstract Reduction Systems; then we specify the notation of these properties for the present

infinitary λ-calculi.

Definition 2.21. Let→R be a reduction relation on some set A, with corresponding conversion relation =R.

(i) R has the unique normal form property w.r.t. reduction, notation UN(→→R), if for all a, b1, b2 ∈Awith b1, b2 in R-nf one has

a→→R b1 & a→→R b2 ⇒ b1 ≡ b2.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 9

(ii) We say that R has the unique normal form property w.r.t. conversion, notation UN(=R), if for all b1, b2 in R-nf one has

b1 =R b2 ⇒ b1 ≡ b2.

(iii) R has the normal form property w.r.t. R, notation NF(R), if for all a, b∈Awith b in R-nf one has

a =R b ⇒ a→→R b.

Note that UN(=R) ⇒ UN(→→R), but in general not vice versa.

Notation 2.22. To indicate that we are dealing with infinitary reduction, we will write the properties of Definition 2.21 as

UN∞, NF∞, specifying always the considered reduction or conversion relation. E.g. we will state ‘UN∞ holds for→→→β ’, ‘UN
∞

holds for =β∞ ’ or ‘NF
∞ holds for =β∞ ’.

Lemma 2.23 (Ketema and Simonsen [29]). Suppose M1 →→→βf N and M1 →→→βf M2, with N in β∞f-nf. Then M2 →→→βf N.

This lemma has some useful consequences.

Corollary 2.24. (i) NF∞ holds for =β∞ and for =βf∞.
(ii) UN∞ holds for→→→β and =β∞; also for→→→βf and =βf∞.
(iii) Let M ∈�∞(f). Suppose M ∈WN∞ for→→→βf , i.e. M has an infinitary βf-nf. Then M is CR∞ for→→→βf , i.e. two→→→βf-reducts

of M have a common reduct.

The otherway of reaching confluence properties is by taking a congruence, that is, byworkingmodulo a class of undefined

terms, e.g. the class of terms without hnf. This works, because the problematic terms causing non-confluence are always

undefined terms. Below in the subsection about Böhm reduction, we will elaborate this route. First we pay attention to the

following important feature of infinitary reductions.

2.4.1. Compression

The introduction of reduction sequences of transfinite length α is a natural generalization of finite reductions. But often

we do not need the fine distinctions that this length measuring with countable ordinals makes possible. Indeed we can

remove the use of transfinite ordinals, by compressing a reduction of length α to one between the same terms of length

β � ω. In fact, the infinitary λ-calculus of Berarducci and Intrigila [13] doeswithout transfinite reductions, and just considers

reductions of length at most ω. (Their infinitary λ-calculus can easily be extended to transfinite reductions, though.) So, we

have the following Compression property.

Lemma 2.25. (i) Let R : M→α
β N, for some countable ordinal α. Then there exists an infinitary reduction R′ of at most ω steps, i.e.

R′ : M→�ω
β N. This R′ is obtained from R by compression.

(ii) Compression also holds for λ∞βf-calculus, where the oracle rules for f are added.

Proof. (i) See Kennaway and de Vries [26], p. 690. The compression is a straightforward application of ‘dove-tailing’.

(ii) See Ketama and Simonsen [29,28]. �

Example 2.26. The following reduction

[Ya, Yb] →ω
β [aω , Yb] →ω

β [aω , bω],

see Notation 2.1, has length ω.2. It can be compressed to length ω by alternating the contraction of a redex ‘to the left and to

the right.’ Since the reduction ends in a nf, in this case all compressed reductions R′ are Lévy equivalent with R, see Terese

[39], p. 690.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

10 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

Remark 2.27. For the Compression property our definition of strongly convergent reductions is essential. For infinitary

reductions that are merely Cauchy convergent, without the depth-to-infinity requirement, compression does not hold. For

counterexamples see Terese [39].

For use in Section 4 we mention the following, anticipating the notion of reduction β�, treated in the next subsection.

Proposition 2.28. Let N ∈� be a finite term. Then

(i) M→→→β N ⇒ M→→β N.

(ii) M→→→β� N ⇒ M→→β N.

(iii) M→→→βf� N ⇒ M→→βf N.

Proof. (i) By compression M −→�ω
β N. Since N ∈� is finite, α cannot be ω, by the definition of strong convergence.

(ii), (iii) Similarly. �

2.4.2. Infinitary λ∞β-calculus with Böhm reduction

We will now briefly focus on the extension of λ∞β-calculus with
-reduction rules. Actually, as mentioned in the

Introduction, the theory forks in three main directions. (See Terese [39], Chapter 12, for a more elaborate presentation.

As a reminder, the definition of weak hnf and of root stable term were already stated in Definition 2.6(ii) and discussed in

Remark 2.7.) We introduce the following three infinitary rewrite systems.

Definition 2.29. (i) (For Böhm trees, BTs.) The λ∞β�3-calculus is the λ∞β-calculus extended with the three
-reduction

rules given in Definition 2.4.

(ii) (For Lévy-Longo trees, LLTs.) The λ∞β�2-calculus is the λ
∞β-calculus extended with the two
-reduction rules:

M →� ⊥ ifM �≡ ⊥ andM does not β-reduce to a weak hnf;

⊥M →� ⊥.

(iii) (For Berarducci trees, BeTs.) The λ∞β�1-calculus is the λ
∞β-calculus extended with the single
-reduction rule:

M →� ⊥, if M �≡ ⊥ andM does not β-reduce to a root stable term.

Note that these three rewrite systems are not orthogonal rewrite systems; the rules display several overlaps, giving rise to

non-trivial ‘critical pairs’.

Wenowgive a rather different definition of BTs.Whereas thefirst definition in 2.3was in a coinductive fashion, the present

alternative one is employing infinitary rewriting. We will only treat BTs, and refer just to λ∞β�-calculus; the definitions of

LLTs and BeTs are entirely analogous.

Also for the calculi yielding LLTs and BeTs we have CR∞ and the other properties of Corollary 2.34 below. In particular

CR∞ for λ∞β�1 for the BeTs provides an interesting alternative route to UN∞ for λ∞β, based on the following lemma from

de Vrijer [41] on abstract reduction systems. We note that this route was first employed by Berarducci [12].

Lemma 2.30. Let A = (A,→1) and B = (B,→2) be two abstract reduction systems (ARSs). Suppose

(i) A ⊆ B;
(ii) →→1⊆→→2;
(iii) NF(A) ⊆ NF(B), where NF of an ARS is the set of its nfs.

Then B is UN(→→2) ⇒ A is UN(→→1).

Proof. The proof is trivial. If for a∈A has two nfs n1,n2, so a→→1 ni, i = 1, 2, then a,n1,n2 ∈B and a→→2 ni, i = 1, 2, so

n1 = n2. �

Now the infinitary calculus λβ�∞1 for BeTs is indeed an extension of λ∞β as ARSs in this Lemma. As CR∞ holds for→→→β�1
, we

have UN∞ for→→→β , by Lemma 2.30. Note that this proofmanoeuvrewould not work for BTs or LLTs: there the third condition

in Lemma 2.30 is not satisfied. Namely, for BTs the problem is that L , as in Example 2.37, is a β-nf, but not a λ∞β�3-nf, the

calculus defining BTs. For LLTs an offending term would be the term A , as in Example 2.37, which is also a β-nf, but not a

λ∞β�2-nf, the calculus defining LLTs.

Definition 2.31. Let M ∈�ø(c), where c is some set of constants (or variables that we will not bind). Then BT(M) is defined

as above, where the c are treated as constants. Wewill apply this to various versions of λ(δ) in Section 5, which is a rewriting

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 11

system consisting of �(δ) with some varying notions of reduction, involving the constants δ. Although δxx→βδ x, one has

BT(δxx) �≡ BT(x), but BT(δxx) ≡ δxx.

Lemma 2.32. Let M ∈�∞(⊥). Then BT(M) is a β�∞-nf of M.

Proof. Definition 2.8(iii) of BT(M), extended to elements of �∞(⊥) can be seen as an infinitary reduction; the ‘depth-to-

infinity’ requirement clearly is satisfied. �

Proposition 2.33. We have CR∞ for λ∞β�.

Proof. See Terese [39] Theorem 12.9.6, p. 699. �

Corollary 2.34. We have WN∞ and UN∞ for λ∞β�.More specifically, in the λ∞β�-calculus all terms M have BT(M) as unique

λ∞β�-nf.

Proof. By Lemma 2.32 and Proposition 2.33. �

Corollary 2.35. Let M,N ∈�∞. Then
(i) M→→→β�BT(M).

(ii) BT(M)BT(N)→→→β� BT(MN).

(iii) BT(BT(M)) ≡ BT(M).

(iv) M =β�∞ N ⇐⇒ BT(M) ≡ BT(N).

(v) BT(MN) ≡ BT(BT(M)BT(N)).

Proof. (i) By Lemma 2.32.

(ii) Note thatMN →→→β� BT(M)BT(N), and that BT(MN) is the λ∞β�-nf ofMN. Then the result follows by CR∞ for λ∞β�.

(iii) By Corollary 2.34.

(iv) By Corollary 2.34.

(v) By (ii), (iv) and (iii). �

Remark 2.36. (i) If a priority is imposed between the �-reduction rules and β-reduction, to the effect that the first have

precedence over the latter, then the λ∞β�-calculus is even SN∞. If not, SN∞ fails:
 has a divergent reduction

→β
→β

(ii) These definitions and facts generalize straightforwardly to the presence of the oracle f-rules in Definition 2.1.

To conclude this part on BTs, LLTs and BeTs wemention thatmutatis mutandis similar statements hold for the LLT and BeT

setting, most importantly concerning the properties CR∞, WN∞ and UN∞. In the remainder of this paper we will not need

LLTs and BeTs.

Example 2.37. Write L ≡ λx0(λx1(. . . and A ≡ μx.xx.
(i) Note that

BT(YK) = ⊥.
LLT(YK) = L .

(ii) BT((λx.xx)ω) = ⊥.
LLT((λx.xx)ω) = ⊥.

(iii) BeT((λx.xx)ω) = A .

The next lemma is easy to prove but very useful.

Lemma 2.38 (Partial conservativity). (i) Let M ∈�∞ and N ∈� in β-normal form. Then

M =β∞ N ⇒ M→→β N.

(ii) Let M ∈�∞ and N ∈� in βf-normal form. Then

M =βf∞ N ⇒ M→→βf N.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

12 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

Proof. (i) IfM =β∞ NwithN ∈�NF, thenM→→→β N, by Corollary 2.24(i), henceM→→β N, by Proposition 2.28(i). Alternatively,

note that M =β∞ N implies M =β�∞ N, hence applying CR∞ for→→→β� we get M→→→β� N, because N ∈�NF; moreover one

hasM→→β N, by Lemma 2.28(ii).

(ii) Similarly. �

Note that the requirement that N ∈�NF cannot be dropped. E.g. Y =β∞ BT(Y), but Y �=β BT(Y).

Definition 2.39. The set of Böhm trees is the following collection.

B = {M ∈�∞(⊥) | ∃N ∈�∞(⊥).BT(N) ≡ M}.

In Barendregt [8] elements of this set are called Böhm-like trees; they may not be the BT of a finite λ-term.

Definition 2.40. (i) B� = {M ∈B | ∃N ∈�.BT(N) ≡ M}.
(ii) B<∞ = {M ∈B | M is finite}.
(iii) Bnf = {M ∈B | ∃N ∈�NF.M ≡ N}.
(iv) B+⊥ = {M ∈B | M contains a ⊥}.
(v) B−⊥ = {M ∈B | M is ⊥-free}.
(vi) �∞• (⊥) = {M ∈�∞(⊥) | BT(M)∈B•},

where • is one of the symbols in {�,<∞, nf ,+⊥,−⊥}

Remark. �∞� (⊥) = {M ∈�∞ | BT(M) is r.e.}. See Theorem 10.1.23 in Barendregt [8].

Lemma 2.41. (i) Bnf ⊆ B<∞ ⊆ B� ⊆ B.
(ii) B−⊥ ∩ B<∞ = Bnf .

Proof. Immediate. �

In order to give examples of specific terms in or outside the given sets, we need the following notation.

Notation 2.42. (i) For A ⊆N, its partial characteristic function χA is defined by

χA(n) = 1, if n∈A,
= ↑, else (↑ denoting ‘undefined’).

(ii) Let f :N→N. Then Gf ∈�∞ is defined by

(iii) Let ψ :N ↪→N be a partial unary function. Then Gψ ∈�∞(⊥) is defined by

where

Mk = cψ(k), if ψ(k)↓ (here ↓ denotes ‘defined’),
= ⊥, else

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 13

Fig. 3. The collection of Böhm trees B and some subclasses.

(iv) For A ⊆N, its characteristic function KA is defined by

KA(n) = 1, if n∈A,
= 0. else.

(v) H = {n∈N | ϕn(n)↓}, where ϕe is the unary partial computable function with program e, and H is its complement.

Example 2.43. The following examples show the general position of the defined subsets of B (Fig. 3).

3. Berry sequentiality

One of the uses of Böhm trees is that they enable us to make a fundamental feature of β-reduction explicit, namely its

sequential nature. This may be seen as a restriction in the expressivity of λβ-calculus, because it entails the classical fact that

parallel functions like parallel-or are not definable in λβ-calculus. The basic theorem that states this sequentiality is Berry’s

Sequentiality Theorem (BST), that we will state below. Its main corollary of the non-definability of parallel-or is described

in several places (Plotkin [36], Barendregt [8], Curien [18], Berry [14].) Barendregt [8] also describes another consequence,

the Perpendicular Lines Lemma. In the present paper we will employ BST to show that the operators and rules of Surjective

Pairing are not λ-definable. In Barendregt [6] this was first proved using an ad hoc underlining argument; the use of BST

is more ‘systematic’. We mention here that all these non-definability corollaries of BST, which we present as an infinitary

statement regarding BTs, also are deduced in Endrullis and de Vrijer [19] in λβ-calculus, so in a finitary framework.

The theorem BST itself is a natural candidate for a treatment in infinitary λ-calculus, as was shown in Bethke et al. [15].

The fact that BTs can be obtained as the result of an infinite reduction sequence, Corollary 2.34, enables us to perform a

tracing argument that shows the origin of the ⊥s in the output BT(M), as present in the input term M. (See Fig. 4 below.)

The essence of the sequentiality is then intuitively very simple: in a reduction in λ∞β�-calculus, the ancestors of symbol

occurrences can be traced back towards their origin in the initial term; a symbol either has one ancestor, or it was created

(in our case by the first �-rule). So by tracing the symbols along the infinite reduction that computes the BT, we discover

the ‘causal relations’ between the output ⊥s and the input ⊥s; and that is what BST is about. (This technique is also used in

more application-oriented areas under the name of origin-tracking, e.g. for ‘program slicing’ for error detecting.) The precise

details of the tracing procedure are intricate, and will not be considered below. A simpler proof of BST can also be found

in Curien [18]. Here we only hint at the infinitary tracing proof of BST, and concentrate on the two applications, to wit the

non-definablity of SP and the derivation of the Perpendicular Lines lemma. Before doing so, we explain in an example what

are the possible ‘causal relations’ between input and output ⊥s.

Example 3.1. (i) Consider the finite βω-reduction sequence

M ≡ (λxy.x⊥)⊥→ λy.⊥⊥→ λy.⊥→ ⊥ ≡ BT(M).

Now an input z in the first ⊥ has no output effect:

(λxy.xz)⊥→ λy.⊥z→ λy.⊥→ ⊥,
but with input z in the second ⊥we do have non-trivial output:

(λxy.x⊥)z→ λy.z⊥.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

14 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

(ii) Let ω ≡ λx.xx. Consider the reduction

M ≡ (λxy.xω⊥)ω⊥→ (λy.ωω⊥)⊥→ (λy.⊥⊥)⊥→ (λy.⊥)⊥→ ⊥.

In this example it is not possible to increase the output ⊥; for refining both input ⊥s inM to P, Q, respectively, gives

M ≡ (λxy.xωP)ωQ → (λy.ωωP)Q → (λy.⊥P)Q → (λy.⊥)Q →⊥.

(iii) In the two examples above there was only one output ⊥. In the next example there are three output ⊥s. Let

M ≡ (λxz.zx(ωω)⊥)⊥→→ [⊥,⊥,⊥] ≡ BT(M).

The second ⊥ is independent of refinements of M; the first ⊥ and third ⊥ are descendants of the ⊥ ’s in M in the order of

appearance. This example already gives an intuition of why BST holds: the ⊥s in the output that have no ancestor are the

ones that are ‘created’ during the BT computation, while the output⊥s that have an ancestor are their descendants; in other

words, they can be traced to input ⊥s.
(iv) Finally consider

M ≡ (λxy.y(xx))ω→ λy.y(ωω)→ λy.y⊥ ≡ BT(M).

Here the term without hnf ωω is created, and the ⊥ in the final BT has no ‘ancestor’. In Fig. 4 the grey area denotes a spot

where a creation is performed; there is no precise origin for the ⊥ arising from that creation.

Before stating BST and turning to its applications we need to set up some notations.

Definition 3.2. LetM ∈�∞.

(i) Let α ∈ {0, 1}* be a finite sequence of bits. We can use such sequences to denote positions of subterms of M. The

corresponding subterm(occurrence) is denotedbyM|α. Thenotion is different fromthatwith the samenotation inBarendregt

[8], Definition 10.2.18(ii). In that book one first needs to determine the Böhm tree of M in order to evaluate M|α. Moreover,

due to the difference in notation for Böhm trees (applicative vs hnf, see Notation 2.9) α in Barendregt [8] may be a sequence

of elements of N, not just of {0, 1} as in this paper.

(ii) The notion is illustrated for the term M ≡ [a1, a2, [a3]] ≡ λz.za1a2(λw.wa3) of Notation 2.9(i).

M|[] = M

M|[0] = za1a2(λw.wa3)

M|[1] = ↑, i.e. undefined,

M|[00] = za1a2

M|[001] = a2

M|[000] = za1

(iii) IfM|α = ⊥wewrite⊥α ∈M to denote the corresponding subtermoccurrence of⊥ at position α. For example⊥[01],⊥[001]
∈ λf .f⊥⊥ denote the two subterm occurrences, as can be seen from the tree in �∞.

Definition 3.3. LetM→→ N.

(i) Let ⊥α ∈M, ⊥β ∈N be subterm occurrences. We say that ⊥β traces back to a ⊥α (w.r.t. the given reduction), notation

⊥α � ⊥β , if coloring thedifferentoccurrencesof⊥ inMwithdifferent colorsandtracing thecolors in the reductionM→→→β� N

yields the same color for⊥β as that for⊥α . During
-reduction steps, like⊥M→
 ⊥, the right⊥ should have the same color

as the left one.

(ii) ⊥β ∈N is said to be created (w.r.t. the given reduction), if it does not trace back to some ⊥α ∈M.

Example 3.4. Let z(Iωω)(ω⊥1)((λx.yxx)⊥2)→→ z⊥3⊥4(y⊥5⊥6), with ω ≡ (λx.xx). Then⊥3 is created,⊥1 � ⊥4,⊥2 � ⊥5, and

⊥2 � ⊥6.

Definition 3.5. (i) Let M ∈�∞. Write Ms for a term that results from M by replacing occurrences of ⊥ by arbitrary terms,

whereby free variables may be captured. We view s as a ‘liberal’ substitution operator.

(ii) LetM,N ∈�∞. We write M � N if N ≡ Ms for some substitution operator.

Without proof we mention the following.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 15

Remark 3.6. ForM ∈�∞(⊥)we have

BT(M) � LLT(M) � BeT(M).

Example 3.7. (i) x
(⊥x)(x⊥)(λx.⊥)⊥ � x
(Ix)(xK)(λx.S)Y .

Proposition 3.8. Let M1 →→ M2.

(i) For all substitutions s1 there exists a substitution s2 such that M
s1
1
→→ M

s2
2
. This yields

(ii) If moreover ⊥α � ⊥β , then we also may require in (i) that

M
s1
1
|α = ⊥ ⇒ M

s2
2
|β = ⊥;

M
s1
1
|α = z ⇒ M

s2
2
|β �= ⊥,

where z is some fresh variable.

(iii) If ⊥α1 � ⊥β and ⊥α2 � ⊥β , then α1 = α2. In other words, every occurrence of ⊥∈M2 can be traced back to at most one

α ∈M1.

Proof. (i) By transfinite induction on α, the length of reduction establishing M→β� N. During an �-step like ⊥P →⊥, the
substitution gets modified.

(ii) Like (i).

(iii) By (ii). �

Definition 3.9. LetM ∈�∞(⊥) andM→→→β� N ≡ BT(M). Then

(i) ⊥β ∈N is dependent of a ⊥α ∈M if for allM′ � M and all fresh variables z

M′|α = ⊥⇒BT(M′)|β = ⊥,
M′|α = z⇒BT(M′)|β �= ⊥.

(ii) ⊥β ∈N is constant if ∀M′ � M.BT(M′)|β = ⊥.

We will not prove the following Sequentiality theorem, see Bethke et al. [15] for a proof in the infinitary context.

Proposition 3.10 (Berry’s Sequentiality Theorem). Let M ∈�∞(⊥) and let N ≡ BT(M) be the β�∞-nf of M. Then we have the

following:
(i) Every ⊥β ∈N is dependent of at most one ⊥α ∈M.
(ii) Those ⊥β ∈N that are not dependent of any ⊥α ∈M are constant.

Now we list some consequences of the Sequentiality Theorem. The following was first proved for finitary λ-calculus in

Barendregt [6], using the technique of underlining. For an alternative proof see de Vrijer [40] or [42].

Proposition 3.11. There are no terms π ,π1,π2 ∈�∞ constituting a surjective pairing, i.e. such that

πi(πx1x2) = xi & π(π1x)(π2x) = x.

Proof. Suppose π ,π1,π2 do exist. Then

π(π1⊥)(π2⊥) = ⊥.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

16 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

Fig. 4. Three occurrences of ⊥ in BT(M) trace back to some ⊥ in M.

The RHS ⊥ is not constant in this situation, as π(π1I)(π2I) = I. By Sequentiality this ⊥must depend on say the first ⊥ in the

LHS. But then for all X one has

⊥ = π(π1⊥)(π2(πXY)) = π(π1⊥)Y .
By taking the second projection one obtains π2⊥ = Y . This implies X = Y for all X ,Y ∈�∞, which is not so by UN∞ for

λ∞β-reduction. �

A second application is the generalization of the perpendicular lines lemma, see Barendregt [8], Theorem 14.4.12 proved

for =BT. It states that any λ-definable map (�∞)n → �∞ which is constant on n different perpendicular lines is constant

everywhere.

Theorem 3.12 (Perpendicular lines lemma). Let F ,Mij ,Ni ∈�∞ for i, j∈ {1, . . . ,n}. Suppose for all Z ∈�∞ one has (here = stands

for =β�∞)

F M11 M12 . . . M1(n−1) Z = N1;
F M21 M22 . . . Z M2n = N2;

. . .

F Z Mn2 . . . Mn(n−1) Mnn = Nn.

Then for all �Z = Z1, . . . , Zn one has

F �Z = N1 = . . . = Nn.

Proof. For notational simplicity we take n = 3. That is, let F ,Mij ,Ni ∈�∞ with 1 � i, j � 3 be given such that for all Z ∈�∞
one has

F M11 M12 Z = N1 (1)

F M21 Z N23 = N2 (2)

F Z M32 N33 = N3. (3)

We show that for all M1,M2,M3 one has

FM1M2M3 = F⊥⊥⊥.
Indeed, write N ≡ BT(F⊥⊥⊥). Then F⊥⊥⊥→→ N. We have BT(FM1M2M3) � N, since function application is monotonic w.r.t.

�. Suppose that for some M1,M2,M3 the inequality is strict. Then some ⊥β ∈N is not constant in this situation. Hence this

⊥β must depend on one of the three ⊥s in F⊥⊥⊥, say the last one. Then

N | α = FM1M2⊥ | α, since ⊥β depends on the third ⊥,
= N1 | α, by (1),

= FM1M2z | α by (1),

�= N | α, since ⊥β depends on the third ⊥.
Therefore the assumption is false and we are done. �

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 17

In Barendregt and Statman [9] it is proved that the perpendicular lines lemma does not hold for β-equality.

4. Relative computability

In this sectionwewill exploit the fact that infinite λ-terms can have arbitrary complexity. Coding a total number theoretic

function f :N→N as an infinite λ-term Gf ∈�∞, we can use Gf itself as an oracle in the computation of another function

g : N→N, where the actual computation is performed by a finite λ-termand β-reduction. That is, we can capture the notion

of relative computability, f � g, i.e. g can be computed with f as oracle, entirely in infinitary β-calculus. As an intermediate

and still finite λ-calculus we use λf, as introduced in Definition 2.1. According to Kleene [30] we have that f � g iff g can be

computed in λf. Then we connect the finitary λf-calculus with the infinitary λ∞β-calculus.

Notation 4.1. (i) Let Bk =Nk →N, with B0 =N, and B =⋃
k∈N Bk

.

(ii) Let [n0, . . . ,nk−1] be some coding of sequence numbers such that

(a) For all k > 0 the function λλx0 . . . xk−1.[x0, . . . , xk−1] ∈Bk
is computable;

(b) There is a computable λλpx.(x)p ∈B2
projecting a sequence number onto its components, i.e. such that

∀k, p ∀[n0, . . . ,nk−1].p < k ⇒ ([n0, . . . ,nk−1])p = np.

(iii) For g ∈Bk
define [g] ∈B1

by

[g](n) = g((n)0, . . . , (n)k−1), if k > 0,

= g, if k = 0.

The computable functions form the least class of total functions that contain the initial functions (successor, constant zero

function, and the projections λλx1 . . . xn.xi) and that is closed under composition, primitive recursion and minimalization.

Definition 4.2. Let f , g ∈B. We say that f computes g, notation f � g iff g is computable in f (i.e. can be obtained by adding

f to the initial functions and closing this collection under substitution, primitive recursion and minimalization).

Lemma 4.3. For g ∈Bk
with k > 0 one has g � [g] and [g]� g.

Proof. Note that for f ∈Bk
with k > 0 one has for all n0, . . . ,nk−1

[g](n)=g((n)0, . . . , (n)k−1);
g(n0, . . . ,nk−1)=[g]([n0, . . . ,nk−1]). �

Definition 4.4. Let g ∈B1
. Then Gg ∈�∞ is defined as in Notation 2.42. If g ∈Bk

with k �= 1, then Gg = G[g].

The following lemma states how one can transform Gg and a term G that λ-defines g in λ∞β, in both directions into each

other, by application of a finite term.

Lemma 4.5. Let g ∈B1
.

(i) There exists an S ∈�ø such that SGgcn →→β cg(n), for all n∈N.

(ii) There exists a T ∈�ø such that for all G∈�∞

[∀n∈N. Gcn →→→β cg(n)] ⇒ TG→→→β Gg .

(iii) There exists a T ∈�ø such that for all G∈�∞(f)

[∀n∈N. Gcn →→→βf cg(n)] ⇒ TG→→→βf Gg .

Proof. (i) Define S ≡ Y [λsgn.zero?n(gK)(s(g(KI)(P−n),where zero? c0 =β K, zero? cn+1 =β KIandP−c0 =β c0, P
−cn+1 =β cn.

Then for all G∈�∞, n∈N

S G c0=β GK;
S G cn+1=β S (G(KI)) cn,

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

18 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

a kind of primitive recursion for λ∞β. It follows by induction on n that S works:

SGgc0 =β GgK ≡ [cg(0), cg(1), . . .]K =β cg(0)

SGgcn+1 =β S(Gg(KI))cn =β S[cg(1), cg(2), . . .]cn =β cg(n).

(ii) Define H ≡ Y(λhgn.[fn,hg(suc n)]. Then for all n∈N

HGcn →→β [Gcn,HGcn+1].

Take T ≡ λf .Hf c0. Then,

TG →β HGc0 →→β [Gc0,HGc1]
→→β [Gc0,Gc1,HGc2]
→→β [Gc0,Gc1, . . . ,HGck]
→→→β [Gc0,Gc1, . . .]
→→→β [cg(0), cg(1), . . .]
≡ Gg .

(iii) Similarly. �

Corollary 4.6. Let g ∈B1
. If g is computable, then Gg ∈�∞� (⊥).

Proof. By the λ-definability of computable functions there exists an G∈�ø such that Gcn = cg(n), for all n∈N. Hence by

Lemma 4.5(ii) we have

TG→→→β Gg ∈�∞� (⊥). �

Now we repeat Lemma 4.5 for functions of more variables.

Lemma 4.7. (i) For every k∈N there exists an Sk ∈�ø such that for all g ∈Bk

∀n1, . . . ,nk ∈N.Sk Gg cn1 . . . cnk →→→β cg(n1,...,nk).

(ii) For every k∈N there exists a Tk ∈�ø such that for all g ∈Bk
,G∈�∞

[∀n1, . . . ,nk ∈N.Gcn1 . . . cnk →→→β cg(n1,...,nk)] ⇒ Tk G→→→β Gg .

(iii) For every k∈N there exists a Tk ∈�ø(f) such that for all g ∈Bk
,G∈�∞(f)

[∀n1, . . . ,nk ∈N.Gcn1 . . . cnk →→→βf cg(n1,...,nk)] ⇒ Tk G→→→βf Gg .

Proof. Similar to the proof of Lemma 4.5, using the λ-definability of the functions in the proof of Lemma 4.3. �

Corollary 4.8. Let g be defined from g1, . . . , gk by composition, primitive recursion or minimalisation. Then there exists a T ∈�ø
such that

TGg1 . . .Ggk →→→β Gg .

Proof. Without loss of generality we do this for g(x, y) = g1(g2(x, y), g3(x)). Notice that for G ≡ λxy.S2Gg1 (S2Gg2xy)(SGg3x) one

has by Lemma 4.7(i)

Gcncm →→β S2Gg1 (S2Gg2cncm)(SGg3cn)→→→β S2Gg1cg2(n,m)cg3(n) →→→β cg(n,m).

Therefore, by Lemma 4.7(ii), for the right T ∈�ø one has

TGg1Gg2Gg3 →→→β T2(λxy.S2Gg1 (S2Gg2xy)(SGg3x))→→→β T2G→→→β Gg . �

Of the following equivalences (1)⇐⇒ (2) was proved in Klop [33].

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 19

Theorem 4.9. Let f , g ∈B. Then the following are equivalent.

(1) f � g;

(2) ∃G∈�ø(f) ∀n∈N .Gcn →→βf cg(n);

(3) ∃H ∈�ø .HGf →→→β Gg .

Proof. We show (3)⇒ (2)⇒ (1)⇒ (3). We give an extra proof of (1)⇒ (2)⇒ (3), to isolate the equivalence between the

‘finite’ statements (1) and (2) and to shed more light on the transition between the finite (2) and the infinite system (3).

(3)⇒(2) Assume HGf →→→β Gg , with H ∈�ø. Now fcn →f cf (n), so

T f→→→βf Gf ,

by Lemma 4.5(iii). Hence by assumption H(T f)→→→βf Gg . Then for all n∈N

S(H(T f))cn →→→βf cg(n), by Lemma 4.5(i),

S(H(T f))cn →→βf cg(n), by Lemma 2.38(ii) or 2.28(ii).

Therefore we can take G ≡ S(H(T f)).
(2)⇒(1) The relation P →βf Q is (after coding) computable in f . This makes P →→βf Q and P =βf Q r.e. in f . It follows that

{[n,m] | g(n) = m} = {[n,m] | Gcn =βf cm}

is r.e. in f . Therefore g is computable in f .

(1)⇒(3)Assuming f � g,we showby inductionon thegenerationof g from f that there exists anH ∈�ø such thatHGf →→→β

Gg . If g = f we can take H = I. If g is an ordinary initial function, then Gg ∈�∞� (⊥), by Corollary 4.6, and we can takeH = λx.M
for someM ∈�ø such thatM→→→β Gg . Now suppose g results from composition, primitive recursion or minimalization from

previously obtained functions g1, . . . , gk from f . Then taking H ≡ (λx.T(H1x) . . . (Hkx)), with T as in Corollary 4.8 one has

HGf ≡ (λx.T(H1x) . . . (Hkx))Gf

→β T(H1Gf) . . . (HkGf)

→→→β TGg1 . . .Ggk , by the induction hypothesis,

→→→β Gg , by Corollary 4.8.

(1)⇒ (2) We claim that if f � g, then g can be λ-defined in λβf by some G∈�ø(f), i.e. Gcn =βf cg(n) . This is done by

induction of the generation of g from f according to the μ-recursive schemes. For g = f this follows by taking G = f. For
the other initial functions λ-definability is trivial. Closure of λf-definability under the schemata of composition, primitive

recursion and minimalisation is proved as for the ordinary recursive functions, see e.g. Barendregt [8], §6.3.

(2)⇒ (3) Given is a λf-term G∈�ø(f) such that Gcn →→βf cg(n). TakingM ≡ λf .G[f := f]), we haveM ∈�ø andMf→β G. So

for all n∈N we have

Mfcn →→βf cg(n). (4)

By Lemma 4.5(i) we have SGf cn →→→β cf (n) and hence by Lemma 2.38(i)

SGf cn →→β cf (n).

In reduction (4) we replace all occurrences of f by (SGf), and steps fcn →f cf (n) by the finite reduction SGf cn →→β cf (n). The

result is a finite β-reduction starting with an infinite term:M(SGf)cn →→β cg(n), for all n ≥ 0. Hence by Lemma 4.5(ii) we have

T(M(SGf))→→→β Gg . So we can take H ≡ (λg.T(M(Sg))). �

5. Non-left linear reduction

In Section 3 we have discussed the non-definability of Surjective Pairing, as defined by π , π0,π1 and the equations π0xy =
x,π1xy = y,π(π0x)(π1x) = x. It turns out that not only definability is problematic for these reduction rules, but also the

(finitary) confluence property for the extension of λβ-calculus with these rules. Turning these equations into the reduction

rules π0xy→ x,π1xy→ y,π(π0x)(π1x)→ x yields a non left-linear system, due to the repetition of the variable x in the

lefthand-side of the third rule. The question remained whether this trio of reduction rules, which we will also refer to as

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

20 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

SP, can be added to the λβ-calculus such that the resulting system is CR. In Klop [80] it was shown that the addition yields

non-confluence, thus solving a problem in the list of open problems in Böhm [17], p. 367. The ‘correctness proof’ of these

CR-counterexamples in Klop [31] was rather elaborate, requiring standardization and postponement arguments. But it was

also suggested there that an excursion to the realm of infinite terms could convey the essence of the counterexample in a

more succinct way; see also Barendregt [1984] Section 15.3. In the present sectionwewill elaborate this suggestion in detail.

We will discuss the following four versions of a non-left linear rule, to be added to λ-calculus, in increasing order of

difficulty.

Definition 5.1 (J. Staples). The notion of reduction δS is defined on �(δ, ε) by the rule

δxx→δS ε.

Proposition 5.2. The notion of reduction βδS is not CR. By a fixed point construction there are terms C ,A∈�(δ, ε) such that

Cx→→β δx(Cx),

A→→β CA.

Then Cε =βδS ε, but these terms have no common reduct.

Proof. We have the (more-step) βδ-reductions

The three terms CA,Cε and ε form a counterexample against the CR property. In this case it is easily proved that Cε � ↓ ε,
i.e. Cε and ε have no common reduct, as is left to the reader. �

As a preparation to the other more complicated versions, we look at the infinite normal forms of the three terms just

mentioned in this proof.

In fact these are ⊥-free Böhm trees, since there are no terms without a head normal form in the reducts of the terms

in consideration. The BT’s, see Definition 2.31 for the notion of BT for terms in �(δ, ε), turn out to be infinite regular trees.

Employing the μ-notation as in Example 2.10 they are as follows.

BT(CA) ≡ μx.δxx ≡ 	,

BT(Cε) ≡ μx.δεx,

BT(ε) ≡ ε.

A slightly more difficult extension is the following.

Definition 5.3 (Klop [31]). The notion of reduction δK is defined on �(δ, ε) by

δxx→δK εx.

Proposition 5.4. The notion of reduction βδK is not CR.

Proof. Defining the same terms C,A∈�(δ, ε) as in Proposition 5.2 we have the following.

Now it is a bit more laborious to show that ε(CA) � ↓ C(ε(CA)), which was done in Klop [31] using finitary arguments. The

infinitary argumentation employs the BT’s of the three relevant terms CA, ε(CA) and C(ε(CA)). They are	, ε	, and μx.δ(ε)x,

respectively. The treatment will be analogous to the more complicated version introduced next, and will therefore not be

given here separately. �

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 21

Fig. 5. Projection by BT.

Remark 5.5. For Propositions 5.2 and 5.4 the situation is:

M→δ M
′ ⇒ BT(M)→�ω

δ BT(M′).

As a notational reminder→�ω
δ stands for a δ-reduction of length � ω. For the next counterexamples the situation is more

complex and we need a definition.

Definition 5.6. (i) An occurrence of δ is called balanced if it is the head of a δ-redex δMM, withM ∈�∞(δ, ε).
(ii) Analogously, for the case of Surjective Pairing below, an occurrence of π is called balanced if it is the head of a π-redex

π(π0M)(π1M), withM ∈�∞(π ,π0,π1).

A slightly more complex variant of δ-reduction comes close to Surjective Pairing.

Definition 5.7 ((J.R. Hindley)). The notion of reduction δH is defined on �(δ) by

δxx→δH x.

The reason that δH is more complex than the versions in Definitions 5.1 and 5.3 lies in the possibility that new redexes can

be created by application of the δH-rule, which is now a collapsing rule (i.e. the RHS is a single variable), e.g. δH III→δH II. For
Surjective Pairing the same holds.

Proposition 5.8. The notion of reduction βδH is not CR. By a fixed point construction there are terms C ,A such that

Cx→→ε(δx(Cx))

A→→CA,

Proof. We have reductions that are almost similar to the ones for βδK .

The BTs of the relevant trio of terms CA, ε(CA), C(ε(CA)) are respectively the trees μx.ε(δxx) ≡ T , εT and μx.ε(δ(εT)x). The

corresponding cyclic graphs are drawn in the lower plane in Fig. 5.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

22 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

Fig. 6. Fine-structure of δ-parallel moves.

First note that there was an unbalancing effect leading to BT(C(ε(CA))) (the leftmost cyclic graph in Fig. 5) whose top δ is

unbalanced.

Now we will prove that indeed we have (ε(CA)) � ↓ C(ε(CA)), by an excursion to the infinitary setting, depicted in Fig. 5.

The upper plane is that of finite terms, projected to the lower plane of infinite terms via the operation BT of taking the Böhm

tree. The question whether in the finitary plane the terms C(ε(CA)) and ε(CA) have a common βδ-reduct, translates in the

infinitary plane to the question whether the infinite terms BT(C(ε(CA))) and BT(ε(CA)), rendered as cyclic term graphs in the

figure, are convergent by means of steps resulting from projections of β- and δ-steps. Here there is a bonus: the projection

of a β-step trivializes, because it follows from M→β M′ that BT(M) ≡ BT(M
′
).

How does a δ-step translate? Intuitively, as a possibly infinite sequence of δ-steps on infinite trees, so −→�ω
δ . Possibly

infinite, because a δ-redex in the upper plane may have infinitely many descendants after the BT-projection. But it is

immediately clear from inspection of BT(C(ε(CA))) and BT(ε(CA)) that such steps do not have an effect, for two reasons,

which are best seen in the cyclic graph of BT(C(ε(CA))). It contains two δ’s, the lower balanced, the upper unbalanced.

Contracting a balanced δ keeps the tree the same, due to the cyclicity: the contractum is identical to the contracted δ-redex.

Contracting an unbalanced δ is not even possible, by definition of δ-reduction. Hence BT(C(ε(CA))) cannot be altered, and

therefore it cannot be confluent with BT(ε(CA)). We will make this precise.

So let us consider the translation of a δ-step in more detail. In order to tackle this problem, we will introduce a new

constant γ that describes ‘sharing’, with the new rules δxx→ γ x and γ x→ Ix where I ≡ λx.x. We will call these rules (δγ)

and (γ I) respectively, to be read as ‘δ to γ ’ and ‘γ to I’. The δ-step δMM→ M is now splitted in three:

δMM→δγ γM→γ I IM→β M.

The new rules (δγ) and (γ I) are extended to infinite terms in the obvious way.

Example. Let 	 ≡ μx.δxx be the infinite binary tree of δ’s as above. Then

	 ≡ δ		→γ δ γ	→γ δ γ
2	→ω

γ δ γ
ω ≡ μx.γ x.

(Note that this is a strongly convergent reduction.)

We now have the situation as in Fig. 6, corresponding to the following.

(1) M0 →δγ M1 ⇒ BT(M0)→�ω
δγ BT(M1);

(2) M1 →γ I M2 ⇒ BT(M1)→�ω
γ I P;

(3) M0 →δ M3 ⇒ BT(M0)→�ω
δγ →�ω

γ I →→→β� BT(M3).

As to (1): a δ-redex in M0 is preserved as (possibly infinitely many) δ-redexes in BT(M0). That this is so, is best seen by

evaluating the BT not in an arbitrary way, but using Knuth-Gross ‘steps’. A Knuth-Gross ‘step’ starting from a finite term

M consists of the complete development of all β-redexes in M simultaneously. In other words, we apply the Knuth-Gross

reduction strategy to compute the BT. The point is that in this way, in each Knuth-Gross ‘step’, δ-redexes are preserved. See

Barendregt [8], Definition 13.2.7 for the precise definition of the Knuth-Gross strategy. That δ-redexes are indeed preserved,

after a Knuth-Gross ‘step’, is an easy exercise. That this remains so in the limit, BT(M0), is obvious.

As to (2): the intermediate tree P is not yet a BT. This is so because subterms (subtrees) without hnf may have arisen,

necessitating further normalisation by replacing these by ⊥, to obtain a BT.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx 23

Now we can conclude. Consider the infinite terms εT and μx.ε(δ(εT)x), with T ≡ μx.ε(δxx), to be made confluent in the

infinite plane, where we have to employ ‘macro steps’ steps like:

→�ω
δγ →�ω

γ I →→→β� .

However, we will not come far in this way; the only change that can be effectuated is the (total or partial) transformation of

T into μx.ε(γ x) ≡ G. But doing so, the unbalanced δ displayed in μx.ε(δ(εT)x) cannot be balanced, and will therefore prohibit

a confluence with εT . �

The most complicated extension is λ-calculus plus Surjective Pairing as in the introduction of this section.

Theorem 5.9. The notion of reduction β SP on �(π ,π1,π2)

πi(πM1M2)→SP Mi, π(π1M)(π2M)→SP M

is not CR. By a fixed point construction there are terms C ,A∈�(π ,π1,π2) such that

Cx→→β ε(π(π0x)(π1(Cx))),

A→→β CA.

Then

while ε(CA) and C(ε(CA)) have no common reduct.

Proof. Again we compute the BTs of the three relevant terms.

BT(CA))≡μx.ε(π((π0x)(π1x))) ≡ S.

BT(ε(CA))≡εS.
BT(C(ε(CA)))≡μx.ε(π(π0(εS)(π1x))).

The remainder of the infinitary proof using these BTs is entirely analogous to the treatment of the previous δH-version,

requiring only a notational adaptation, which is left to the reader. �

6. Concluding remarks and questions

In this paper we have endeavoured to give some examples of applications of rewriting with infinite λ-terms, or infinitary

λ-calculus. Several questions remain, of which we specifically mention the following.

• It would be interesting to investigate the precise relation of Scott’s Induction Rule (SIR), that we encountered in Example

2.15, to the present infinitary setting. Is it true that infinitary λ-conversion =β∞ , includes all consequences of SIR?
• Above, we introduced the μ-notation as a convenient notation for regular infinite λ-trees; this amounts just to cyclic

graphs of λ-terms. Mixing the μ-terms with λ-calculus, allowing β-reduction under the μ, provides for faster evaluation.

It would be interesting to pursue studies of term graph rewriting against the background of infinitary λ-calculus, as a

continuation of work by Kennaway et al. [22], and Ariola and Klop [3,4,5], where this theme was studied with reference

to infinitary first order rewriting.

• It will be interesting to extend the result in Section 4 on relative computability from total functions to partial functions.

Acknowledgments

We cordially thank the two anonymous referees for many suggestions pertaining to detailed improvements a well as

instigating major changes in the first version. We are grateful to Jeroen Ketema, for many detailed suggestions and raising

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

ARTICLE IN PRESS

24 H. Barendregt and J.W. Klop / Information and Computation xxx (2009) xxx–xxx

useful critical points, and to Roel de Vrijer and Vincent van Oostrom for useful discussions. Our thanks also to Marianne

Klop-Leicher for help in the typographical rendering of this paper, using LYX, and to Jörg Endrullis for programming some of

the figures using pstricks.

References

[1] S. Abramsky, C.-H.L. Ong, Full abstraction in the lazy lambda calculus, Inform. Comput., 105 (2) (1993) 159–267.
[2] S. Abramsky, Dov M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of Logic in Computer Science, Background: Computational Structures, vol. 2, Oxford

Science Publications, 1992.
[3] Z.M. Ariola, J.W. Klop, Cyclic lambda graph rewriting, in: Proceedings of the 9th Annual Symposium on Logic in Computer Science (LICS’94), 1994, pp.

416–425.
[4] Z.M. Ariola, J.W. Klop, Equational term graph rewriting, Fundamenta Informaticae 26(3/4) (1996) 207–240 (extended version as University of Oregon

Technical Report CIS-TR-95-16).
[5] Z.M. Ariola, J.W. Klop, Lambda calculus with explicit recursion, Inform. Comput. 139 (2) (1997) 154–233.
[6] H.P. Barendregt, Pairing without conventional restraints, Z. Math. Logik Grundlagen Math. 20 (1974) 289–306.
[7] H.P. Barendregt, The Type-free Lambda Calculus, Elsevier, 1977, pp. 1092–1132. (in Barwise et al. [11]).
[8] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, revised ed., North-Holland, Amsterdam, 1984.
[9] H.P. Barendregt, R. Statman, Applications of Plotkin terms: partitions and morphisms for closed terms, J. Funct. Program. 9 (5) (1999) 565–575.

[10] E. Barendsen, Term Graph Rewriting, Cambridge University Press, 2003 (Chapter 13 in Terese [39], pp. 712–743).
[11] J. Barwise, H.J. Keisler, K. Kunen, Y.N. Moschovakis, A.S. Troelstra (Eds.), Handbook of Mathematical Logic, Studies in Logic and the Foundations of

Mathematics, vol. 90, North-Holland Publishing Co., Amsterdam, 1977.
[12] A. Berarducci, Infinite lambda-calculus and non-sensible models, in: A. Ursini, P. Aglianò (Eds.), Logic and Algebra (Pontignano, 1994), Lecture Notes

in Pure and Applied Mathematics Series, vol. 180, Marcel Dekker Inc., 1996, pp. 339–378.
[13] A. Berarducci, B. Intrigila, Logic: From Foundations to Applications (Staffordshire, 1993), Oxford Science Publications, Oxford University Press, New

York, 1996.
[14] G. Berry, Séquentialité de l’évaluation formelle des λ-expressions, Transformations de programmes, in: Proceedings of the 3rd Internat. Sympos.

Programming, Paris, 1978, Dunod, Paris, 1978, pp. 67–80.
[15] I. Bethke, J.W. Klop, R. de Vrijer, Descendants and origins in term rewriting, Inform. Comput. 159 (1–2) (2000) 59–124. (RTA-98 (Tsukuba)).
[16] C. Böhm, The CUCH as a formal and description language, in: Richard Goodman (Ed.), Annual Review in Automatic Programming, vol. 3, Pergamon

Press, Oxford, 1963, pp. 179–197.
[17] C. Böhm (Ed.), λ-calculus and Computer Science Theory, LNCS, vol. 37, Springer, 1975.
[18] P.-L. Curien, Progress in Theoretical Computer Science, second ed., Birkhäuser Boston Inc., Boston, MA, 1993.
[19] J. Endrullis, R. de Vrijer, Reduction under substitution, in: A. Voronkov (Ed.), Proceedings of the RTA’2008, LNCS 5117/2008, Springer, 2008, pp. 425–440.
[20] B. Intrigila, Non-existent Statman’s double fixed point operator does not exist, Inform. Comput. 137 (1997) 35–40.
[21] S. Kahrs, Infinitary rewriting: meta-theory and convergence, Acta Inform. 44 (2) (2007) 91–121.
[22] J.R. Kennaway, J.W. Klop, M.R. Sleep, F.-J. de Vries, Infinitary lambda calculus and Böhmmodels, in: Proceedings of Conference on Rewriting Techniques

and Applications, LNCS 914, Springer, 1995, pp. 257–270.
[23] J.R. Kennaway, J.W. Klop, M.R. Sleep, F.-J. de Vries, Infinitary lambda calculus, Theoret. Comput. Sci. 175 (1) (1997) 93–125. (Non-standard logics and

logical aspects of computer science (Kanazawa, 1994)).
[24] J.R. Kennaway, J.W. Klop, M.R. Sleep, F.-J. de Vries, On the adequacy of graph rewriting for simulating term rewriting, ACM Trans. Program. Lang. Syst.

16 (3) (1994) 493–523.
[25] J.R. Kennaway, P. Severi, M.R. Sleep, F.-J. de Vries, Infinitary rewriting: from syntax to semantics, in: A. Middeldorp, V. van Oostrom, F. van Raamsdonk,

R. de Vrijer (Eds.), Processes, Terms and Cycles: Steps on the Road to Infinity, LNCS 3838, Springer, 2005, pp. 148–173.
[26] R. Kennaway, F.-J. de Vries, Infinitary Rewriting, Cambridge University Press, 2003 (Chapter 12 in Terese [39]).
[27] R. Kennaway, J.W. Klop, R. Sleep, F.-J. de Vries, Transfinite reductions in orthogonal term rewriting systems, Inform. Comput. 119 (1) (1995) 18–38.
[28] J. Ketema, J.G. Simonsen, Infinitary combinatory reduction systems, in: J. Giesl (Ed.), Proceedings of the 16th International Conference on Rewriting

Techniques and Applications (RTA 2005), No. 3467 in Lecture Notes in Computer Science, Springer-Verlag, 2005, pp. 438–452.
[29] J. Ketema, J.G. Simonsen, Infinitary combinatory reduction systems, Technical Report D-558, DIKU, University of Copenhagen, 2006.
[30] S.C. Kleene, Recursive functionals and quantifiers of finite types. II, Trans. Am. Math. Soc. 108 (1) (1963) 106–142.
[31] J.W. Klop, Combinatory Reduction Systems, Dissertation, Utrecht University. Appeared as Mathematical Centre Tracts 127, Kruislaan 413, 1098 SJ

Amsterdam, 1980. Available from: <web.mac.com/janwillemklop/iWeb/Site/Bibliography.html>.
[32] J.W. Klop, Term Rewriting Systems [2], Oxford University Press, 1992.
[33] J.W. Klop, New fixed point combinators from old, in: E. Barendsen, V. Capretta, H. Geuvers, M. Niqui (Eds.), Reflections on Type Theory, λ-Calculus, and

theMind. Essays dedicated to Henk Barendregt on the occasion of his 60th birthday, Radboud University Nijmegen, 2007, pp. 197–211. Available from:
<www.cs.ru.nl/barendregt60>.

[34] J.W. Klop, R. de Vrijer, Infinitary normalization, in: S.N. Artemov, H. Barringer, A.S. d’Avila Garcez, L.C. Lamb, J. Woods (Eds.), We Will Show Them:
Essays in Honour of Dov Gabbay, vol. 2, College Publications, 2005, pp. 169–192.

[35] G. Longo, Set-theoretical models of λ-calculus: theories, expansions, isomorphisms, Ann. Pure Appl. Logic 24 (2) (1983) 153–188.
[36] G. Plotkin, LCF considered as a programming language, Theoret. Comput. Sci. 5 (1977) 225–255.
[37] D.S. Scott, Open problem, in: C. Böhm (Ed.), λ-Calculus and Computer Science Theory (Proc. Sympos., Rome, 1975), LNCS 37, Springer, Berlin, 1975, pp.

368.
[38] D.S. Scott, Some philosophical issues concerning theories of combinators, in: C. Böhm (Ed.), λ-Calculus and Computer Science Theory (Proc. Sympos.,

Rome, 1975), LNCS 37, Springer, Berlin, 1975, pp. 346–366.
[39] Terese, Term Rewriting Systems, Cambridge University Press, 2003.
[40] R. de Vrijer, Surjective Pairing and Strong Normalization: Two Themes in Lambda Calculus, Dissertation, University of Amsterdam, 1987.
[41] R. de Vrijer, Conditional linearization, Indagationes Mathematicae, N.S. 10 (1) (1999) 145–159.
[42] R. de Vrijer, Barendregt’s lemma, in: E. Barendsen, V. Capretta, H. Geuvers, M. Niqui (Eds.), Reflections on Type Theory, λ-Calculus, and the Mind.

Essays dedicated to Henk Barendregt on the occasion of his 60th birthday, Radboud University Nijmegen, 2007, pp. 275–284. Available from:
<www.cs.ru.nl/barendregt60>.

Please cite this article in press as: H. Barendregt and J.W. Klop, Applications of infinitary lambda calculus, Inform. Comput. (2009),

doi:10.1016/j.ic.2008.09.003

http://web.mac.com/janwillemklop/iWeb/Site/Bibliography.html
http://www.cs.ru.nl/barendregt60
http://www.cs.ru.nl/barendregt60

	Introduction
	Preliminaries
	Lambda calculus and two extensions
	Infinite -terms
	-Reduction on ()
	Basic properties of infinitary -calculus

	Berry sequentiality
	Relative computability
	Non-left linear reduction
	Concluding remarks and questions
	References

