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Abstract

An algebra oA is finitely presented if there is a finite set
G of generator symbols, a finite set O of operator symbols, and
a finite set T of defining relations xZy where x and y are well-
formed terms over G and O, such that Jf is isomorphic to the free
algebra on é and O modulo the congruence induced by T.

The uniform word problem, the finiteness problem, the
triviality problem (whether Jf is the one element algebra), and
the subalgebra membership.problem (whether a given element of:)l
is contained in a finitely generated subalgebra of J{) for
finitely presented algebras are shown to be s?og-complete for P.
The schema satisfiability problem and schema validity problem are
shown to be s?og-complete for NP and co-NP, respectively. Finally,
the problem of isomorphism of finitely presented algebras is shown
to be polynomial time many-one equivalent to the problem of graph

isomorphism.

*This research has been supported in part by National Science
Foundation Grant DCR75-09433.



1. Introduction

In this paper we study the complexity of some decision
problems of finitely presented algebras, a class of simple
algebraic structures.

An algebra A is finitely presented if there is a finite

set G of generator symbols, a finite set O of operator symbols

of various finite arities, and a finite set I' of axioms or

defining relations of the form x3y, where x and y are well-formed

terms over G and O, such that % is isomorphic to the free
algebra on G and O modulo the congruence induced by T'. That is,
if v is the free algebra (algebra of terms) over G and O, and
=p is the smallest congruence relation satisfying the relations
T, then Jf is isomorphic to the quotient algebra T/Er with
domain { [x] | xet, [x] is the Er—congruence class of x}.

For example, the two element Boolean algebra is presented

by
G = {0,1}
0= {a,v,-}
I' = {04020, 0A120, 1A0=0, 1lal=1,
0v0=0, Ovlsl, 1v0=1, 1lvl1=l,
~0=1, =1=0}.

All algebras with finite domains are finitely presented.
Finitely presented algebras may be infinite, but infinite groups
and semigroups are never finitely presented, since an axiom
schema (a rule representing infinitely many axioms) is needed to

postulate associativity.
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There is a strong relationship between finitely presented

algebras and the finite tree automata of Thatcher and Wright12

and Doner13. This relationship is summed up in the following
theorem, analogous to a theorem of Nerode9 regarding the

representation of regular sets over a semigroup.

Theorem
L is a reqgular tree language (accepted by a finite tree
automaton) over T iff L is a union of congruence classes of a

finitely generated congruence relation con 1 <of finite index. B

Moreove&, all congruence classes of any finitely generated
congruence, finite index or not, are regular tree languages. The
set of terms representing a single element of a finitely presented
algebra is such a class.

Finite tree automata appear in diverse settings. Not only
do they have a substantial theory of their own (see [10,11] for
a good bibliography), but they have also been used in logic to

show the decidability of some second order theorieslz’n'14

and
in formal language theory to study derivation trees of context
free grammars (see [10,11]). 1In view of the above theorem, the
complexity results presented here should apply to those areas.

Most of the decision problems addressed herein can be
restated as problems of tree replacement systems, hence our
complexity results carry over into that area.

Finally, very recent results, notably [1,2], have pegged

down the complexities of various decision problems in different



algebras. The present results fill a large gap here, and so
would be essential to a general theory of the complexity of
algebraic decision problems.

In spite of the above, the results presented here are most
interesting not for any of these reasons. Their real interest
lies in the generality and expressive power of the language of
universal algebra. The finite structures that interest computer
scientists, e.g. graphs, are easily represented as finitely
presented algebras, and many known complete problems for P, NP,
etc., can be reformulated easily as natural questions about
finitely presented algebras, as evidenced by the trivial (often
gsm) reductions from known complete problems to the problems
discussed in this paper. Thus finitely presented algebras should
be viewed as a unifying framework in which many of the interesting
questions of low-level complexity can be reformulated.

In §3 we give several natural problems of finitely presented
algebras which are sTog-complete for P. These problems generalize
known problems complete for P. In §4 we look at axiom schemata
of the form x3y where x and y are terms with variables, and show
that the schema satisfiability problem is SToq-complete for NP and
the schema validity problem is STOg-complete for co-NP. In §5
we show that the problem of isomorphism of finitely presented
algebras is polynomial time many-one equivalent to the problem

of graph isomorphism.
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2. Preliminaries

Definition
Let <M,ARITY> be a ranked alphabet, i.e., M is a finite set
of symbols and ARITY: M + N, where N is the set of nonnegative

integers. Partition M into two sets:

G = {ae M| ARITY(a) = 0} are generator symbols,

0= {a e M | ARITY(a) >.0} are the operator symbols. [}

We will use variables a,b to denote elements of G and
9, 0 to denote elements of O.. Let M* be the set of finite length

strings over M.

Definition

The set of terms over M is the smallest subset of M*
sl.}ch that

i) all elements of G are terms;

ii) 4if 0 is m-ary (i.e. ARITY(0)=m) and Xyreee Xy
are terms, then Oxl...xm is a term. ]
Denote the set of terms by t . Variables w,x,y,z will
range over terms.

T may be viewed as the domain of an algebra with operations

O defined by

O(xl,...,xm) = Oxl...x“l if ¢ is m-ary.
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In this light we will refer to <t as the free algebra on M.

Definition
x «y if x is a (not necessarily proper) subterm of y.
x(y\z] is the term x with all occurrences of the term y in
x replaced by 3.
If y° is a particular occurrence of a term y as a subterm
of x, then x[y“\z] is the term x with that occurrence

only replaced by z. s

Definition
A binary relation I on t is a congruence provided
i) I is an equivalence relation
ii) if 0 is m-ary and xl....,xm.yl....y. are terms such

that x, = ¥y l<i<m, then

i
Oxl...xm z Oyl...ym. n
In the above definition, ii) guarantees that the operations O
are well-defined on Z-congruence classes, thus we can form
the quotient algebra T/: with domain
{[x] | x € T, [x] is the I-congruence class of x}

and operations O.

Definition
Let T be a set of unordered pairs of terms. These pairs
will be written xy and will be called axioms or defining

relations. Define Er to be the smallest congruence on Tt

satisfying the axioms of I', and let



-6-

x] = {y ¢ ©| X3, yl.
We will omit the subscript T' from Er and [x]r when it
is understood. It is straightforward to show that xz.y iff it

can be deduced from:

i) xEr x

ii) X,
RIS
iii) XZ. Y, Y30 2z
XET z

iv) xlsr Yy reeee xnfr ym, ARITY(8)=m

exl...xm ET oy

l...yn

v) Xy for all axioms xZy of T.

Definition
An algebra A is presented by <M,ARITY,T> if o is
(isomorphic to) T/= . The triple <M,ARITY,l> is called a

r
presentation of Ldﬂ Lzl is firitely presented if a presentation

can be found with ' a finite set. L]

It is convenient to represent terms as labeled trees, as follows:
i) if a ¢ G then a is represented by a single vertex
with label a.

ii) Byl...ym is represented by
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where the root has label § and y; is the tree

representation of term Y-

This representation has three immediate advantages:

1)

2)

We can give a presentation consisting of a finite set
of trees labeled as above, with an extra undirected
edge set AXIOM such that, if y is the tree
representation of term vy,

x3Zy is an axiom +«+ the roots of x and y are connected
with an AXIOM edge.

We no longer need to specify M and ARITY, since these
are implicit in the new representation.

We can represent terms with common subterms more
concisely, by "factoring out"™ the common subterm,
i.e. representing a set of trees as a dag.

E.g. terms ®abc, 6@abc8abca

may be represented as trees by
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and then as dags, after factoring, by

PRl At
2T -~

-,

3) We have a conceptually simpler deductive system for

proving congruence of terms:

Define x + y (x derives y in one step) if there is an
axioy zzw in T and an occurrence of Zz as a subtree
of x such that if that occurrence of z is replaced by
w, then the result is y.
Let : be the reflexive transitive closure of -. The following
is proved by an easy induction:

Theorem
*

xZy iff x -+ y. [ |
For these reasons we will henceforth adopt the new representation,
and use the words "term" and "tree" interchangeably. We will
allow trees to be represented as dags by factoring out common
subterms, and we will consider a presentation to be given by a
dag with AXIOM edges, as outlined above. We will reuse the

symbol T for the dag representing presentation <M,ARITY,T>.

SHITRNLIL W LN
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Definition
A proof of x=y is a sequence XyeooX, of terms such that
X=X) Xy el rx =y,

The root of the transformation in x -+ Y is the root of the

subtree replaced. We say the entire tree is replaced in x -+ Y

if the subtree of x that is replaced is the whole tree x. [

Definition

Let T be given. The following sets will be used throughout:

R, = {x | there is an axiom ySz in T and x < yl.

I, = {[x]r | x e Rr). [ ]

Thus Rr is the set of terms appearing in the presentation,
and r. are the elements of the presented algebra represented
by terms in RF' The subscript T' will be omitted when understood.
It is assumed the reader is familiar with the complexity

classes P,NP, etc., the reducibilities <®

m
log and sp, and the

notion of completeness.
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3. Prcblems complete for P

The obvious first task is to determine the complexity of

deciding whether two terms represent the same element of the algebra.

Cefinition

The word problem is the set
WP = {<T,x,y> | xz, yl. L

WP would more accurately be called the uniform word

prodblem, since the presentation T is an input parameter.

Theoren 1

¥? ¢ P,

Proof
Let <T,x,y> be input. Let r* be the graph T plus the
vegtices and edges of x and y. Let RY = Rr+. We.Qill describe
a polynonial time algorithm to construct a new undirected edge set
Eon I so that v¥z,w ¢ R+. the roots of z and w are connected
by an E edge.(hencefotth 2Ew) iff z:zw.
_ Step 0. Add edges WEw, weR'.
Add edges wEz for ail axioms w:ia,
Step n. If u,v,w ¢ R* and uEv, vEw, then add edge uEw. If
le...ym, Oxl...x“l € R+ and xiEyi, lsism, then add
edge lxl...xmteyl...ym. If no new edges were added at

Step_n, then stop.
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The algorithm is clearly polynomial, since at most nz edges
can be added.
Claim -
Yw,z ¢ rR* we2 iff wsz,
Proof of claim
(+)Easy induction on the step at which the edge was added,
since no edge is added unleés forced to be by the Properties of =,
(+)Define a relation.C on congruent pairs of terms,
as follows:
<xX,y> € <z,w> iff either

i) the shortest proof x + y is shorter than

‘e ¢

the shortest proof z + w; or
ii) the shortest proofs x : Yy and z : w are the same
length and x < 2z, y ¢ w,
Clearly C is a well-foinded relation, so we proceed by induction
on C.
Let x,y ¢ R+.
Basis: length of proof x : y=0.
Then x=y and xEy at step 0.
Induction step: x : y is a nonzero-len;th shortest proof.
One of the following two cases must hold:
Case 1: The entire tree is replaced somewhgre in x : Y.
In this case 3z,w x + z, zZw is an axiom,
w : Y. But z,w ¢ R* hence xEz and wEy by
induction hypothesis, since they are congruent
via shorter proofs; and zEw in step 0. Thus

XEy within two more steps.
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Case 2: The entire tree is never replaced in x H Y.
‘ : *

Then x = exl...xm, y = eyl...ym, and xg yi via
*

a proof of length shorter than or equal to x + y

*

(~he proof LT £ is given by the transformations

applied to the interior of x; in the proof x s y)

and x; ; L £ ; Yy, lsism, hence X4 yi> C

<x, y>, lsism. But all Xgr ¥y € R+, hence by

the induction hypothesis, xiEYi' l<ism. Then

in the next step of the algorithm, xEy. |

pefinition
An instance of the circuit value problem (CVP) is a
1ist Bot assignments to variables Cl'cz""'cn of the k
form
cy =0,
¢ = 1,
€y = €y A Cr Jukel,
or C; = Cj v G Joked,
such that each Ci appears on the left side of an assignment
exactly once. 3313 in CVP provided val(cn) = 1, where val(ci)
is the Boolean value of >y computed from the list of assignments

in the obvious way. B
As demonstrated by indnera. éVP is s?oq-conplete for P.

" Theorem 2

m
cve ‘109 WP.
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Given the above instance of CVP, take

G = {cl,...,cn,o,l)

0= {a,v}

r= Bu {ovoz0, 0vlzl, 1v0z1, lvizl,

04020, 04120, 1a020, 1lalzl}.

The restrictions on SB and the eight extra axioms guarantee
that the algebra presented by I' is the two element lattice, and
B ¢ cvp iff c =1 iff <T,C .1> € WP. =

Observe that CVP is really a special case of the word
problem, as shown by the trivial (gsm) reduction.

Corollary 3

WP is s

- s
log complete for P.

We now wish to show the following three problems complete
for P.

Definition
TRIV = {T | T presents the trivial (one element) algebra).
FIN = {T | I presents a finite algebral.
GEN = {(<T, X)reeesXpoy? | (y} is contained in the subalgebra

of /= generated by (xll.....(xn]).

Theorem 4 -

TRIV ¢ P,
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Proof
Use the algorithm of Theorem 1 to decide for all a,b ¢ G

whether azb, then for all 6 ¢ O whether 8a...aZa.

Theorem 5

cvP s’{‘og TRIV.

Proof
Let 53 be an instance of CVP. Construct I as in Theorem 2
and let T" =T v (CQEO}. Then

38 e CVP iff Cn = 1 iff 1 - 0 iff “/z.. is trivial. W

Corollary 6
TRIV is complete for P.

We now wish to show GEN is complete for F. GEN is a more
general formulation of the problem of the same name of Jones

and Laaser.4

Theorem 7

GEN ¢ P.

Proof

Given <P,x1,...,xn,y>, let &Z be the subalgebra of T/E
generated by [xll,...,[xn], and let I be the subalgebra of
1 generated by XyreoorX. Then J:/5 is isomorphic to J{, and
lyl e iff 3x e L such that y=x.

Let TH =Tu {xl,...,xn,y) and let RY = R.+. Consider

T
the following algorithm to mark elements of R+ (vertices of r*):
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Step 0. Run the algorithm of Theorem 1 on r’ to determine
for all x,w € rt whether x=w. Mark each X

Step n. If .yl...ym € R+ and Yyoee oY, are marked, mark
Oyl...ym.
If x,w € R+, x=w, and x is marked, mark w.
If no new terms are marked, stop.

The algorithm is clearly polynomial. The following claim

establishes the result.

Claim

lyl e iff y is marked by the above algorithm.

Proof of claim
(«) clear.
(+) let Ccy = {xyreennx}
Cra1 = {Oyl...ym | Yyreeeo¥p € ck) U Cpe
Then uka =LI. Lety € R such that [y] ¢ /. Then 3xel yIx.
We prove the result by induction on the least k such that

dxe C, Y=X.

k

Basis: k=0. Then YEXg, and xg is marked at step 0, hence y is

marked at step 1.

Induction step: k>0. Then yEOyl...ym and yl,...,ym € ck-l'
We have no guarantee that yl.-..,ym € R+ however, hence
we cannot claim that yl,...,ym are marked. But let us consider

*
a shortest proof y -+ Oyl...ym. One of the following two cases

occurs:
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Case 1: The entire tree is never replaced in y : 0Yy .o Yp-
Then y = 0:1...zm and each zisyi. But each
¥; € Cy_y hence [z,] ¢ .4, thus since z; € r',
by the induction hypothesis z; is eventually marked.
Then when each z; is marked, y is marked in the
next step.

*
Case 2: y -+ z, z=w is an axiom, w=0wl...w and wisyi,

m
l<i<m. I.e., z - w is the last time in the
®
proof y + 9y1...ym that the entire tree is
replaced. Then w. € r* and y, € C . hence by
i i k-1

the induction hypothesis, ws is eventually marked,

+
and w ¢ R hence w is marked; but y:w, thus y is

marked in the next step. L
‘Corollary 8
GEN is complete for P.
Proof
There is a trivial reduction from Jones' and Laaser's
GEN to our GEN. The details are left to the reader. ]

We now turn to the finiteness problem. Let T be a

presentation of A.

Lemma 9

A is finite iff A= I,

Proof -
(+«) Trivial.

(+) Clearly rp < od. Now assume there is an x such that
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[x]egﬂ-rr, i.e. Y YeR x#y. Let x be <-minimal in its con-
gruence class. Define a set of terms
Xy = X

x = lxn...xn

n+l
where 0 is any operator. For all j>0, if xOExj. then x - xj

* *
and xj + x. But in the proof xj + X, no ancestor of x in xj
can ever be the root of a transformation, else x is congruent
to a term in RT' hence x : y in the proof xj 3 x, where y is a
proper subterm of x, contradicting the assumpt;on of <-minimality.

Proceeding by induction, if xg

+1 = xj+l' i#j, then
Bxi...xi 3 Oxj...xj. But since x € x; and no transformation
can be applied to an ancestor of x in x5 it must be that
x; = X contradicting the induction hypothesis.

Hence {(xo],[xll,...} is an infinite subset of .{,

contradicting the finiteness of . a

The above lemma uncovers a surprising fact: a finite algebra
can be no bigger than its smallest finite presentation. Thus to
give a finite presentation of a finite group, say, we might as well
write down its multiplication table.

We wish to show a ptime algorithm to decide finiteness. The
straightforward approach would be to show that if «&is infinite then
there is a small term (i.e. one of the form Oyl...yn where
Yyreeee¥p € Rr) with [0y1...ym] I'4 Tpe thus we would need only

to run the algorithm of Theorem 1 on each small term y and each
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x € R} to see if y=x. However, the arity of the operators is
an input parameter and can grow as much as linearly with the size
of the presentation, so there may be too many eyl...ym to try;
hence this approach works only when the arity of the operators is

bounded. We circumvent this problem with the following construction.

Definition

The characteristic graph of a presentation I, denoted

Yre is a labeled directed graph with vertex labels O and

edge labels {1,2,...,k} where k is the maximum arity of any
operator in O. The vertex set of X consists primarily of
unlabeled vertices I plus other labeled vertices and labeled
" and unlabeled edges such that Xr is the smallest graph in which

[°Y1'1’ym]

ly;)  lyy) - - - lyp)

m
appears as a subgraph of Xr for every Eyl...ym € Rr. n
Example

The I in Theorem 2 presents the two element lattice.

Its characteristic graph is:
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Xp is meant to represent the interaction of the elements of

r., under the operations O. Xp is constructible in polynomial

r
time: we can just run the algorithm of Theorem 1 to determine
Er-classes (they appear as cliques of E-edges), then for

each Oyl...ym in Rr add a vertex 6 and edges

[ 8y, .Yy ]

|

lyll lyml-

Lemma 10

For XoYyreeeo¥p € Rr, xEOyl...yn iff
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N

ty,) .- lyp)
appears in xr.

Proof

(+) If the subgraph pictured appears in Xpr then by
construction ?f Xp it must be that 321,...,2m xEOzI...zm
and ziEyi, l<ism. Then xzezl...szOyl...ym.

*

(+) Consider a proof x -+ Oyl...ym. If the entire tree

. * *
- is ever replaced, azl...zm X+ w > Ozl...zm and zi - yi,
1si<m, and wEOzl...zm is an axiom. If the entire tree is
*

nevgr replaced, then Zzl...zm x=0:1...zm - lyl...ym and

*
z; Yy l<ism. In either case,
[Ozl...zm]

1 m

[zll eee [zm]

appears in Xpr and [0:1...zm] = [x] and [zi] = [Yi]' l<ism, u
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Lemma 11
o is finite iff for all m, for all m-ary ¢ and [yll....(yn) € X,
there is an [x] € rp such that

[x)

appears in Xp+

Proof

By the previous lemma, for all ¢ and (Y].]""[Yn] there
is an [x] € 3 such that the above graph appears in Xp iff
Tr is closed under all the operations O. But since d is
generated by {[a] | a ¢ G} € Ty this occurs iff Jl=tr.

By Lemma 9, this occurs iff d is finite. "

Theorem 12

FIN ¢ P.

Proof
Construct Xpe and for each m-ary 0, cycle through all
[yi],..., [ym], rejecting if we ever find a [yll,...,[ym]

such that for no x ¢ Rr does
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[x]

m
(yll ceo [yml

appear in Xp- For each distinct [yll,...,[ym] tested such
that an [x] is found, there must be a distinct vertex #
(i.e. the one appearing in the above subgraph), hence the
number of steps of the algorithm is polynomially bounded to

the size of Xpr which is polynomial in the input T. a

Theorem 13

m
cvp slog FIN.

Proof
. We use the presentation I'” constructed ir Theorem 5,
such that T” presents either the trivial algebra or the

two element lattice, and
T/E,., is trivial «+ B¢ cvr.

. Append another generator symbol b tc G, and the axioms
{bAbz0, bA0=0, 0Ab=0, bvbz0, bv0=0, Ovb=0} to I'” to get I'". It
is left to the reader to verify that I'" presents the trivial algebra

if T” does, an infinite algebra otherwise. -

Corollary 14
PIN is complete for P.
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4. Two schema problems complete for NP and co-NP

Definition
Let t = {terms over G and 0O}, as usual.

Let V = (vl,...,‘vn) be a set of variable symbols,

Gt = Guv,
+ +
T = {terms over G and O}.
Thus t+ is the set of terms with occurrences of variables V.

An assignment to variables is amap I: V + 1. If we

take I(a) = a for a ¢ G, then I extends uniquely to a homo-
morphism 1+ + 1, which we will also denote by I.

A schema is a formula xZy, where x,y ¢ t+. Given
I', a schema xZy is satisfiable in T/Er if there is an assignment
I such that I(x) Er I(y). I.e., x3y is satisfiable if there
is an interpretation of terms with variables over T/Er such
that x and y represent the same element of T/Er.

A schema xZy is valid in T/Er if for all assignments

I, I(x) =r I(y). n

Definition

The schema satisfiability problem is the set

SATIS = {< T, x, y> | schema xzy is satisfiable}.

The schema validity problem is the set

VALID = {< I',x,y> | schema xzy is valid}. n
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Observe that the Boolean satisfiability problem of c°ok5 is
a special case of SATIS, where the algebra presented by T is
the two element Boolean algebra. It will be left to the reader
to verify that there are very easy (gsm) reductions from the
Boolean satisfiability problem to SATIS and from the Boolean
tautology problem to VALID.

Fix < T, x,y >. V= {vl,...,vm} are the variables occurring
in'x and y. Define P+ to be the graph I' plus x and y, and
let R+ = RP+°

In the following, if X = fvil,...,vik} is a set of variables,
and I: X + 1 is a partial assignment, we will write

z[X \ I[X])

in place of

zlv, \I(V;, ) ,ece, Vv, \I(v, )].
11 i1 ’ i ik

Definition

An assignment I: V + 1 is well-specified on X c V if

gf: X + R+ such that if v ¢ X then
I(v) = £(v) [X \ I[X]]. |

I.e. the values of I on members of X are uniquely determined by
assigning terms in Rt to variables. We wish to show that if
xSy is satisfiable, then it is satisfiable via an assignment I
well-specified on V. This will allow us to guess the map f and
use the word problem algorithm to verify that I(x) Er I(y),

thereby showing SATIS € NP.
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Lemma 15
If xSy is satisfiable, then it is satisfiable via an

assignment well-specified on V.

Proof

Suppose xZy is satisfiable, and X # V is a maximal subset
of V such that there is an assignment I well-specified on X
satisfying x:Zy.

Let us call a term z ¢ 1 well-specified if it is congruent
to some w(X \ I[X]], where w ¢ rY; ill-specified otherwise.
We observe that if a term w ¢ R+ has variables exclusively in X,
then any subterm of w([X \ I[X]] is well-specified. 1In particular,
any term in R+ without variables is well-specified, and every
I(v) for v ¢ X is well specified.

Define a binary relation < on ill-specified terms by:

w<z iff w is congruent to a proper subterm of z. The fact
that < is defined only on ill-specified terms guarantees
transitivity. For, suppose w1~< vy < Wse Then vy H vy ; W and

vy H v, ; '3' as shown.

*
But in a proof wy wi, no transformation can be applied to an

ancestor of wi, else w, would be congruent to a term in R, hence
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Proof

(+) Let xo ={veVv] £(v) ¢ t}. X must be nonempty,

0
else i) is contradicted. Similarly if Xn has been defined

i c s s
and xn # V, then xn+1 = {v ¢ V| £f(v) contains only variables
in xn} must contain a variable not in X . Thus u X = V. Let
p(v) = least n such that v ¢ xn. Define I(v) = f(v) for v ¢ xo.
and for v f xn+1 - xn define I(v) = f(v)[Xn \ I[xn]]. An easy
induction on p(v) gives v S+ I(v) for all v e V.

Now we claim that I satisfies xZy. Let
x* = x[v\ I[V]],
y* = ylv\ I(v]].

.

We have x rt y“, by ii). We need to show x* e y°. Consider

*
-

a proof x° y“ . 1If no variable ever appears in the proof,
;ﬁen done. Otherwise let n be the largest number such that
v ¢ V appears in the proof with p(v) = n. v appears only via
a#plication of the axiom v = f(v). But the only way an ancestor
of v can be the root of a subsequent transformation is if a
variable with a larger p appears. But v eventually disappears,
since y° has no variables, and this can occur only if v = f(v)
is applied. Thus we can eliminate the two transformations
f(v) + vand v + £f(v). This process may be repeated until no
variables appear in the proof x° : y“; then x Y.

(+) By the previous lemma, there is an assignment I

well-specified on V satisfying xzy, i.e. 3f:V «+ R" such that

I(v) = £(v)[V \ I[V]]. It is left.to the reader to verify that
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L6 =T u{vzEw) | veV} then
i) v
i) x

x.-i- I(v), and

rt Y.

Theorem 17

SATIS € NP,

Proof

Guess the map £:V + R, append axioms {v = £(v) | v ¢ V)
to I' to get l‘+, and verify using the word problem algorithm
that x Er+ Y. n

Theorem 18

Boolean satisfiability sloq

SATIS.

Proof

The proof is left to the reader. n

Corollary 19

SATIS is s™ -complete for NP.

log n

We have immediately that SATIS is complete for co-NP.
Unfortunately, this does not help us with the problem VALID.
Let ¥ be presented by T.

Definition

Let d e N . Definev_!dziff
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aw° w = w’ < z and the lengtﬁ of the path from the root of

w” to the root of z is at most d, as illustrated below.

length of this
path is < 4

AT TN

If gﬂ!is'infinite, then for any d,k, there exists a set of k

Lemma 20

arbitrarily large terms {wl,...,wk} such that if i # j then vy

j and vy are 4 ,-incomparable.
Proof
If k = 1, then since 7 is infinite, an arbitrarily large
w; can be chosen not congruent to any smaller term. Now
suppose {wl....,wk_l} have been constructed so that
v; #a wj for i # j. Take wg to be larger than all terms in Ry
and larger than all of wl,...,wk_l such that “2 is not congruent

. to any smaller term. Let ¢ be an operator, and define

mel m m : m L
Vi oWy ... Wi Then vm,n vi < k W #h wii if not, then
for some m, wﬁ < w: S w o« Vi and an analysis of a proof
.. Il 0

k w” shows that Wy would necessarily be congruent to a smaller

term. Moreover, ¥m vi < k, w, *h w:, by induction on m:

certainly W 10 wg implies 'i H w:,'contrary to our choice of
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0, m 2 1 = Sl
v i and if w, +m ¥y then w, 2 v:" implies v; 2w, which

by analysis of a proof v : w:"l can be shown impossible,

d :
as above. Now let Wi = ¥ .- Then {wl,....vk} is desired set. -

Theorem 21

VALID ¢ co-NP.

Proof
Let T present and let x3y be a schema with variables V.

Use the algorithm of Theorem 12 to determine whether . is

finite. If so then o - T, 80 verify in parallel for each

assignment I:v -+ RF that x[v \ I[V]] = ylv\ 11v}), using

the word problem algorithm. 1If ;ﬁ{is infinite, let P+ =T

but consider r* as inducing a congruence over r+ instead of

1, where ¥ = {terms over Guv, 0}. Let R = Rr+.

Claim
1f of is infinite, xzy is valid iff x 5t y.

The claim establishes the result, since if uﬁ!is infinite we

can use the word problem algorithm to check x Er+ Y, and the

parallel procedure given above for the finite case is a

n; computations, thus in co-NP.

Proof of claim
(+) is clear. To show (+), suppose xzy is valid.
Let d > max {height(z) | z ¢ R'} and let V = (vl,...,vk}.

The previous lemma guarantees arbitrarily large VyseeeoWy

such that if i # j then w, §, ¥j- Take such wi,...,w to

k
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RIS IG S

be each of height > d and let I(;i) = w,, lsisk. Let
x” = x[V \ I[V]],
v’ = ylv \ IV]I. i
Then x~ : y“, but no ancestor of any wy is ever the root of
a transformation, thus x~ : y~ via a proof in which all
transformations to terms <-incomparable to any v are done first,
followed by transformations to the interiors of the W Thus !
dz 2z~ = z[V \ I[V]], x Er+ z, and z° : y° via transformations
only to the interiors of the W, But since the w; are so big,
each w, in z° must go to either a subterm or superterm of some
wj in y° in the proof z° > y’.' But this says that either

i a
z” = y. Since for i # j we have wi‘ﬁa.wj,-all occurrences of ws

w, & or Wy or Wy 33 w,, hence it must be that i = j. But then ;

in z° or y° replaced an occurrence of vi in z° or y°, thus z = y.
Therefore x =t Y and the claim is verified. ]
Theorem 22

. m
VALID is slog hard for co-NP.

Proof
The reduction from the Boolean tautology problem is left

to the reader. |

Corollary 23

VALID is sT

1°q-comp1ete for co-NP.

It should be noted that if we allow quantification over

variables, deciding membership in SATIS is equivalent to
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deciding truth of closed formulas (those in which all variables are
quantified) of the form

.

av, ... v, x3y,

1

and deciding membership in VALID is equivalent to deciding

truth of closed formulas of the form

Vvl cee an x3Y,

in the algebra presented by ' (equivalently, in all algebras
satisfying the axioms of I'). This is quite remarkable in view

of the fact that the quantified variables range unboundedly
over a possibly infinite set. In other results of this type,s'7
either the structure is finite, or the quantifiers are bounded.
If we define Spe Vo by
S, (V) = {<r, @ xsy > | Q xSy is a closed formula where Q
is a string of quantifiers with n
alternations, the outermost a I(V),
Q x=y is true in T/Er) A
and if we let 2; and ﬂ; represent the a2 I and I levels of

the polynomial time hierarchy,7 we have by the preceding results

: : m o_,0__.
i) S° vo is sloq complete for tp np P

o m 1 _ .
ii) sl is Sloq complete for Zp = NP;

. . m 1

iii) v, is S complete for Hp = co-NP.

1
It is conjectured that, like other results in this area,"7

m m
log log
for all n; and Un sn v Vn is complete for PSPACE.

-complete for n“,

sn is < P

-complete for Z; and Vn is <
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5. Isomorphism of finitely presented algebras

In this section we wish to show that the problem of isomorphism
of finitely presented algebras (ISOM) is polynomially equivalent
to the problem of graph isomorphism.

As before, the reduction from the graph problem (the more
specific) to the algebra problem (the more general) is trivial.
To go the other way, we show that every finitely presented
algebra has. a "reduced” presentation, which is unique in a
certain well defined sense. 1In view of the relationship between
finitely presented algebras and regular tree languages noted
in §1, this result corresponds roughly to the minimization of
states in a finite tree automaton.

In proving ISOM E: graph isomorphism, we use the reduction

sequence

isomorphism of undirected graphs without multiple edges or loops

m
_slog ISOM

s: isomorphism of labeled directed graphs

2 isomorphism of directed graphs

log

s? isomorphisn of directed graphs without multiple
°9 edges or loops

sT isomorphism of undirected graphs without
o9 multiple edges or loops.
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The <™  reductions in the above sequence are easy exercises and
log

are left to the reader.

Definition

ISOM = {<T,A> | T and A present isomorphic algebras}. -

We will assume that the number of operator symbols of each
arity in or and OA is the same. The interested reader may verify
that there is a polynomial time algorithm to check whether
two operator symbols in any O specify the same operation, hence the
assumption is without loss of generality.

To prove the reduction ISOM s: graph isomorphism, we will
show that every finitely presented algebragﬁlhas a "reduced"”
presentation I', which can be found in polynomial time, such
that I is unique (up to isomorphism). But 3 is uniquely
represented by the characteristic graph Xp introduced in §3,

as shown by the following lemma:

Lemma 24
o and r, are isomorphic (25 subsets of algebras)

iff Xp and X, are isomorphic (as graphs).

Proof

Follows directly from Lemma 10. u

Definition

A presentation is reduced provided
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i) if ox = Oyl...ym is an axiom, then one of

10 Xn
xllyl reser X 2y .
ii) no axiom of the form a = occurs, where a ¢ G and

a does not occur in x.

Lerma 25
There is a polynomial time algorithm which for input T

*
gives an eguivalent reduced T .

Proof
Given Rr. find all congruent pairs, using the word
problem algorithm of Theorem 1. Repeat the following two
steps until no more changes occur:
a) If Oxl...xm S le...ym is an axiom and
xIE yl,...,me Yo follow, replace
Oxl...me Oyl...ym in T with new axioms
X1Z ¥yreeeoX S Y.
b) If asz x is an axiom, a ¢ G, and a does not occur
in x, replace all occurrences of a in other

terms of Rr with pointers to x, and eliminate the

axiom a:z x.

E.g.
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We claim first that this algorithm is polynomially time
bounded. Note that step b) occurs at most n times, since
each time, a generator symbol disappears. For each occurrence
of b), step a) occurs at most n2 times, provided whenever

Oxl...x

- H Oyl...yn and Ozl...zk H '"1"'"): are axioms, and

Xy Eyi, zj ij for 1lsism, 1lsjsk, and 021...2 < Ox ceeXp

k 1

step a) is applied to the axiom Oxl...xm Eoyl...ym first. We

must also insure that every time b) occurs, a valid presentation

results, i.e. the graph remains acyclic. This follows from the

requirement in b) that a not occur in x in the axiom a = x.
Hence the algorithm halts in polynomial time with a

* *
reduced presentation ' , so it remains to show that I' and

I' are equivalent, i.e. present the same algebra. 1If a) is

applied, we have axiom Oxl...xm H Oyl...ym e T and

X, £ YyeesoeXy =T Ype Let ' =T - {Oxl...xm H Oyl...ym}.

Since Oxl...x‘n z Oyl...ym follows from I'’ v {x1 B YyeeeooXy = ym},
we have that under the assumptions T'~”, {xl H yl""'xm = ym} and

{.xl...xm H] le...ym) are equivalent. If b) is applied, let a = x
be the axiom removed. Let? t° = {terms over O & G-{a}}, and let

f:1 > 17 be given by f(y) = yla \ x]. An application of b)
replaces axioms T' = {xl = Yyreeorxy = yk} with

r° = {f(xl) = f(yl),...,f(xk) H f(yk)}, inducing congruence

=’ = 5.+ SO we need to show that t/E and ‘r‘/.=_, are

isomorphic. But it is easily verified that for z,y ¢ t°,

z =y iff z =y, and each y ¢ T - t° is congruent via =

to yla \ x] ¢ t7, thus there exists an h such that the diagram
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.

..._.___._)1/

ll\

i .
L1 (1.
h
*/

Acou‘mutes, and h is an isomorphism. =

In the following, let T and A be finite presentations
of'algebras A ana Q, respectively. The symbols G,0,1, etc.
will have their usual meaning, except we will attach subscripts

I and A to denote the presentation with which they are associated.

Lerma 26
Suppose dand Q are isomorphic via h, and suppose

I is reduced. Then there is a function f: T T, such that
i) the diagram

-

L1 [1,

Tt/ —Ta £

T “A
commutes, and
ii) £[R.] < R,.

Proof

We have assumed previously that the number of operators of

each arity in or and oA are the same. Since dand Q are
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isomorphic, there is a 1-1 arity preserving cdrrespondence between
Op and OA‘ Hence for notational convenience and without
loss of generality, we will assume Or = 0A and the correspondence
is given by identity.

We first define an flz T TA satisfying i) only. For

ae Gr, let fl(a) = y where y is any term in 1

A such that [y)A =
h({a]r). f1 extends uniquely to a homomorphism Tp * Ty by
taking fl(Oxl...xm) = Ofl(xl)...fl(xm). Then fl satisfies i),

since for a ¢ G, [fl(a)]A = h((a]r) by definition, and proceeding
by structural induction,
[fl(.xl"'xm)]A = .lfl(xl)]A cee [fl(xm)]A
= Oh([xllr) “ve h([xm]r)
= h([lxl...xnll.)-

since [ 'fl and h°[ ]r are homomorphisms.

)A
Let us take f(x) = fl(x) for x g Rp. We need only to find,

for every x € RI" aye RA such that y EN fl(x): then we can

take f(x) = y,.and ii) will hold, but f will satisfy i), since

¥x £(x) 3, £,(x) + ¥x [£(x)], = [£,(x)], = h([x]}).
Case l: x appears in an axiom x =y ¢ I', and neither x
nor y are generator symbols.

o
Let fl(x) H fl(y) be a proof of fl(x) EA fl(y). If the entire

Observe that since fl satisfies i), x =, y «* fl(x) 3 fl(y).

tree is ever replaced, then we have fl(x) H zZ+w : fl(y)
where 2z = w is an axiom of A. Then z ¢ RA hence we can take
f(x) = z, and we are done. Otherwise, since neither x nor y are

generator symbols, by construction of fl we have
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fl(x) = .fl(xl)"‘fl(xn)' fl(y) = Ofl(yl)...fl(ym), and
fl(xl)EAfl(yl) pecar fl(xn)EAfl(ym), where x = 0. .ox

and y = 8y;...y . But then ¥1%p¥y re--r X 5y, contradicting
the fact that ' was reduced.

Case 2: a ¢ Gr and a occurs in an axiom a = x, where
xfd G .
r
Since T is reduced, x must contain occurrences of a. Then
fl(a) EA fl(x) and fl(a) ; fl(x). Let y be a <-minimal
element of [fl(a)]A, and let w = fl(x)[fl(a) \ yl. Then
w : y and y ; w. In a proof w : Y, either an ancestor of
some occurrence of y inw is the root of a transformation,
in which case y EA u e Rl as above; or not, in which case
y is congruent to a proper subterm of itself, contradicting the

assumption of <-minimality.

Case 3: x is a proper subterm of a term Y appearing in
an axiom y = z.

By cases 1 and 2, we have f(y) ¢ R,. But then fl(y) 2 £y
and fl(x) < fl(y). In a proof fl(y) 3 f(y), either an ancestor
of fl(x) is the root of a transformation or not. If so, fl(x) is
congruent to a subterm of an axiom of A, if not, fl(x) is
congruent to a subterm of f£(y). But in either case, 3w ¢ RA
fl(x) EA w, hence we can take f(x) = w.

B A LTLE T RIS TR
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Case 4: a ¢ Gl‘ and a occurs only in the axiom a = a. Then
fl(a) must be in GA' otherwise le...xn €1 such that
fl(a) N Ofl(xl)...fl(xn), since h is an isomorphism; but
then a 5 lxl...xn, which is impossible if a occurs only in

a = a. Thus take f(a) = fl(a) € R,. =

Theorem 27

Let J,Qbe isomorphic via h, and let I and A be reduced.

Then r. and r, are isomorphic via h.

Proof

Using the lemma, form f and g such that

£
7,
g9
ré—mm—71,
Ll (1,
h and
[]
54 B r b1 (1,
o B
commute, and f£[R.] < Ry+ glR,] ¢ Rp.
Now x ¢ Rr - h([x]r) = [f(x)]A € r,, since f(x) ¢ RA;
hence hir;] ¢ r,. Similarly, using g, h-lltA] € rp. But then
h[x'r] = r,, since h is an isomorphism. a

Theorem 28

Let rr and T, be isomorphic via h. Then h extends to an
isomorphism between .,d and Q
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Proof
Define f: T T Ty by taking f(a) = y where y ¢ RA such
thﬁt [y]A = h([a]r) for a ¢ Gr, and extend. £ to the unique .-

homomorphism Tp > Ty as in the previous proof.

Clain
xr.___flEE____%xA
[ L1,
tr h T, commutes.

" Proof of claim
For a e Gr, h([a]r) = [f(a)]A by definition, and
for Oxl...xm € RF' we have XyreoorXy € Rr, hence by structural
induction,

h((Oxl...xmlr)= Oh([xllr) ces h([xm]r)

o[f(xl)]A ...[f(xm)]A
= [f(Oxl...xm)]A,
and the claim is verified.

We wish to extend h to h on domainanlby taking

h([x]r) = [f(x)]A, but first we must show that [ ]A°f is well-
defined ?n Ep-congruence classes, i.e. x BN S [f(x)lA =[f(y))A,
so that h will be well-defined.

For x,y € Ty, take x Iy iff (f(x)]A = [f(y)]A-
Since [ )A'f is a homomorphism, =~ is a congruence relation

on T.. By the above claim, we have for x,y € Rr

VP
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x 5y iff [x], = [yl
iff h([xlr) = h(lylp)
iff [£(x)], = [f(y)lA
iff x I y.
Since =T is defined to be the smallest (most general) congruence
satisfying the axioms of I', and > satisfies the axioms of T,

it follows that =T is a refinement of I. Hence ¥x,y € Ty

X S y+*xly-~ [f.(x)]A = [f(y)]A, as was to be shown.

Now we have that

£
Tp—7,
[y (1,

commutes, and ﬂfrr = h. We can also form g such that

9
Tré—mm™M— Ta

I]l [1]
r {-\I A
A—— R

7N
commutes, and h™} I r, = h™l. But now wx ¢ Tpe
g°f(x) EX‘ X, by structural induction: certainly for a ¢ G
N
(g°(a)], = h™l(1£(a)],)
~ A

= nHn(lal))

T’

= n"tneral)
= (alp, and then



R e T

-44-

lgef(ox;...x )] = 0lg°f(x,) ]} -.. [9°f(x))]p
- lellr ceelx ]

= [.xl cee xm]]...

Similarly ¥x e Tpr foc(x) 2, x. But this says that
R A
h and h 1 are inverses, since ¥x € T

/\1 ~ T

nl ez = w7 e,
= [g°f(x)]}
. = IX1T —~
and similarly ¥y € 1,, h (h-l([y]A)) = [Y]A. Thus 7 and B

are isomorphic via h. =

Corollary 29
ISOM s: isomorphism of labeled directed graphs.

Proof

Given an instance of ISOM <I',A>, reduce I' and A to get
r' and A., and then form the graphs xr' and XA" By Lermmas
10 and 25, this can be done in polynomial time. Then by
Theorems 27 and 28 and Lemma 24,

A B oifr ot Aff xr Syt a

Again, it is rather remarkable that isomorphism of

possibly infinite structures should reduce to that of finite

ones, unlike previous results in this area.15'16

m
The =
€ p

equivalence of graph isomorphism and ISOM should
be of great interest to those who believe graph isomorphism
is NP complete. It is clear that graph isomorphism is in NP,

but the form of the problem is so restricted (i.e., two graphs

LLATRRE L
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with the same numbers of vertices of each in- and out-degree)
that standard reduction techniques fail to show even that it is
hard for P. However, there are no such restrictions on the
form of instances of ISOM, and it is quite trivial to show ISOM
is P-hard:

Theorem 30

ISOM is ‘:og-hm for P.

Proof
Use I'" of Theorem S and a presentation of the trivial
algebra. | |

Thus it would surely be easier to show that ISOM, the more
general of the two problems, is NP-hard.
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6. Open guestions

The following is a list of interesting and relevant open

problems:

1) Prove the conjecture at the end of §4, thus generalizing
the results of [7). The techniques of §4 do not immediately
generalize, nevertheless it is likely that this problem will

be éasier than 2) or 3).

2) Show graph isomorphism is sg-complete for NP, by showing

ISOM is s’;—hard for NP.

3) In lieu of 2), improve the s: reduction from ISOM to graph
isomorphism to a S?oq reduction, thereby showing graph isomorphism
is STog-hard for P. The s; reduction given involves an algorithm
for a problem complete for P, thus it will not be altered easily

to a s’;og reduction (unless LOGSPACE = P).
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