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Abstract. In simply typed A-calculus with one ground type the fol-
lowing theorem due to Loader holds. (i) Given the full model F over a
finite set, the question whether some element f € F is A-definable is un-
decidable. In the A-calculus with intersection types based on countably
many atoms, the following is proved by Urzyczyn. (ii) It is undecidable
whether a type is inhabited.

Both statements are major results presented in [3]. We show that (¢)
and (i7) follow from each other in a natural way, by interpreting inter-
section types as continuous functions logically related to elements of F.
From this, and a result by Joly on A-definability, we get that Urzyczyn’s
theorem already holds for intersection types with at most two atoms.
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Introduction

Consider the simply typed A-calculus on simple types T® with one ground type 0.
Recall that a hereditarily finite full model of simply typed A-calculus is a col-
lection of sets F = (Fa)aeto such that Fy # 0 is finite and Fa_,p = fg“
(i.e. the set of functions from F4 to Fpg) for all simple types A, B. An element
f € Fa is A-definable whenever, for some closed A-term M having type A, we
have [M] = f, where [M] denotes the interpretation of M in F. The following
question, raised by Plotkin in [7], is known as the Definability Problem:

DP: “Given an element f of any hereditarily finite full model,
is f A-definable?”
A natural restriction considered in the literature [5, 6] is the following:

DP,: “Given an element f of F,, is f A-definable?”

where F,, (for n > 1) denotes the unique (up to isomorphism) full model whose
ground set Fy has n elements. Statman’s conjecture stating that DP is decidable
[9] was refuted by Loader [6], who proved in 1993 (but published in 2001) that
DP,, is undecidable for every n > 6. Such a result was then strengthened by
Joly, who showed in [5] that DP,, is undecidable for all n > 1.
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Theorem 1. 1. (Loader) The Definability Problem is undecidable.
2. (Loader/Joly) DP,, is undecidable for everyn > 6 (resp. n >1).

Consider now the A-calculus endowed with the intersection type system CDV
(Coppo-Dezani-Venneri [4]) based on a countable set A of atomic types. Recall
that an intersection type o is inhabited if 5 M : o for some closed A-term M.

The Inhabitation Problem for this type theory is formulated as follows:

IHP: “Given an intersection type o, is o inhabited?”
We will also be interested in the following restriction of THP:
IHP,,: “Given an intersection type ¢ with at most n atoms, is o inhabited?”

In 1999, Urzyczyn [10] proved that ITHP is undecidable for suitable intersection
types, called “game types” in [3, §17E], and thus for the whole CDV. His idea
was to prove that solving IHP for a game type o is equivalent to winning a
suitable “tree game” G. An arbitrary number of atoms may be needed since, in
the Turing-reduction, the actual amount of atoms in ¢ is determined by G.

Theorem 2 (Urzyczyn).

1. The Inhabitation Problem is undecidable.
2. The Inhabitation Problem for game types is undecidable.

The undecidability of DP and that of IHP are major results presented thoroughly
in [3, §4A] and [3, §17E]. In the proof these problems are reduced to well-known
undecidable problems (and eventually to the Halting problem). However, the
instruments used to achieve these results are very different — the proof by
Loader proceeds by reducing DP to the two-letter word rewriting problem, while
the proof by Urzyczyn reduces IHP to the emptiness problem for queue automata
(through a series of reductions). The fact that these proofs are different is not
surprising since the two problems, at first sight, really look unrelated.

Our main contribution is to show that DP and IHP are actually Turing-
equivalent, by providing a perhaps unexpected link between the two problems.
The key ideas behind our constructions are the following. Every intersection
a1 A+ Ay of atoms can be viewed as a set {«, ..., ax}, and every arrow type
o — 7T as a (continuous) step function. Moreover, Urzyczyn’s game types follow
the structure of simple types. Combining these ingredients we build a continu-
ous model § = (S4) acro over a finite set of atomic types, which constitutes a
“bridge” between intersection type systems and full models of simply typed A-
calculus. Then, exploiting very natural semantic logical relations, we can study
the continuous model, cross the bridge and infer properties of the full model.
Our constructions allow us to obtain the following Turing-reductions (recall that
if the problem P; is undecidable and P; <t P,, then also P; is undecidable):

(7) Inhabitation Problem for game types <p Definability Problem,

(74) Definability Problem < Inhabitation Problem (cf. [8]),
(#5i) DP,, <p IHP,, (cf. [8]).
Therefore, by (i) and (i7) we get that the undecidability of DP and THP follows
from each other. Moreover, by (4#i7) and Theorem 1(2) we conclude that THP,, is
undecidable whenever n > 1, which is a new result refining Urzyczyn’s one.
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A M,N,P ::=x| MN | Ax.M, where z € Var
TO - A,B,C ==0|A— B
T4 - v, p,0,T i=a| o — 7|0 AT, where o € A

(a) Sets A of A-terms, T® of simple types, T4 of intersection types over A.

o < o (refl) o AT <o (incly) o AT <7 (inclg)

(c=T)A(c=7)<o=(TAT) (=)

(glb)

o<~ ~v<rT o<t o<7 o' <o <71
———————— (trans) —_— —— (=)
o< T c<TAT c—o17<d =71

(b) Rules defining the subtyping relation < on intersection types TA.

I't\M:7—o0c I'bAN:T

T1:01,...,%n 1 0n ATt 0 (ax) I'=A MN :0o (=z)
I'zx:obAxM: 7 I'baM:o I'bAaM:T I'bAM:0 o<1

— <
e o o7 0 TrnMions M) s &)

(¢) Rules defining the intersection type system CDV.

Fig. 1: Definition of terms, types, subtyping and derivation rules for CDV. The rules
for simply typed A-calculus are obtained from those in (c) leaving out (Ar) and (<).

1 Preliminaries: Some Syntax, Some Semantics

To make this article more self-contained, this section summarizes some defini-
tions and results that we will use later in the paper. Given a set X, we write
P(X) for the set of all subsets of X, and Y C¢ X if YV is a finite subset of X.

1.1 Typed Lambda Calculi

We take untyped A-calculus for granted together with the notions of closed A-
term, a-conversion, (-)normal form and strong normalization. We denote by
Var the set of variables and by A the set of A-terms. Hereafter, we consider
A-terms up to a-conversion and we adopt Barendregt’s variable convention.
We mainly focus on two particular typed A-calculi (see [3] for more details).

The simply typed A-calculus a la Curry over a single atomic type 0. The
set TO of simple types A, B,C,... is defined in Figure 1(a). Simple contexts A
are partial functions from Var to T9; we write A =z : Ay,...,z, : A, for the
function of domain {xi,...,2,} such that A(z;) = A; for ¢ in [1;n]. We write
AE M : Aif M has type A in A, and we say that such an M is simply typable.

The intersection type system CDYV over an infinite set A of atomic
types. This system was first introduced by Coppo, Dezani and Venneri [4] to
characterize strongly normalizable A-terms. The set T4 of intersection types is
given in Figure 1(a) and it is partially ordered by the subtyping relation <
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defined in Figure 1(b). We denote by =~ the equivalence generated by <. As
usual, we may write A\, o; — 7; for (o1 = T1) A+ A (0n = Th).
Contexts I' = x1 : 71, ..., T, : T, are handled as in the simply typed case. We
write I' b M : o if the judgment can be proved using the rules of Figure 1(c).
As a matter of notation, given two sets Y, Z of intersection types, we let Y =
{o1 AN Nop|o, €Y forie[linl}andY - Z={r—o|T7€Y,0€Z}.
We now present some well known properties of CDV. For their proofs, we
refer to [4], [3, Thm. 14.1.7] and [3, Thm. 14.1.9] respectively.

Theorem 3. A A-term M is typable in CDV iff M is strongly normalizable.

Theorem 4 (fS-soundness). For all k > 1, if /\?:1 oi = pi < y1 — Y2 then
there is a non-empty subset K C [1; k] such that v1 < \;c i 05 and \;c i pi < 7o.

Theorem 5 (Inversion Lemma). The following properties hold:

1. Thaz:oiff I'(x) <o,

2. I'tx MN : o iff there is p such that ' = M :p — o0 and I’ A N : p,

3. I'Fa Ax.M : o iff there isn > 1 such that o = \|_, 0; — o} for some 0;,0},
4. 'FadaeM:o—T1iff ITe:obx M :T.

1.2 Type Structures Modelling the Simply Typed Lambda Calculus

A typed applicative structure M is a pair ((Ma)aeto,®) where each My is a
structure whose carrier is non-empty, and e is a function that associates to every
d e My, and every e € M 4 an element d e ¢ in M. From now on, we shall
write d € M to denote d € M4 for some A. We say that M is: hereditarily
finite if every M 4 has a finite carrier; extensional whenever, for all A, B € T°
and d,d’ € M_. g, we have that dee = d’ e e for every e € M 4 entails d = d'.

A wvaluation in M is any map v from Var to elements of M. A valuation
vm agrees with a simple context A when A(z) = A implies vaq(z) € M 4. Given
a valuation vaq and an element d € M, we write va[z := d] for the valuation
v, that coincides with v, except for x, where v/, takes the value d. When
there is no danger of confusion we may omit the subscript M and write v.

A waluation model M is an extensional typed applicative structure such
that the clauses below define a total interpretation function [ - ]f\/)l which maps
derivations A+ M : A and valuations v agreeing with A to elements of M 4:

—[AFz: AT = v(a),
- [AI—NP:A];M:[AI—N:B—>A]£/1.[AI—P:B]£A,
— [AI—)\ac.N:A—)B];MOd:[A,x:AI—N:B]M d for every d € My.

v[z:=

When the derivation (resp. the model) is clear from the context we may simply
write [M ]l/,\/t (resp. [M],). For M closed, we simplify the notation further and
write [M] since its interpretation is independent from the valuation.

The full model over a set X # (), denoted by Full(X), is the valuation model
((Fa)aeto,®) where e is functional application, Fo = X and Fa_,p = .7-"]]3:“.

The continuous model over a cpo (D, <), written Cont(D, <), is the val-
uation model ((Da,C4)4et0,9) such that e is functional application and:
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—Dy=Dand fCogiff f<g,
— Dag = [Da — Dp| consisting of the monotone functions from Dy to Dp
with the pointwise partially ordering T4, p.

We will systematically omit the subscript A in 4 when clear from the context.
Note that both Full(X') and Cont(D, <) are extensional. Moreover, whenever
X (resp. D) is finite Full(X) (resp. Cont(D, <)) is hereditarily finite.
Logical relations have been extensively used in the study of semantic prop-
erties of A-calculus (see [2, §4.5] for a survey). As we will see in Sections 4 and
5 they constitute a powerful tool for relating different valuation models.

Definition 1. Given two valuation models M, N, a logical relation % between
M and N is a family {% s} scto of binary relations s C My x Ny such that
for all A, BE€T?, f € Ma_p and g € Na_,p we have:

f RBasp g iff Vhe Ma,ll € Nalh Ba I = f(h) Zg g(h)).

Given f € My we define Za(f) = {9 € Na | f #4 g} and, for Y C My,
ZAY) = Usey Za(f). Similarly, for g € Na and Z C Ny we have Z (g9) =
{feNal|fRag}and Z,(Z) =U,er Z4(9)

It is well known that a logical relation & is univocally determined by the
value of %, and that the fundamental lemma of logical relations holds [2, §4.5].

Lemma 1 (Fundamental Lemma). Let Z be a logical relation between M
and N then, for all closed M having simple type A, we have [M]M 9N [M]N

2 Uniform Intersection Types and CDV¥

A useful approach to prove that a general decision problem is undecidable, is
to identify a “sufficiently difficult” fragment of the problem. For instance, Urzy-
czyn in [10] shows the undecidability of inhabitation for a proper subset G of
intersection types called game types in [3, §17E]. Formally, G = AUBUC where:

A=A"B=A-A)"C=D—- A forD={o AT |0o,7€(B—= A}

(Recall that the notations Y and Y — Z were introduced in Subsection 1.1.)
In our case we focus on intersection types that are uniform with simple types,
in the sense that such intersection types follow the structure of the simple types.

Let us fix an arbitrary set X C A. We write TX for the set of intersection
types based on X.

Definition 2. The set Sx(A) of intersection types uniform with A € T is
defined by induction on A as follows:

When there is little danger of confusion, we simply write =(A) for Zx (A).

It turns out that game types are all uniform: A C =Z4(0), B € Z4(0 — 0)
and D C E4((0 — 0) — 0) thus C € Z4(((0 — 0) — 0) — 0). Therefore the
inhabitation problem for uniform intersection types over A is undecidable too.
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Theorem 6 (Urzyczyn revisited). The problem of deciding whether a type
o¢c UAe’]l‘O,ngA Zx(A) is inhabited in CDV is undecidable.

For technical reasons, that will be clarified in the next section, we need to
introduce the system CDV® over A U {w}, a variation of CDV where intersection
types are extended by adding a distinguished element w at ground level.

In this framework, the set Zx w1 (A) of intersection types with w uniform
with A will be denoted by Z%(A), or just Z“(A) when X is clear. We write wy
for the type in Z¥(A) defined by wy = w and wp_,¢ = wp — we.

The system CDV® over Tﬁu{w}7 whose judgments are denoted by I' - M : o,
is generated by adding the following rule to the definition of < in Figure 1(b):

o€ =ZY(A)

o< wy

(<a)

Therefore CDV® is different from the usual intersection type systems with w.

By construction, for every A € T, the type w4 is a maximal element of Z«(A).

Using [3, Thm. 14A.7], we easily get that the Inversion Lemma (Theorem 5) still

works for CDV®, while the 8-soundness holds in the following restricted form.
Recall that ~ stands for the equivalence generated by <.

Theorem 7 (S-soundness for CDV™). Let k > 1. Suppose v1 — 72 % wa
for all A € T° and /\f=1 o; = pi <1 — 2, then there is a non-empty subset
K C [1;k] such that v1 < \;cx 05 and N\;c g pi < 2.

We now provide some useful properties of uniform intersection types.

Lemma 2. Let 0 € E¥(A) and 7 € ZE¥(A’). Then we have that o < T entails
A=A

To distinguish arbitrary contexts from contexts containing uniform intersec-
tion types (with or without w) we introduce some terminology.

We say that a context I is a =-context (resp. =“-context) if it ranges over
uniform intersection types (resp. with w). A Z-context (resp. =“-context) I" =

X101, ..., Xy Oy 18 uniform with A =xy : Ay, ..., x, : A, if every o; belongs
to Z(A;) (resp. to Z¥(A;)).
Lemma 3. Let p € TQU{W}, 7€ Z¥B) and I' be a E¥-context. Then we have

that Iz - 7 = xNy -+~ Ny @ p iff there are A, Ay, ..., Ay € T and 0 € Z¥(A)
and 7; € Z¥(A;) fori in [1;k] such that B = Ay — -+ — Ay — A and:

1. 0 <p,

2. INw :THFY oNy--- Ny : 0,

. 7<= =T — O,

4. Iyx o7 FY N, oy for all i in [1;k].

Furthermore, if I' is a S-context, p € TA and T € Z(B), then o and the 7; for
i in [1; k] may also be chosen as uniform intersection types without w (while the
type judgments =Y still need to be in CDV¥ ).
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Theorem 8 (Uniform Inversion Lemma for CDV®). Let 0 € £¥(A) and

I" be a E¥-context. Then we have that (where we suppose that each term in a

type judgment is in normal form):

I.TH z:0iff I'(x) <o,

2. I'FY MN : o iff there exist B € T and T € Z¥(B) suchthat ' ¥ M : 7 — o
and I' =9 N : 7,

3. 'Y Ax.N : o0 iff A= B — C and there are 7, € Z¥(B), 1/ € Z¥(C) such
that o = N;_y 7 — 7] and 'z : 7; B N : 7/ for all i in [1;n)].

Corollary 1. For M a normal A-term, o € E“(A) and I' a Z¥ -context uniform
with A, we have that I' % M : o entails A+ M : A.

Proof. A simple consequence of the Uniform Inversion Lemma (with Lemma 2
when M is a variable). O

The corollary above does not generalize to arbitrary A-terms as the follow-
ing example illustrates. Let M = Azy.y and N = Az.zz, then we have that
F¥ MN:a—a € Z¥0 — 0) since F¥ N : vy and F¥ M : v - o — « where
~v=(BA(B— B)) — B. However N is not simply typable, hence neither is M N.
Note that, while we consider only uniform intersection types, we do not restrict
the intersection type systems so that the type « still may be used in a deduction.

CDV and CDV"¥ are equivalent on normal forms in the following sense.

Lemma 4. For every normal M € A, for every Z-context ' = x1 : T1,..., &y : Ty
uniform with A=z : A1,..., 2y : An, and for every o € Z(A) we have:

I'bAM:o <= I'} M :o.

Proof. (=) Trivial, as CDV is a subsystem of CDV".

(<) We proceed by induction on the structure of M. The cases where M is
a variable or a A-abstraction can be treated thanks to Theorem 5 for CDV®and
the induction hypothesis. Concerning the case where M = x; N7 - - - N, from the
w-free version of Lemma 3, we have that A; = By — --- — By — A, there exist
T1,..., T respectively in =(By),...,=(Bg) such that 7, <71 — - > 7 > 0
and I' % N, : 7; for each i in [1; k]. Therefore, by the induction hypothesis, we
have that for every ¢ in [1;k], I' o N; : 7, which entails that "', M : 0. |

3 The Continuous Model over P(X)

Hereafter we consider fixed an arbitrary set X C¢ A. We are going to represent
uniform intersection types based on X U{w}, as elements of the continuous model
S over P(X), ordered by set-theoretical inclusion.
Let S = {(S4,C4)}aeto = Cont(P(X),C). Each S4 is a finite join-semilattice
and thus a complete lattice. We denote the join by LI and the bottom by L 4.
Given f € Sa,g9 € Sp we write f — g for the corresponding step function:

drram={9, M

1 p otherwise.

For all A we define a function ¢4 : Z¥(A) — S4 by induction on A as follows.
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Definition 3. Fora € X and o, 7 € Z¢(0) we let vo(a) = {a}, to(w) = Lo =10,
to(o A7) =1o(0) Ueo(T). Foro,7 € EY(A — B) we define:

tasp(o = 1) =1a(o) = (1), tasB(0AT) =tasp(0)Utasp(T).
Remark 1. Given o € Z¥(A), we have that 0 ~ w4 entails t4(c) = L 4.

Thanks to the presence of the maximal element w4, the correspondence be-
tween 5“(A) and Sy is actually very faithful (in the sense of Corollary 2).

Lemma 5. Let h =|[|\_, f; > g;, then for every f we have:

(i) h(f) = ;cr 9i where K = {i € [L;n] | f; C f}.
(1) hE fiff g C f(fi) for all1 <i<n.

Lemma 6. Step functions are generators: Vf € Sa,p, [ = UgeSA g— f(g).

Proof. Let h =] cs, 9 f(g). We need to prove that, for every g € Sa, f(g) =
h(g). From Lemma 5(i), we have that h(g) = | c, f(¢'). Since f is monotone,
we have that for every ¢’ C g, f(¢’) C f(g) and therefore Uy, f9) E f(g)

Since obviously f(g) C |,c, f(¢'), we obtain f(g) = |],c, f(9') = h(g). O
Lemma 7. For all A€ T°, 0,7 € E¥(A) we have o < 7 iff ta(T) E ta(0).

Proof. We proceed by induction on A. In case A = 0, the equivalence is clear
since P(X) is the free U-semilattice with bottom over X and =¢(0)/~ is the
free A-semilattice with top over X.

In case A = B — (C, we have two subcases. Case 1, 7 ~ wp for some
D € T° Then by Lemma 2 we get D = A, by Remark 1 we get 14(7) = L4
and the equivalence follows since both ¢ < 7 and t4(7) C ta(0) hold. Case 2,
o=\ 0i =0, 7=\ 7 — 7j and T % wp for any D € T°. By Remark 1
we can assume, without loss of generality, that for every j in [1;m] we have
7j — 7j % wp for all D € T°. (Indeed for those k such that 7 — 7/, ~ wp one
reasons as in Case 1.) We now prove the equivalence for this case.

(=) If 0 < 7, then by S-soundness, for every j in [1;m], there is K included
in [1;n] such that 7; < A\, 0 and A, o} < 7. By the induction hypothesis:

1) | sl Cin(m) (2) ) C | ] el

K, i€K;

We now prove that, for every f € Sg, ta(7)(f) C ta(o)(f). From Lemma 5(i), we
get La(T)(f) = ;e to(rj) where J = {j € [1;m] | tp(7;) T f}. By definition
of J, we have that | |, ;tp(7;) E f so, by (1), we obtain UjeJ,ieK,- tg(o;) C f.
Therefore by Lemma 5(i), we get UjeJ,ieKj to(ol) T va(o)(f) and, using (2),
we obtain t4(7)(f) E ta(o)(f). As a conclusion we have t4(7) C t4(0).

(<) Ifva(r) C va(o), then we have in particular ¢4 (7)(¢5(7;)) C ta(o)(tB(Ty))
for each j € [1,m]. From Lemma 5(i), we have that v (7)(¢5(7;)) = ey, to(T)
where I; = {i € [1;m] | 7; < 7;}. Since 7; < 7; we must have j € I; and there-
fore, we obtain tc(7}) C ta(7)(¢5(7;)). So, again by Lemma 5(i), we have that
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ta(o)(ep(r))) = [_|k€K]_ te(oy,) where K; = {k € [1;n] | 7; < oi}. Thus we get
wo(r)) E [_|k€Kj tc(o},) and hence, by the induction hypothesis, /\keKj o <7
Now, by definition of K, we also have 7; < A, . Kk, Ok- As we can find such a K;;
for every j in [1;m], we can finally conclude that o < 7. O

Corollary 2. The map v is an order-reversing bijection on E“(A)/~.

Proof. If 7 < o and o < 7, then Lemma 7 implies that t4(7) = ta(c). From this

it ensues that ¢4 is an order-reversing injection. To prove that it is actually a

bijection, we need to show that ¢4 is surjective. We proceed by induction on A.

Clearly when A = 0, 14 is surjective. If A = B — C then we get from the

induction hypothesis that tp and ¢ are bijections between 5“(B)/~ and Sp,
—w

and between Z¢(C)/~ and S¢, respectively. Now, given f in S4, we define

75 € Z¥(A) to be A s, 15 (9) = 1o (F(9) But, tassn(rs) = Uyes, 9+ £(9)
which is equal to f by Lemma 6. ad

The above results are related to Stone duality for intersection types (cf. [1]).

Proposition 1. Let M be a normal term such that xq : A1, ..., 2, : Ay - M : A.
Then for all 7; € Z¥(A;), 0 € Z¥(A) the following two sentences are equivalent:

1. xy:m,...,2p T FX M : 0,
2. 1a(0) C [M]f, for all valuations v such that v(z;) = ta,(7:).

Proof. Let A=x1: Ay,...,xn Ay and ' =21 : T, ..., Ty : Ty
(1 = 2) We proceed by structural induction on M.

— In case M = z;, then 7; < 0 and, by Lemma 7, t4,(0) C va,(7:) = [2:],.

— Incase M = NP, then, from Theorem 8(2), there are B € T® and 7 € =% (B)
such that 'Y N : 7 — o and I' ¥ P : 7. By induction tp_,4(7 — o) C
[N], and tp(7) C [P],, thus, ta(o) = tpsa(t — 0)(ts(7)) E [N],(ta(T))
and, by monotonicity, [N],(¢g(7)) C [N],([P],) = [NP],. From this we
finally get ta(o) C [NP],.

— In case M = Az.N, then by Theorem 8(3) we have that A = B — C and, for
all j € [1;n], there are 0; € £¥(B), 0y € Z¥(C) such that o = \_, 0; —
and Iz : 0j X N : ¢}. Thus, by induction hypothesis, we get tc(0}) C
[N (2:=0 5 (o) From Lemma 5(ii) it ensues that 14 (o) E [M],,.

(2 = 1) It suffices to establish by induction that [M], = ta(c), for all v such that
v(x;) = ta,(m), entails I' F{ M : 0. Indeed, if 7 is such that ¢4(7) C [M], then
by Lemma 7 and o < 7 we obtain, using the subsumption rule, that I" =% M : .

— If M = a;, then [2;], = ta,(1i) = ta(0) and 0 ~ 7. Thus I' F§ z; : 0.

— If M = NP, then there is B such that A+ N : B — Aand A+ P : B.
By Corollary 2, there are 7 € 5¥(B — A),p € Z%(B) such that [N], =
tp—a(7) and [P], = tB(p). The induction hypothesis implies that I" -5 N :
7 and I' F% P : p are derivable. By hypothesis we know that [M], = va(0).
From Lemma 5(ii), since t4(0) = [M], = [N]1,([P],) = tB—a(7)(tB(p)), we
have vp(p) — ta(o) E tp—4(7) and thus, by Lemma 7, 7 < p — o. Hence
I' =% N : p — o is derivable, which implies that I" =% M : ¢ is derivable.
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— If M = Mx.N, then A = B — C. By Corollary 2 we can choose, for every
g € Sg, 04 € E¥(B) such that tp(oy) = g and 7, € Z¥(C) such that
to(ry) = [N]V[x:zg] = [M],(g). By the induction hypothesis, for every g €
Sp, we have I,z : 04 FX N : 74. Therefore, I' =% M : 0y = 74 and I'FX M :
Nyesy 79 = Tg- By definition va(A cs, 09 = 79) = U,es, tB(0g) = tc(Tg)
= Uyes, 9 = [M],(g) which is equal, by Lemma 6, to [AM],. O

4 Inhabitation Reduces to Definability

We now prove that the undecidability of the Definability Problem follows from
the undecidability of the inhabitation problem (for game types) in CDV. A
preliminary version of this result was announced in the invited paper [8].

The proof we present here is obtained by linking via a suitable logical relation
# the continuous model S built in the previous section and F = {Fa}aero0 =
Full(P(X)), where X C; A. Let .# be the logical relation between S and F
generated by taking the identity at ground level (indeed Sy = Fy = P(X)).

Lemma 8. .# is a logical retract, i.e. at every level A € T° we have Vfi, fo €
Sa, Za(f1) N Fa(f2) £ 0 iff f1 = fo. Equivalently, both next statements hold:

(i) for all f € Sy there is g € Fa such that f F4 g,
(i) for all f, ' € Sa,g € Faif f Fa g and f' F4 g then f = ['.

Proof. We prove the main statement by induction on A, then both items follow.
The base case A = 0 is trivial, so we consider the case A =B — C.
(=) By definition of Z4(f1), -Za(f2) we have:

Falf) N Ia(f2) = {h | Vg € Sp,Vk € Ip(9), h(k) € Jo(f1(9)) N Fo(fa(9))}-

Now, Za(f1) N Fa(f2) # 0 entails Zo(f1(g9)) N Lo (f2(g)) # 0 for all g € Sp.
By induction, this holds when fi(g) = fa(g) for all g € Sg, i.e. when f; = fo.

(<) If f1 = fo then Iy (f1) ={h | Vg € SB,Vk € I5(g),h(k) € Z=(f1(9))}.
To prove Z4(f1) # 0, we build a relation h C Fp X F¢ that is actually functional
and belongs to it. Fix any d € F¢ and, for every g € Sp, an element r, €
Jc(f1(g)) which exists by induction hypothesis. Define h as the smallest relation
such that (k,ry) € hif k € Ig(g), and (k,d) € hif k ¢ U, cs, ZB(9)- As, by
induction hypothesis, .#5(g1) and #5(g2) are disjoint for all g; # go then h is
functional. By construction, h € Jo(f1(g))- O

As a consequence we get, for every subset S C Su, that S, (Fa(5)) = S.
Given f € Sy we write f1 for its upward closure in S4: {f' € Sa | f C f'}.

Proposition 2. Let 0 € Z(A). For every normal A-term M having type A we
have ba M : o iff [M]" € Fa(1a(0)?).

Proof. We have the following computable chain of equivalences:
FaM:o <= F{ M :o, by Lemma 4,
— [M]S €ua(o)t, by Proposition 1,
— [M]F € F4(ta(o)), by Lemma 1 plus Lemma 8.
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Theorem 9. The undecidability of the Definability Problem follows by a reduc-
tion from the one of the Inhabitation Problem for game types, Theorem 2(2).

Proof. Suppose by contradiction that DP is decidable. We want to decide whether
0 € Uaero xc,a Ex(A) is inhabited in CDV. By Theorem 3 and Corollary 1 we
can focus on normal simply typed A-terms. Now we can take the set Y of all
atoms in o, compute the simple type A such that o € =y (A), and effectively con-
struct the finite set Z4(va(0)1) C Full(Y). If DP is decidable, then we can also
decide with finitely many tests whether there is a A-definable f € Z4(va(0)1).
By Proposition 2 such an f exists if and only if ¢ is inhabited. This yields a re-
duction of THP for game types (hence for uniform types, Theorem 6) to DP. O

5 Definability Reduces to Inhabitation

In this section we prove the converse of Theorem 9, namely that the undecid-
ability of inhabitation follows directly from the undecidability of A-definability
in the full model F = Full(X) over a fixed set X C¢ A. The main idea is a simple
embedding of the elements of F into the uniform intersection types.

Also in this proof the continuous model S = Cont(P(X), C) will play a key
role. (Remark that the ground set of S is still P(X), while F is now over X.)
We start by defining an injection ¢4 : F4 — Sa by induction on A:

— if A=0, then pa(f) = {f},
—if A=B — C, then pa(f) = |_|g€].-B eB(9) = vc(f(9))-

Now, given f in F4 we define an intersection type &, in =(A) as follows:

— if A =0, then & = f,
—if A= B — C, then & = /\ge}‘B €9 = E1(9)

Lemma 9. For every f in Fa, we have pa(f) = va(&y).

We consider the logical relation _# between the full model F and the con-
tinuous model S generated by _#o = {(f,F) | f € F C Fo}.

Lemma 10. For every f € Fa and g € Sy we have f 74 g iff pa(f) C g.

Proof. By induction on A, the case A = 0 being obvious. Let A = B — C.

(=) Suppose f _Za g. We want to prove that pa(f) C g. That is, for all
h € Sp, we have A (f)(h) C g(h). Let h € Sp, then by definition of ¢4, we have
1 (F)() = L{gc (k) | o5(k) C h.k € Fg}. But op(k) C h implies k£ h
by induction hypothesis, which implies that f(k) Zc g(h) since f #Za g. Now
using the induction hypothesis for C, we get pc(f(k)) C g(h). That is, @4 (f)(h)
is a supremum of things all of which are below g(h), thus A (f)(h) C g(h).

(<) Suppose pa(f) C g. Let h € Fp and h' € Sp with h _#Zp R/, that is, by
the induction hypothesis, with ¢ 5(h) C h'. We want to show that f(h) Zc g(h')
or, equivalently, again by the induction hypothesis, that o (f(h)) C g(h’). Now,
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by definition, ¢4(f) (') = Li{gc(F(K)) | ¢n(k) C ',k € Fp}, and by assump-
tion h € Fp and ¢p(h) T k', so oc(f(h)) T pa(f)(R'). On the other hand,
©a(f) C g as functions on Sy and b’ € Sg, so pa(f)(h') T g(h'). By transitiv-
ity of the order we obtain pc(f(h)) C g(h’) as required. O

Proposition 3. Given f in Fa, we have [M1" = f iff Fn M : &5
Proof. We have the following computable chain of equivalences:

M =f = f Fa [M]°, by Lemma 1,
= o(f)C [M]S, by Lemma 10,
< 1a(§y) C [M]S, by Lemma 9,
= bA M : &y, by Proposition 1. O

Therefore f is definable iff {; is inhabited. This yields a reduction of the
Definability Problem (resp. DP,,) to the Inhabitation Problem (resp. IHP,,).

Theorem 10. 1. The undecidability of IHP, for alln > 1 follows by a reduc-
tion from the undecidability of DP,, for alln > 1, Theorem 1(2).

2. The undecidability of the Inhabitation Problem follows by a reduction from
the undecidability of the Definability Problem, Theorem 1(1).
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