

Regular Languages & Finite Automata

Now we are going to play a different 'ball-game'. Let $\Sigma = \{a, b\}$

$S \rightarrow 0 \mid E$
$E \rightarrow \lambda \mid aEa \mid bEb$
$0 \rightarrow a \mid b \mid a0a \mid b0b$

G_1 a *context-free grammar*

Productions (always start with S)

$S \Rightarrow E \Rightarrow aEa \Rightarrow abEba \Rightarrow abba$

$S \Rightarrow E \Rightarrow bEb \Rightarrow baEab \Rightarrow babEbaba \Rightarrow babaEabab \Rightarrow babaabab$

$S \Rightarrow 0 \Rightarrow b0b \Rightarrow bab$

$S \Rightarrow 0 \Rightarrow b0b \Rightarrow ba0ab \Rightarrow babab$

$L(G) = \{w \in \Sigma^* \mid w \text{ is a palindrome}\},$

where w is a palindrome if $w = w^R$

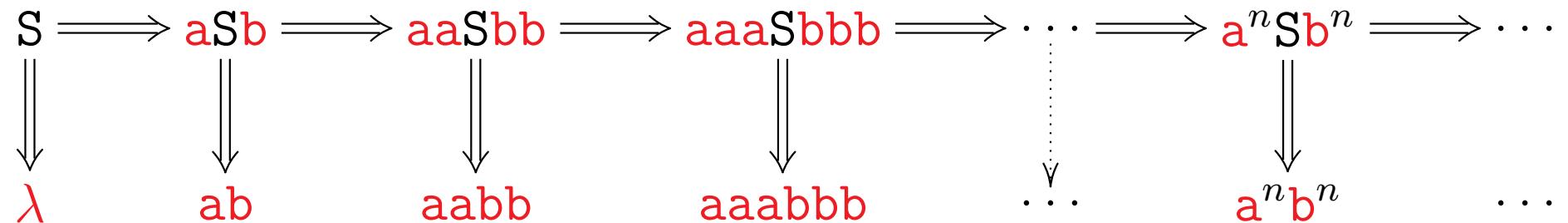
and word reversal is defined by $\lambda^R = \lambda$, $(w\sigma)^R = \sigma(w^R)$ for $\sigma \in \Sigma^*$

Other context-free grammars

$$S \rightarrow \lambda \mid aSb$$

G_2

All possible productions



Therefore

$$L(G_2) = \{a^n b^n \mid n \geq 0\}$$

Another grammar

$$S \rightarrow ab \mid aSb$$

G_3

$$L(G_3) = \{a^n b^n \mid n > 0\}$$

Definition. A language L is called *context-free* if for some context free grammar G one has $L = L(G)$

Let $\Sigma^* = \{a, b, c\}$

Claim. $L = \{a^n b^m c^{2n+1} \mid n \geq 0\}$ is context-free

Let us first show

$L' = \{a^n c^{2n+1} \mid n \geq 0\}$ is context-free

Use G' given by
$$S \rightarrow c \mid aScc$$

For L use G given by
$$S \rightarrow Bc \mid aScc$$

$$B \rightarrow \lambda \mid bB$$

Fact. $\{a^n b^n c^n \mid n \geq 0\}$ is *not* context-free

Let Σ be a finite alphabet

A *context-free grammar* G over Σ needs a finite set V of *auxiliary* symbols and consists of productionrules of the vorm

$$X \rightarrow w$$

with $X \in V$ and $w \in (\Sigma \cup V)^*$. There is an $S \in V$ (start)

Using G a language is generated using a relation \Rightarrow ('*produces*') defined as follows (where u, v, w, x, y are arbitrary elements of $(\Sigma \cup V)^*$)

$$\begin{aligned} X \rightarrow w &\quad \text{implies} \quad xXy \Rightarrow xwy \\ u \Rightarrow v, \quad v \Rightarrow w &\quad \text{implies} \quad u \Rightarrow w \end{aligned}$$

The *language generated by G* is

$$L(G) = \{w \in \Sigma^* \mid S \Rightarrow w\}$$

Notation. $X \rightarrow w_1 \mid w_2$ abbreviates $\begin{array}{c} X \rightarrow w_1 \\ X \rightarrow w_2 \end{array}$

A language L is *context-free* if $L = L(G)$ for some context-free G

The *context sensitive languages* start with production rules of the form

$$uXv \rightarrow uwv,$$

with $u, v \in (\Sigma \cup V)^*$ arbitrary and $w \in \Sigma^*$ not λ .

For the *enumerable languages* production rules are of the form

$$uXv \rightarrow uwv,$$

with $u, v \in (\Sigma \cup V)^*$ and $w \in \Sigma^*$ arbitrary.

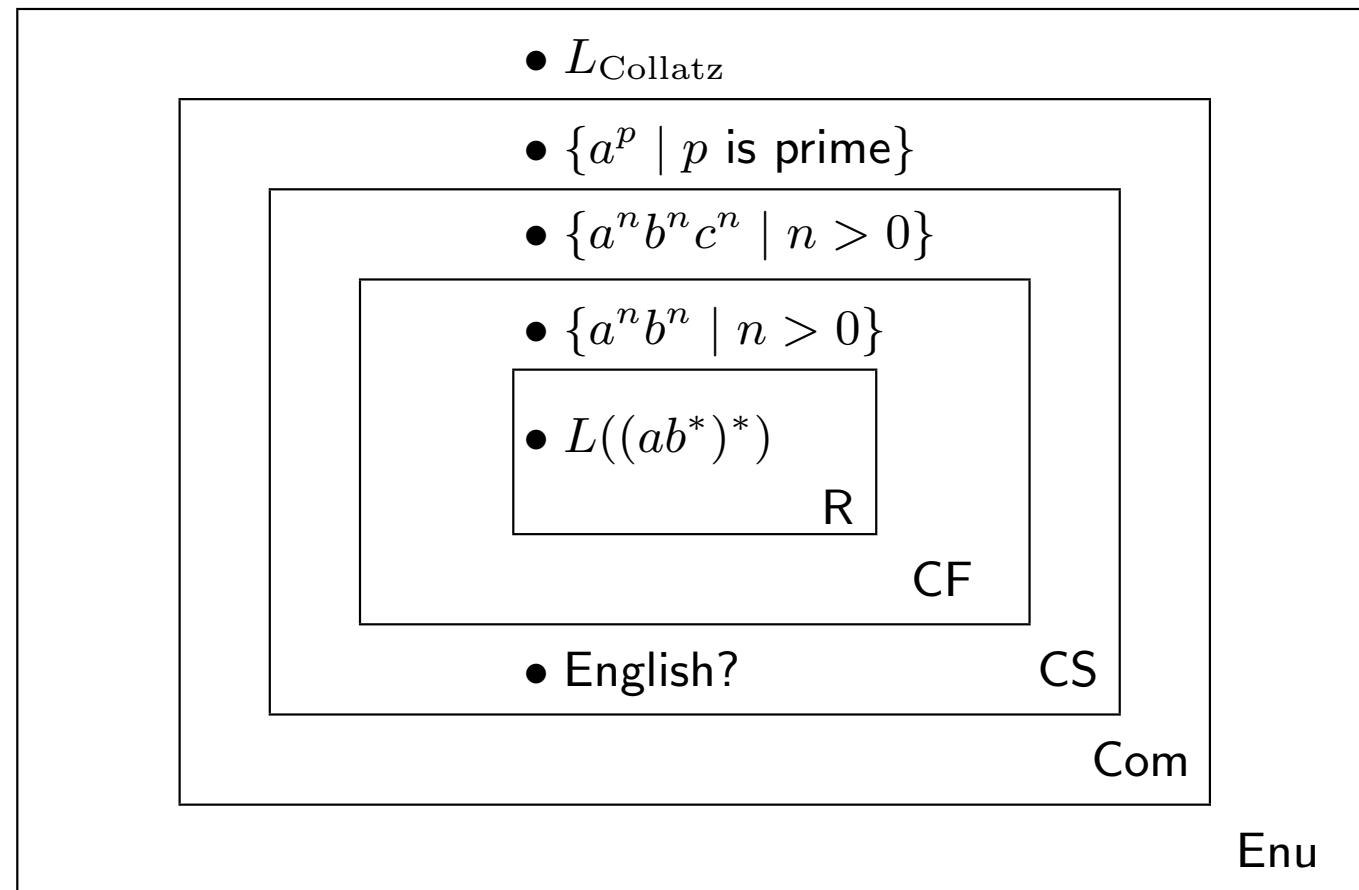
For *unrestricted languages* the production rules are of the form

$$u \rightarrow v,$$

with $u, v \in (\Sigma \cup V)^*$.

These are equivalent to the enumerable languages.

A language is called *computable* if both L and $\bar{L} = \Sigma^* - L$ are enumerable. Let R , CF , CS , Com , Enu be notations for the regular, context-free, context-sensitive, computable and enumerable languages, respectively. Then $R \subseteq CF \subseteq CS \subseteq Com \subseteq Enu$.



The Chomsky hierarchy

Let $\Sigma = \{M, I, U\}$.

Define the language L over Σ by the following grammar (Hofstadter).

axiom	MI
rules	$xI \Rightarrow xIU$ $Mx \Rightarrow Mxx$ $xIIIy \Rightarrow xUy$ $xUUy \Rightarrow xy$

Here $x, y \in \Sigma^*$. This means that by definition $MI \in L$

if $xI \in L$, then also $xIU \in L$

if $Mx \in L$, then also $Mxx \in L$

if $xIIIy \in L$, then also $xUy \in L$

if $xUUy \in L$, then also $xy \in L$

Problem. Does MU belong to L ?

Define L_{Collatz} as follows.

axiom	a		
rule	$w \Rightarrow ww$		
	$wwwaa$	\Rightarrow	wwa

Show that $\{a^n \mid 1 \leq n \leq 10\} \subseteq L_{\text{Collatz}}$

Prove or refute Collatz' conjecture

$$L_{\text{Collatz}} = \{a^n \mid n \geq 1\}$$

The first correct solution with convincing proof sent by email before 01.07.2012 earns 1000€.