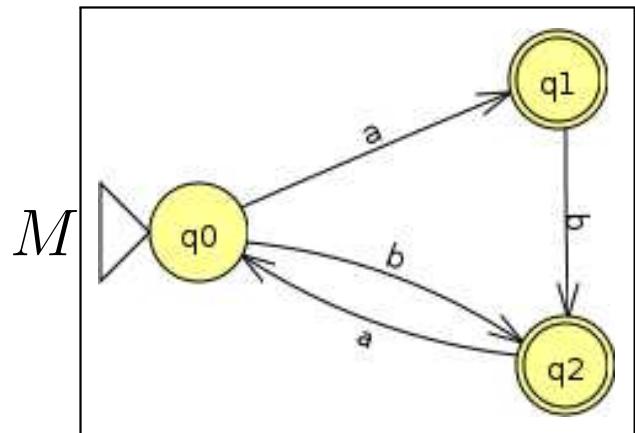
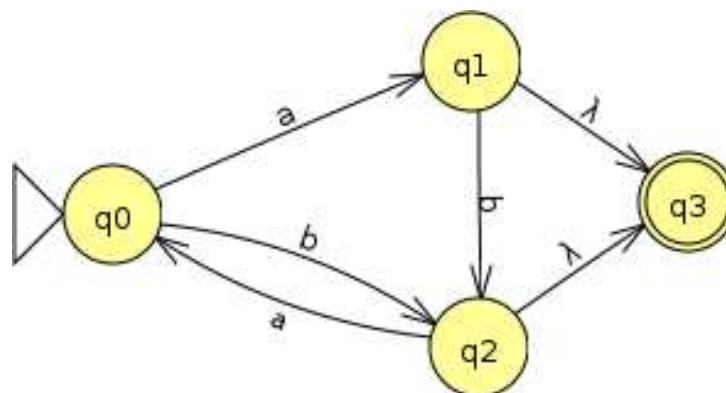
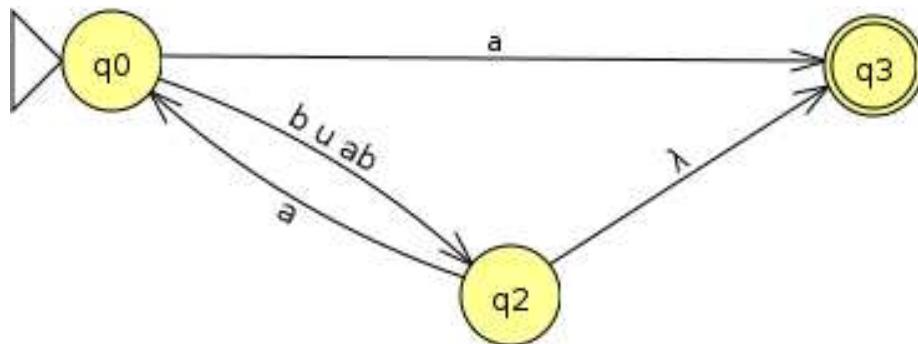
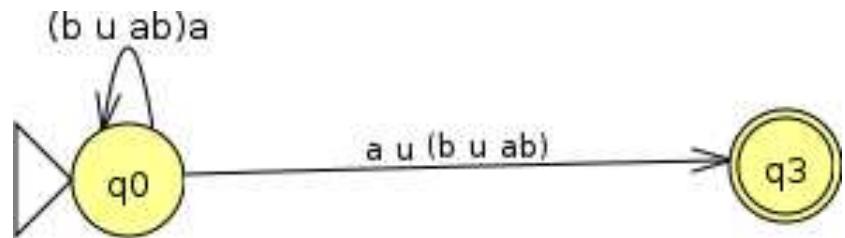
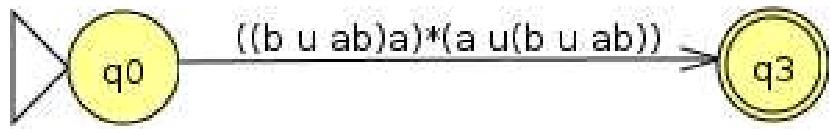


Regular Languages & Finite Automata



$$e = ((b \cup ab)a)^*(a \cup (b \cup ab))$$

$$L(M) = L(e)$$

Theorem. Let $L \subseteq \Sigma^*$. Then the following are equivalent

- (i) L is m-regular, i.e. $L = L(M)$ for some DFA (PFA, NFA, NFA_λ)
- (ii) L is regular, i.e. $L = L(e)$ for some regular expression

Proof. (i) \Rightarrow (ii) The steps on previous page preserve language

(ii) \Rightarrow (i) 'By induction' (recursion) on a regular expression e
a machine M_e is defined, which is an NFA_λ preserving language
that is, $L(e) = L(M_e)$

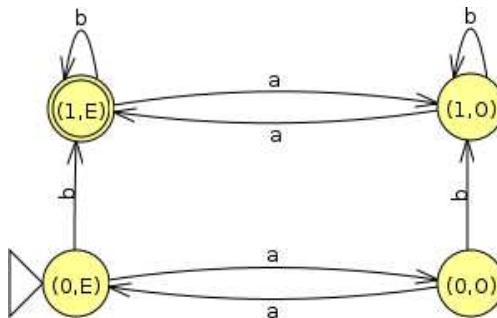
NFA_λ is changed into a DFA in a language preserving way
by considering as new states certain sets of states of the first machine,
see previous lecture. ■

Let $\Sigma = \{a, b\}$. We will develop a tool to show that

$$\{a^n b^n \in \Sigma^* \mid n \geq 0\}$$

is not regular over Σ .

Consider



What happens if a word of length 4, 5, 6, 7, ... is accepted, but not necessarily if it is of length 0, 1, 2, 3?

It has made a 'cycle' which can be repeated arbitrarily often!

'baaaa' is accepted, and also all 'baa(aa) n '. We say 'aa' *can be pumped*.

Theorem. Let $L \subseteq \Sigma^*$ be a regular language

Then there exists a number $p \geq 1$ (pumping number) such that for every $w \in L$ with $|w| \geq p$ one has the following ($|w|$ is the number of symbols of w)

- (i) w can be split in three parts: $w = xyz$
- (ii) $|xy| < p$ and $|y| > 0$
- (iii) for all $n \geq 0$ one has $xy^n z \in L$. $\exists p \forall w \exists xyz \forall n$

Corollary $L = \{a^n b^n \mid n \geq 0\}$ is not regular

Proof. Suppose L is regular. Let p be as in the pumping lemma

Then $w = a^p b^p \in L$ satisfies $|w| \geq p$

Therefore we could write $a^p b^p = xyz$, with $|xy| < p$ and $xy^n z \in L$

Then $xy = a^q$, with $q < p$. But then $xy^2 z \notin L$. Contradiction. ■

$$\begin{aligned}
 \neg \exists x. P(x) &\Leftrightarrow \forall x. \neg P(x) \\
 \neg \forall x. P(x) &\Leftrightarrow \exists x. \neg P(x) \\
 \neg \exists x. [Q(x) \ \& \ P(x)] &\Leftrightarrow \forall x. [Q(x) \Rightarrow \neg P(x)] \\
 \neg \forall x. [Q(x) \Rightarrow P(x)] &\Leftrightarrow \exists x. [Q(x) \ \& \ \neg P(x)]
 \end{aligned}$$

Pumping lemma. For all regular languages L

$$\exists p \forall w \in L. [|w| \geq p \Rightarrow$$

$$\exists xyz. [w = xyz \ \& \ |xy| < p \ \& \ |y| > 0 \ \& \ \forall n \in \mathbb{N}. xy^n z \in L]$$

Application. In order to show that L is **not regular** we must show

$$\forall p \exists w \in L. [|w| \geq p \ \&$$

$$\forall xyz. [w = xyz \ \& \ |xy| < p \ \& \ |y| > 0 \ \& \ \exists n \in \mathbb{N}. xy^n z \notin L]$$

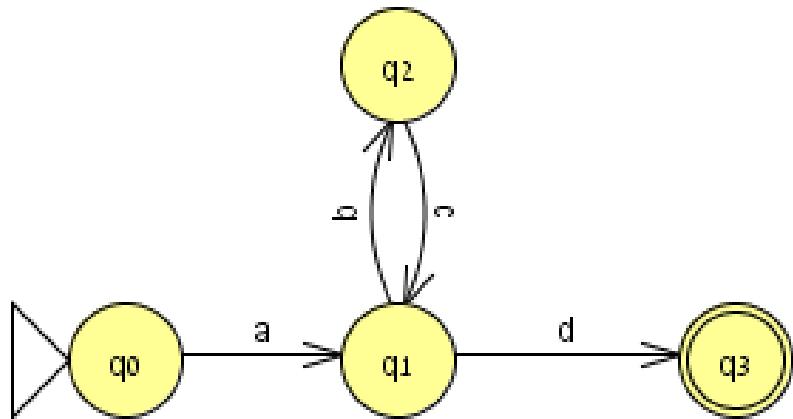
Let L be regular. Then L is m-regular. Let L be accepted by M .

Let M have p states

Then a word w of length $\geq p$ must pass twice a state q

Then $w = xyz$, where we read x to go to q , read y to loop at q , read z to go to a final node. But then $xy^n z$ is accepted for all n . ■

Example $abcd \in L(M)$



Since q_1 is visited twice we can pump: $a(bc)^n d \in L(M)$