

[image: image1.jpg]. Clean |

LANGUAGE REPORT

version 1.3.1

September 2001

Rinus Plasmeijer

Marko van Eekelen

Department of Software Technology

University of Nijmegen

Hilt - High Level Software Tools B.V.

Nijmegen

[image: image2.jpg]. Clean |

LANGUAGE REPORT

Version 1.3.1

Preface

	•
Introduction
•
More Information on Clean

•
About this Language Report
•
Some Remarks on the Clean Syntax
•
Notational Conventions Used in this Report
	•
How to Obtain Clean

•
Current State of the Clean System
•
Copyright, Authors and Credits
•
Final Remarks

Introduction

Concurrent Clean is a practical appli​cable general purpose lazy pure functio​nal pro​gram​ming language suited for the development of real world appli​ca​tions.

Clean (Brus et al., 1987; Nöcker et al., 1991; Plasmeijer and Van Eekelen, 1993) is well-known for its many features and its fast compiler produc​ing very efficient code (Smetsers et al., 1991). Clean runs on a PC (Windows 2000, ‘98, ’95, WindowsNT). There are also versions running on the Mac and Linux.

In Clean we have incorporated those features we felt people really need to write real world programs (such as records, arrays, higher order types, type classes, type constructor classes and much more) based on our own expe​rience with writing complicated applications.

People already fa​miliar with other functional programming languages (such as Haskell; (Hudak et al., 1992), Gofer XE "Gofer" /Hugs XE "Hugs" (Jones, 1993), Miranda XE "Miranda" (Turner, 1985) and SML XE "SML" (Harper et al., 1986)) will have no diffi​culty to pro​gram in Clean. We hope that you will enjoy Clean's rich collection of fea​tures, Clean's compilation speed and the qual​ity of the pro​duced code (we ge​ne​rate native code for all plat​forms we support).

Clean has many features among which some very special ones. Functional languages are usually im​plemented using graph rewriting techniques. Clean is the only functional languages which basic se​mantics is defined in terms of Term Graph Rewriting (Barendregt et al., 1987; Sleep et al., 1993, Eekelen et al., 1997) thus providing a better framework for controlling the time space behaviour of functional programs. Of par​ticular im​por​tance for practical use is Clean’s Unique​ness Type System (Barendsen and Smetsers, 1993a) en​abling the in​corpo​ration of de​structive up​da​tes of arbi​trary ob​jects within a pure functional framework and the cre​ation of direct inter​faces with the out​side world.

Clean’s "unique" features have made it possible to predefine (in Clean) a sophisticated and efficient I/O library (Achten and Plasmeijer, 1992 & 1995). The Clean I/O library XE "I/O library" enables a Clean program​mer to specify interactive window based I/O applications on a very high level of abstraction. The library forms a platform inde​pendent inter​face to window systems: one can port window based I/O ap​plicati​ons written in Clean to different platforms without any mo​dification of source code.

In the new 1.0 I/O library call-back functions and I/O definitions can be defined on arbitray local states thus providing an object-oriented style of programming (Achten, 1996; Achten and Plasmeijer, 1997). Different kind of call-back functions and I/O definitions can be ac​tive at the same time. This makes it possible to combine different interactive Clean programs into a new application (a kind of multi-tasking within the same application). The applications can be regar​ded as lightweight pro​cess XE "pro​cess" es which can communi​cate via files, shared state or message passing XE "message passing" primiti​ves ((a)synchronous message pas​sing, remote pro​cedure call). All this is provided in a pure, se​quen​tial functional world in which the call-back functions act as indivisible event handlers.

More Information on Clean

There is a separate manual in preparation describing the standard libraries (including the I/O library) which are avail​able for Clean. See our pages on the net (www.cs.kun.nl/~clean).

A book on functional programming in Clean is being written in collaboration with the Universities of Utrecht, Leiden and the polytechnical Universities of Arnhem and Leeuwarden. The book contains lots of case studies. A draft version of this book is available on the net (www.cs.kun.nl/~clean).

The basic concepts behind Clean (albeit version 0.8) as well as an exploination of the im​plemen​tation tech​niques used can be found in Plasmeijer and Van Eekelen (Adisson-We​sley, 1993).

There are many papers on the concepts introduced by the Clean group (such as term graph rewrit​ing (Barendregt et al., 1987), lazy copying (van Eekelen et al., 1991), abstract reduction (Nöcker, 1993), unique​ness ty​p​ing (Barendsen and Smet​sers, 1993, 1996), Clean's I/O concept (Achten, 1996 & 1997), Parallel Clean (Kesseler, 1991 & 1996). For the most recent information on papers and information about Clean please check our web pages (www.cs.kun.nl/~clean).

About this Language Report

In this report the syntax and semantics of Clean version 1.3 are explained. We always give a motiva​tion why we have included a certain feature. Although the re​port is not in​tended as introduction into the language, we did our best to make it as readable as possible. Nevertheless, one sometimes has to work through several sections spread all over the report.

At several places in this report context free syntax fragments of Clean are given. We sometimes repeat fragments which are also given elsewhere just to make the description clearer (e.g. in the uniqueness typing chapter we repeat parts of the syntax for the classical types). We hope that this is not confusing. The complete collec​tion of con​text free grammar rules are summarised in Ap​pendix A.

Some Remarks on the Clean Syntax

The syntax of Clean is similar to the one used in most other modern functional lan​gua​ges. However, there are a couple of small syntactic differences we want to point out here for people who don't like to read lan​guage reports.

In Clean the arity of a function is reflected in its type. When a function is defined its uncurried type is specified! To avoid any con​fusion we want to explicitly state here that in Clean there is no restric​tion whatsoever on the cur​ried use of functions. However, we don't feel a need to express this in every type. Actually, the way we express types of functions more clearly reflects the way curried functions are in​ternally treated.

E.g., the standard map function (arity 2) is specified in Clean as follows:

map::(a -> b) [a] -> [b]

map f []

= []

map f [x:xs]
= [f x:map f xs]

Each predefined structure such as a list, a tuple, a record or array has its own kind of brackets: lists are always de​notated with square brackets […], for tuples the usual parentheses are used (…,…), curly braces are used for records (indexed by field name) as well as for arrays (indexed by number).

In types funny symbols can appear like., u:, *, ! which can be ignored and left out if one is not inte​r​ested in uniqueness typing or strictness.

There are only a few keywords in Clean leading to a heavily overloaded use of : and = symbols:

function::argstype -> restype

//
type specification of a function

function pattern | guard = rhs

//
definition of a function

selector = graph

//
definition of a constant/CAF/graph

function args :== rhs

//
definition of a macro

::Type args = typedef

//
an algebraic data type definition

::Type args :== typedef

//
a type synonym definition

::Type args

//
an abstract type definition
As is common in modern functional languages, there is a lay-out rule in Clean (see 2.3). For reasons of portability it is assumed that a tab space is set to 4 white spaces and that a non-pro​portional font is used.

Function definition in Clean making use of the lay-out rule.

primes:: [Int]

primes = sieve [2..]

where

sieve:: [Int] -> [Int]

sieve [pr:r]
= [pr:sieve (filter pr r)]

filter:: Int [Int] -> [Int]

filter pr [n:r]

| n mod pr == 0
= filter pr r

| otherwise

= [n:filter pr r]

Notational Conventions Used in this Report

The following notational conven​tions are used in this report. Text is printed in Microsoft Sans Seril 9pts,

the context free syntax descriptions are given in Microsoft Sans Seril 9pts,

exam​ples of Clean programs are given in Courier New 9pts,

•
Semantical restrictions are always given in a bulleted (•) list-of-points. When these restrictions are not obeyed they will almost always result in a compile-time error. In very few cases the re​stric​tions can only be detected at run-time (array index out-of-range, partial function called out​side the do​main).

The following notational conventions are used in the context-free syntax descriptions:

[notion]

means that the presence of notion is optional

{notion}

means that notion can occur zero or more times

{notion}+

means that notion occurs at least once

{notion}-list

means one or more occurrences of notion separated by comma's

terminals

are printed in 9 pts courier

keywords

are printed in 9 pts courier
terminals

that can be left out in lay-out mode are printed in 9 pts courier
~

is used for concatenation of notions

{notion}/ EQ \D\ba5() ~str

means the longest expression not containing the string str

All Clean examples given in this report assume that the lay-out dependent mode has been chosen which means that redundant semi-colons and curly braces are left out (see 2.3.3).

How to Obtain Clean

Clean and the Integrated Development Environment (IDE) can be used free of charge. They can be obtained

•
via World Wide Web (www.cs.kun.nl/~clean) or

•
via ftp (ftp.cs.kun.nl in directory pub/Clean).

Clean is available on several platforms. Please check our WWW-pages regularly to see the latest news. New versions of Clean in general ap​pear first on Windows and later on Mac systems. Versions for Linux platforms appear less frequently.

Current State of the Clean System

Release 1.3.1 (September 2001).

-
There are no significant changes to the previous release of 1997. The lay-out of the manual has been changed and hyperlinks are added such that the manual is easier to use on a screen. This manual will be used as a base for the new Clean 2.0 manual. Clean 2.0 differs significantly from Clean 1.3.

Previous Releases. The first release of Clean was publically available in 1987 and had version number 0.5 (at that time we thought half of the work was done, ;-)). At that time, Clean was only thought as an intermediate language. Many releases followed. One of them was version 0.8 which is used in the Plasmeijer & Van Eekelen Bible (Adisson-Wesley, 1993).

Copyright, Authors and Credits

Concurrent Clean and the Concurrent Clean Development System are a product of

Hilt - High Level Software Tools B.V.,

The Netherlands.

Hilt is a Dutch company owned by the Clean team founded to ensure excellent technical support for commercial environments. Hilt furthermore educates in functional programming and developes commercial applications using Clean.

Clean, Concurrent Clean and the Concurrent Clean Development System, copyright 1987 - 2001, Hilt B.V. XE "Hilt B.V." , The Netherlands.

Clean is a spin-off of the research performed by the re​search group on Functional Programming Lan​guages, Computing Science Institute, at the Uni​versity of Nijmegen under the super​vision of prof. dr. ir. Rinus Plasmeijer.

The Concurrent Clean System is developed by:

Peter Achten:

Object I/O library

John van Groningen:

Code generators (Mac (Motorola, PowerPC), PC (Intel), Sun (Sparc)),

Clean compiler, Low level interfaces, all machine wizarding.

Eric Nöcker:

Strictness analyser via abstract reduction

Sjaak Smetsers:

Clean compiler,

All type systems (including uniqueness typing and type classes),

Ron Wichers Schreur:

Clean Compiler, Testing,

Clean distribution on the net.

Marko van Eekelen:

Clean semantics

Rinus Plasmeijer:

Overall language design and implementation supervision.

Special thanks to the following people:

Christ Aarts, Steffen van Bakel, Erik Barendsen, Henk Barendregt, Pieter Hartel, Marco Kesseler, Hans Koetsier, Pieter Koopman, Eric Nöcker, Leon Pillich, Ronan Sleep and all the Clean users who helped us to get a bet​ter system.

Many thanks to the following sponsors:

-
the Dutch Technology Foundation (STW);

-
the Dutch Foundation for Scientific Research (NWO);

-
the International Academic Centre for Informatics (IACI);

-
Kropman B.V., Installation Techniques, Nijmegen, The Netherlands;

-
Hitachi Advanced Research Laboratories, Japan;

-
the Dutch Ministry of Science and Education (the Parallel Reduction Machine project (1984-1987)) who initiated the Concurrent Clean research;

-
Esprit Basic Research Action (project 3074, SemaGraph: the Semantics and Pragmatics of Graph Rewriting (1989-1991));

-
Esprit Basic Research Action (SemaGraph II working group 3646 (1992-1995));

-
Esprit Parallel Computing Action (project 4106, (1990-1991));

-
Esprit II (TIP-M project area II.3.2, Tropics: TRansparent Object-oriented Parallel Information Com​puting System (1989-1990)).

A system like Clean cannot be produced without an enormous investment in time, effort and money. We would therefore like to thank all commercial Clean users who are decent enough to pay the license royalties.

Final Remarks

We hope that Clean indeed enables you to program your applications in a con​venient and effi​cient way. We will continue to improve the language and the system. We greatly appreciate your com​ments and suggestions for further improvements.

October 1997

Rinus Plasmeijer and Marko van Eekelen

Affiliation:
Hilt
Dep. of Software Technology

High Level Software Tools B.V.

Mail address:
Universitair Bedrijven Centrum,
University of Nijmegen,

Toernooiveld 100,
Toernooiveld 1,

6525 EC Nijmegen,
6525 ED Nijmegen,

The Netherlands.
The Netherlands.

e-mail:
rinus@cs.kun.nl
rinus@cs.kun.nl

marko@cs.kun.nl
marko@cs.kun.nl

Phone:
+31 6 502 66544
+31 24 3652644

Fax:
+31 24 3652525
+31 24 3652525

Clean on internet:
www.cs.kun.nl/~clean

Clean on ftp:
ftp.cs.kun.nl in pub/Clean

Questions about Clean:
clean@cs.kun.nl

Subscription mailing list::
clean@cs.kun.nl, subject:: subscribe

[image: image3.jpg]. Clean |

Table of Contents

iPreface

iIntroduction

iiMore Information on Clean

iiAbout this Language Report

iiSome Remarks on the Clean Syntax

iiiNotational Conventions Used in this Report

iiiHow to Obtain Clean

ivCurrent State of the Clean System

ivCopyright, Authors and Credits

vFinal Remarks

viiTable of Contents

1Basic Semantics

11.1
Graph Rewriting

21.1.1
A Small Example

41.2
Global Graphs

41.3
Key Features of Clean

7Defining Modules

72.1
Identifiers, Scopes and Name Spaces

72.1.1
Naming Conventions of Identifiers

82.1.2
Scopes and Name Spaces

82.1.3
Nesting of Scopes

92.2
Modular Structure of Clean Programs

92.3
Implementation Modules

92.3.1
The Main or Start Module

9I/O Using the Console

10I/O on the Unique World

102.3.2
Scope of Global Definitions in Implementation Modules

112.3.3
Begin and End of a Definition: the Lay-Out Rule

122.4
Definition Modules

132.5
Importing Definitions

132.5.1
Explicit Imports of Definitions

142.5.2
Implicit Imports of Definitions

142.6
System Definition and Implementation Modules

15Defining Functions

153.1
Defining Functions

163.2
Patterns

163.2.1
Constructor Patterns

173.2.2
Simple Constructor Patterns

173.2.3
Variables and Wildcards in Patterns

173.2.4
Constant Values of Basic Type as Pattern

183.2.5
List Patterns

183.2.6
Tuple Patterns

183.2.7
Record Patterns

193.2.8
Array Patterns

193.3
Guards

203.4
Expressions

203.4.1
Applications

213.4.2
Constructor or Function Name

213.4.3
Graph Variables

213.4.4
Creating Constant Values of Basic Type

223.4.5
Creating Lists

22Simple Lists

23DotDot Expressions

23List Comprehensions

243.4.6
Creating Tuples

243.4.7
Creating Records and Selection of Record Fields

24Simple Records

25Record Update

25Selection of a Record Field

263.4.8
Creating Arrays and Selection of field Elements

26Simple Array

27Array Update

29Selection of an Array Element

293.4.9
Lambda Abstraction

303.4.10
Case Expression and Conditional Expression

303.4.11
Let Expression: Local Definitions for Expressions

313.5
Local Definitions

313.5.1
Where Block: Local Definitions for a Function Alternative

323.5.2
With Block: Local Definitions for a Guarded Alternative

333.5.3
Defining Local Functions

333.5.4
Defining Local Constants

34Selectors

353.6
Special Local Definitions

353.6.1
Strict Let Expression: Strict Local Constants

353.6.2
Let-Before Expression: Local Constants for a Guard

39Defining Types

394.1
Predefined Types

394.1.1
Basic Types

404.1.2
Predefined Abstract Types

404.1.3
List Types

404.1.4
Tuple Types

414.1.5
Array Types

414.1.6
Arrow Types

414.2
Defining New Types

414.2.1
Defining Algebraic Data Types

42Defining Infix Data Constructors

42Using Higher Order Types

43Defining Algebraic Data Types with Existentially Quantified Variables

44Semantic Restrictions on Algebraic Data Types

444.2.2
Defining Record Types

454.2.3
Defining Synonym Types

464.2.4
Defining Abstract Data Types

464.3
Typing Functions

474.3.1
Typing Curried Functions

484.3.2
Typing Operators

484.3.3
Typing Partial Functions

484.4
Typing Overloaded Functions

494.4.1
Type Classes

504.4.2
Functions Defined in Terms of Overloaded Functions

514.4.3
Instances of Type Classes Defined in Terms of Overloaded Functions

514.4.4
Type Constructor Classes

524.4.5
Generic Instances

524.4.6
Default Instances

534.4.7
Defining Derived Members in a Class

534.4.8
A Shorthand for Defining Overloaded Functions

544.4.9
Classes Defined in Terms of Other Classes

544.4.10
Exporting Type Classes

554.4.11
Semantic Restrictions on Type Classes

554.4.12
The Costs of Overloading

554.5
Defining Uniqueness Types

564.5.1
Basic Ideas Behind Uniqueness Typing

584.5.2
Attribute Propagation

594.5.3
Defining New Types with Uniqueness Attributes

604.5.4
Uniqueness and Sharing

62Higher Order Uniqueness Typing

63Uniqueness Type Coercions

634.5.5
Combining Uniqueness Typing and Overloading

64Constructor Classes

664.5.6
Higher-Order Type Definitions

674.5.7
Destructive Updates using Uniqueness Typing

69Annotations and Directives

695.1
Annotations to Change Lazy Evaluation into Strict Evaluation

695.1.1
Advantages and Disadvantages of Lazy versus Strict Evaluation

705.1.2
Strict and Lazy Context

705.1.3
Space Consumption in Strict and Lazy Context

715.1.4
Time Consumption in Strict and Lazy Context

715.1.5
Changing Lazy into Strict Evaluation

72Functions with Strict Arguments

72Strictness Annotations in Type Definitions

73Strictness Annotations on Instances of Predefined Type

73Strictness Annotations on Tuple Instances

74Strictness Annotations on Array Instances

74Strictness Annotations on List Instances

755.2
Defining Graphs on the Global Level

755.3
Defining Macros

765.4
Process Annotations

775.4.1
Process Creation

775.4.2
Process Communication

785.5
Efficiency Tips

81Context-Free Syntax Description

81A.1
Clean Program

81A.2
Import Definition

82A.3
Function Definition

84A.4
Macro Definition

84A.5
Type Definition

85A.6
Class Definition

85A.7
Names

86A.8
Denotations

87Lexical Structure

87B.1
Lexical Program Structure

87B.2
Comments

87B.3
Reserved Keywords and Symbols

91Bibliography

93Index

[image: image4.jpg]. Clean |

Chapter 1

Basic Semantics

	1.1
Graph Rewriting
1.2
Global Graphs
	1.3
Key Features of Clean

The semantics of Clean is based on Term Graph Rewriting XE "Term Graph Rewriting" Sys​tems (Barendregt, 1987; Plas​me​i​jer and Van Eekelen, 1993). This means that functions in a Clean pro​gram se​mantically work on graphs in​stead of the usual terms. This enabled us to incorporate Clean’s typical features (definition of cyclic data structures, lazy copying, uniqueness typing) which would otherwise be very difficult to give a pro​per semantics for. However, in many cases the programmer does not need to be aware of the fact that he/she is manipulating graphs. Evaluation of a Clean program takes place in the same way as in other lazy functional languages. One of the "differ​ences" between Clean and other functional languages is that when a variable occurs more than once in a function body, the se​mantics pre​scribe that the actual argument is shared (the semantics of most other lan​guages do not pre​s​cribe this although it is common practice in any implementation of a func​tional lan​guage). Fur​ther​more, one can label any expression to make the definition of cyclic structures possible. So, people familiar with other functio​nal languages will have no problems writing Clean programs.

When larger applications are being written, or, when Clean is interfaced with the non-functio​nal world, or, when efficiency counts, or, when one simply wants to have a good understanding of the lan​guage it is good to have some knowledge of the basic semantics of Clean which is based on term graph rewriting. In this chapter a short introduction into the basic semantics of Clean is given. An ex​tensive treatment of the underlying semantics and the implementation techniques of Clean can be found in Plasmeijer and Van Eekelen (1993).

1.1
Graph Rewriting

A Clean program XE "program" \b basically consists of a number of graph rewrite rule XE "graph rewrite rule" s (function definition XE "function definition" \b s) which spe​c​ify how a given graph (the .ib .initial expression;) has to be rewritten XE "expression:initial"
A graph XE "graph" \b is a set of nodes. Each node has a defining node-identifier XE "node-identifier" \b (the node-id XE "node-id" \b). A node XE "node" \b con​sists of a sym​bol XE "sym​bol" \b and a (possibly empty) sequence of applied node-id's (the argu​ments of the symbol) XE "symbol:arguments of a" \b

 XE "node-id:applied" Applied node-id's can be seen as refer​ence XE "refer​ence" \b s (arc XE "directed arc" \b s) to nodes in the graph, as such they have a direc​tion: from the node in which the node-id is applied to the node of which the node-id is the defining identifier.

Each graph rewrite rule XE "graph rewrite rule" \b consists of a left-hand side graph XE "left hand-side of a graph" \b (the pattern XE "pattern" \b) and a right-hand side (rhs) consist​ing of a graph XE "right hand-side of a graph " \b (the contractum XE "contractum" \b) or just a single node-id (a redirec​tion XE "redirec​tion" \b). In Clean rewrite rules are not comparing XE "rewrite rules:comparing" : the left-hand side (lhs) graph of a rule is a tree XE "tree" , i.e. each node identi​fier is applied only once, so there exists ex​actly one path from the root to a node of this graph.

A rewrite rule defines a (partial) function XE "function" \b

 XE "function:partial"

 XE "partial function" The function symbol XE "function symbol" \b is the root symbol of the left-hand side graph of the rule alternatives. All other symbols that appear in rewrite rules, are con​structor symbol XE "con​structor symbol" \b s.

The program graph XE "program graph" \b is the graph that is rewritten according to the rules. Initially, this pro​gram graph is fixed: it con​sists of a single node containing the symbol Start, so there is no need to spec​ify this graph in the program ex​plic​itly. The part of the graph that matches the pat​tern of a cer​tain rewrite rule is cal​led a redex XE "redex" \b (reducible ex​pression XE "reducible ex​pression" \b). A rewrite of a redex XE "rewrite of a redex" \b to its reduct XE "reduct" \b can take place ac​cording to the right-hand side of the cor​respond​ing rewrite rule. If the right-hand side is a contrac​tum then the rewrite consists of building this contrac​tum and doing a redi​rec​tion of the root of the re​dex to root of the right-hand side. Otherwise, only a redirec​tion of the root of the re​dex to the single node-id specified on the right-hand side is per​formed. A redirection of a node XE "redirection of a node" \b -id n1 to a node-id n2 means that all ap​plied occur​rences of n1 are replaced by occurrences of n2 (which is in re​ality com​monly imple​mented by overwriting n1 with n2).

A reduction strategy XE "reduction strategy" \b is a function that makes choices out of the available redexes. A re​du​cer XE "re​du​cer" \b is a pro​cess that reduces redexes that are indicated by the strategy. The result of a reducer is rea​ched as soon as the re​duction strategy does not indicate redexes any more. A graph is in nor​mal form XE "nor​mal form" \b if none of the patterns in the rules match any part of the graph. A graph is said to be in root normal form XE "root normal form" \b when the root of a graph is not the root of a redex and can never become the root of a redex. In general it is undecidable whether a graph is in root normal form.

A pattern XE "partial match" \b partially matches a graph if firstly the symbol of the root of the pattern equals the sym​bol of the root of the graph and sec​ondly in positions where symbols in the pattern are not syn​tac​ti​cally equal to symbols in the graph, the corresponding sub-graph is a redex or the sub-graph it​self is par​tially matching a rule. A graph is in strong root normal form XE "strong root normal form" \b if the graph does not par​tially match any rule. It is decidable whether or not a graph is in strong root normal form. A graph in strong root nor​mal form does not partially match any rule, so it is also in root nor​mal form.

The default reduction strategy used in Clean is the functional reduction strategy XE "functional reduction strategy" \b . Redu​c​ing graphs ac​cor​ding to this strategy resembles very much the way exe​cution proceeds in other lazy func​tional lan​gua​ges: in the standard lambda calculus semantics the functional strategy corre​s​ponds to nor​mal order re​duction. On graph rewrite rules the functional strategy proceeds as fol​lows: if there are sev​eral rewrite rules for a par​ticular function, the rules are tried in textual or​der; pat​terns are tested from left to right; evaluation to strong root normal form of ar​guments is forced when an ac​tual ar​gu​ment is matched against a corresponding non-variable part of the pat​tern. A formal def​ini​tion of this strategy can be found in (Toyama et al., 1991).

1.1.1
A Small Example

Consider the following Clean program:

Add Zero z

=
z

(1)

Add (Succ a) z
=
Succ (Add a z)

(2)

Start

=
Add (Succ o) o

where

o = Zero

(3)

In Clean a distinction is between function definitions (graph rewriting rules) and graphs (constant de​f​ini​tions). A semantic equivalent definition of the program above is given below where this dis​tinction is made explicit ("=>" indi​cates a rewrite rule whereas "=:" is used for a constant (sub-) graph def​inition XE "sub-graph" \b
Add Zero z

=>
z

(1)

Add (Succ a) z
=>
Succ (Add a z)

(2)

Start

=>
Add (Succ o) o

where

o =: Zero

(3)

These rules are internally translated to a semantically equivalent set of rules in which the graph struc​ture on both left-hand side as right-hand side of the rewrite rules has been made explicit by adding node-id's. Using the set of rules with explicit node-id's it will be easier to understand what the mean​ing is of the rules in the graph rewriting world.

x =: Add y z

y =: Zero

=>
z

(1)

x =: Add y z

y =: Succ a
=>
m =: Succ n

n =: Add a z

(2)

x =: Start
=>
m =: Add n o

n =: Succ o

o =: Zero

(3)

The fixed initial program graph that is in memory when a program starts is the follow​ing:

	The initial graph in linear notation:

@DataRoot
=: Graph @StartNode

@StartNode
=: Start

	The initial graph in pictorial notation:

[image: image5.png]BDataRoot=:Graph

@StartTodes: sthrt

To distinguish the node-id’s appearing in the rewrite rules from the node-id’s appearing in the graph the lat​ter al​ways begin with a ‘@’.

The initial graph is rewritten until it is in normal form. Therefore a Clean program must at least con​tain a " start rule XE "start rule" \b " that matches this initial graph via a pat​tern. The right-hand side of the start rule spe​c​i​fies the actual computa​tion. In this start rule in the left-hand side the symbol Start XE "Start" \b is used. However, the symbols Graph and Initial XE "Initial" (see next Section) are internal, so they cannot ac​tu​ally be addressed in any rule.

The patterns in rewrite rules contain formal node-id XE "formal node-id" \b ’s. During the matching these formal nodei​d’s are mapped to the ac​tual node-id XE "ac​tual node-id" \b ’s of the graph XE "node-id:formal" \b

 XE "node-id:actual" \b After that the following se​mantic actions are per​formed:

The start node is the only redex matching rule (3). The contractum can now be con​structed:

	The contractum in linear notation:

@A =: Add @B @C

@B =: Succ @C

@C =: Zero
	The contractum in pictorial notation:

[image: image6.png]Ba=chad

5= suc0 gc=:Zero

All applied occurrences of @StartNode will be replaced by occurrences of @A. The graph after re​writ​ing is then:

	The graph after rewriting:

@DataRoot
=: Graph @A

@StartNode
=: Start

@A =: Add @B @C

@B =: Succ @C

@C =: Zero
	Pictorial notation:

[image: image7.png]

This completes one rewrite. All nodes that are not accessible from @DataRoot are garbage and not con​si​dered any more in the next rewrite steps. In an implementation once in a while garbage col​lec​tion is per​formed in order to re​claim the memory space occupied by these garbage nodes. In this ex​ample the start node is not accessible from the data root node after the rewrite step and can be left out.

	The graph after garbage collection:

@DataRoot
=: Graph @A

@A =: Add @B @C

@B =: Succ @C

@C =: Zero
	Pictorial notation :

[image: image8.png]BDataRoot=:Graph

280

5= suc0 gc=:Zero

The graph accessible from @DataRoot still contains a redex. It matches rule 2 yielding the ex​pected nor​mal form:

	The final graph:

@DataRoot =: Graph @D

@D =: Succ @C

@C =: Zero
	Pictorial notation :

[image: image9.png]BDataRoot=:Graph

[N

c-izdro

The fact that graphs are being used in Clean gives the programmer the abil​ity to explicitly share terms or to create cyclic structures. In this way time and space ef​ficiency can be obtained.

1.2
Global Graphs

Due to the presence of global graphs in Clean the initial graph in a specific Clean program is slightly different from the basic semantics. In a specific Clean program the initial graph is defined as:

 XE "DataRoot" \b @DataRoot
=: Graph XE "Graph " @StartNode @GlobId1 @GlobId2 … @GlobIdn
 XE "StartNode" \b @StartNode
=: Start XE "Start"
@GlobId1

=: Initial XE "Initial"
@GlobId2

=: Initial

…

@GlobIdn

=: Initial

The root of the initial graph will not only contain the node-id of the start node, the root of the graph to be rewritten, but it will also contain for each global graph XE "global graph" \b (see 5.2) a reference to an initial node (initialised with the symbol Initial XE "Initial" \b). All references to a specific global graph will be references to its initial node or, when it is rewritten, they will be references to its reduct.

1.3
Key Features of Clean

On top of the Graph Rewriting System a full feautured functional programming language is defined. The most important features we added to Clean are:

-
Clean is a lazy, pure, higher order functional programming language with explicit graph rewrit​ing se​mantics; one can explicitly define the sharing of structures (cyclic structures as well) in the language;

-
Although Clean is by default a lazy language one can smoothly turn it into a strict lan​guage to ob​tain opti​mal time/space behaviour: functions can be defined lazy as well as (par​tially) strict in their argu​ments; any (recursive) data structure can be defined lazy as well as (partially) strict in any of its ar​guments;

-
Clean is a strongly typed language based on an extension of the well-known Mil​ner / Hindley / Mycroft type in​fer​enc​ing/checking scheme (Milner 1978; Hindley 1969; Mycroft 1984) including the common poly​morphic ty​pes, ab​stract types, alge​braic types, and synonym types ex​tended with a re​stricted faci​l​ity for existentially quanti​fied types;

-
Type classes and type constructor classes are provided to make over​loaded use of func​tions and opera​tors possible.

-
Clean offers the following predefined types: integers, reals, Booleans, char​acters, strings, lists, tu​ples, re​cords, arrays and files;

-
Clean’s key feature is a polymorphic uniqueness type inferencing system, a special ex​ten​sion of the Mil​ner / Hindley / Mycroft type inferencing/checking system allowing a refined control over the single threaded use of objects; with this uniqueness type system one can in​flu​ence the time and space behaviour of pro​grams; it can be used to incorporate destruc​tive up​dates of objects within a pure functional frame​work, it allows destructive transformation of state informa​tion, it enables efficient in​terfacing to the non-functional world (to C but also to I/O sys​tems like X-Windows) offering di​rect access to file systems and op​er​a​t​ing systems;

-
Clean is a modular language allowing separate compilation of modules; one defines im​ple​mentation modules and definition modules; there is a fa​cil​ity to implicitly and ex​plic​itly import definitions from other modules;

-
Clean offers a sophisticated I/O library with which window based interactive applica​tions (and the han​dling of menus, dialogues, windows, mouse, keyboard, timers and events raised by sub-applica​ti​ons) can be spec​ified com​pactly and elegantly on a very high level of abstrac​tion;

-
Specifications of window based interactive applications can be combined such that one can cre​ate several applications (sub-applica​tions or light-weight processes) inside one Clean ap​plication. Auto​ma​tic switching between these sub-applications is handled in a simi​lar way as under a multi-finder (all low level event handling for updating windows and switch​ing between menus is done automa​t​i​cally); sub-applications can ex​change information with each other (via files, via clip​board copy-paste like actions using shared state compo​nents, via asyn​chro​nous message passing) but also with other inde​pendently pro​grammed (Clean or other) appli​cations running on the same or even on a diffe​r​ent host sys​tem;

-
Due to the strong typing of Clean and the obligation to initialise all objects being created run-time errors can only occur in a very limited number of cases: when partial func​tions are called with ar​gu​ments out of their domain (e.g. dividing by zero), when arrays are ac​cessed with indices out-of-range and when not enough memory (either heap or stack space) is assigned to a Clean appli​ca​tion;

-
Programs written in Clean using the 0.8 I/O library can be ported without modification of source code to anyone of the many platforms we support (see the Preface for an overview).

[image: image10.jpg]. Clean |

Chapter 2

Defining Modules

	2.1
Identifiers, Scopes and Name Spaces
2.2 Modular Structure of Clean Programs
2.3 Implementation Modules
	2.4
Definition Modules
2.5
Importing Definitions
2.6
System Definition and Implementation Modules

A Clean program is composed out of modules. Each module is stored in a file which contains Clean source code. There are implementation modules and definition modules, in the spirit of Modula-2 (Wirth, 1982). This module system is used for several reasons.

First of all, the module structure is used to control the scope of definitions. The basic idea is that def​i​nitions only have a meaning in the implementation module they are defined in unless they are ex​ported by the correspond​ing definition module.

Having the exported definitions collected in a separate definition module has as advantage that one also obtains a self-contained interface document one can reach out to others. The definition modules is a document which defines what can be used by others and how it can be used without revealing uninter​esting implementation details.

Furthermore, the module structure enables separate compilation which heavily reduces compilation time. An implementation module can be changed without the need of recompiling other modules. When the contents of a definition module is changed only those modules which are affected by this change need to be recompiled.

In this Chapter we explain the module structure of Clean and the influence it has on the scope of def​initions. New scopes can aslo be introduced inside modules. This is further explained in the Chapters 2 and 3.

In the pictures in the subsections below nested scopes are indicated by nested boxes.

2.1
Identifiers, Scopes and Name Spaces

2.1.1
Naming Conventions of Identifiers

In Clean we distinguish the following kind of identifiers.

ModuleName XE "ModuleName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

FunctionName XE "FunctionName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

ConstructorName XE "ConstructorName" \b
=

UpperCaseId

|
FunnyId

SelectorVariable XE "SelectorVariable" \b
=
LowerCaseId

Variable XE "Variable" \b
=
LowerCaseId

MacroName XE "MacroName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

FieldName XE "FieldName" \b
=
LowerCaseId

TypeName XE "TypeName" \b
=

UpperCaseId

|
FunnyId

TypeVariable XE "TypeVariable" \b
=
LowerCaseId

UniqueTypeVariable XE "UniqueTypeVariable" \b
=
LowerCaseId

ClassName XE "ClassName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

LowerCaseId XE "LowerCaseId" \b
=
LowerCaseChar~{IdChar}

UpperCaseId XE "UpperCaseId" \b
=
UpperCaseChar~{IdChar}

FunnyId XE "FunnyId" \b
=
{SpecialChar}+

LowerCaseChar XE "LowerCaseChar" \b
=
a
|
b
|
c
|
d
|
e
|
f
|
g
|
h
|
i
|
j

|
k
|
l
|
m
|
n
|
o
|
p
|
q
|
r
|
s
|
t

|
u
|
v
|
w
|
x
|
y
|
z
UpperCaseChar XE "UpperCaseChar" \b
=
a
|
b
|
c
|
d
|
e
|
f
|
g
|
h
|
i
|
j

|
k
|
l
|
m
|
n
|
o
|
p
|
q
|
r
|
s
|
t

|
u
|
v
|
w
|
x
|
y
|
z
SpecialChar XE "SpecialChar" \b
=
~
|
@
|
#
|
$
|
%
|
^
|
?
|
!

|
+
|
-
|
*
|
<
|
>
|
\
|
/
|
|
|
&
|
=

|
:

IdChar XE "IdChar" \b
=
LowerCaseChar XE "LowerCaseChar"

|
UpperCaseChar XE "UpperCaseChar"

|
Digit XE "Digit"

|
_
|
`
Digit XE "Digit" \b
=
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9
The con​vention used is that variables always start with a lower​case char​ac​ter while constructors and types al​ways start with an uppercase character. The other identifiers can ei​ther start with an upper​case or a lowercase character. Notice that for the identifiers names can be used consisting of a combination of lower and/or up​per​case char​acters but one can also define identifiers constructed from special char​ac​ters like +, <, etc. (see Appendix A). These two kind of identifiers cannot be mixed. This makes it pos​sible to leave out white space in ex​pressions like a+1 (same as a + 1).

2.1.2
Scopes and Name Spaces

The scope XE "scope" \b is the program region in which definitions (e.g. function definition, class definition, macro definition, type de​f​ini​tion) with the identifiers introduced (e.g. function name, class name, class vari​able, macro name, type con​structor name, type variable name) have a meaning.

It must be clear from the context to which definition an identifier is referring. If all identifiers in a scope have different names than it will always be clear which definition is ment. However, one gener​ally wants to have a free choice in naming identifiers. If identifiers belong to different name spaces XE "name spaces" \b no conflict can arise even if the same name is used. In Clean the following name spaces exist:

-
ModuleNames form a name space;

-
FunctionNames, ConstructorNames, SelectorVariables, Variables and MacroNames form a name space;

-
FieldNames form a name space;

-
TypeNames, TypeVariables and UniqueTypeVariables form a name space;

-
ClassNames form a name space.

So, it is allowed to use the same identifier XE "identifier" name for different purposes as long as the identifier belong to dif​ferent name spaces.

•
Identifiers belonging to the same name space must all have different names within the same scope. Under certain conditions it is allowed to use the same name for different functions and opera​tors (overloading XE "overloading" , see 4.4).

2.1.3
Nesting of Scopes

Re-using identifier names is possible by introducing a new scope level. Scopes can be nested: within a scope a new nested scope XE "nested scope" \b can be de​fined. XE "scope:nested" \b Within such a nested scope new definitions can be given, new names can be intro​duced. As usual it is al​lowed in a nested scope to re-define defini​tions or re-use names given in a sur​round​ing scope:. When a name is re-used the old name and definition is no longer in scope and cannot be used in the new scope. A definition given or a name introduced in a (nested) scope has no meaning in sur​round​ing scope XE "sur​round​ing scope" \b s. XE "scope:surrounding" \b It has a meaning for all scopes nested within it (unless they are redefined within such a nested scope).

2.2
Modular Structure of Clean Programs

A Clean program consists of a collection of definition module XE "definition module" \b s and .ib .implementation mo​d​ule;s. XE "module:definition" \b

 XE "module:implementation" \b An imple​menta​tion module and a definition module correspond to each other if the names of the two mo​dules are the same. XE "corresponding module" \b

 XE "module:corresponding" \b The basic idea is that the definitions given in an imple​men​ta​tion mo​dule only have a meaning in the module in which they are defined unless these definitions are expor​ted by putting them into the corresponding definition module. In that case the definitions also have a meaning in those other modules in which the definitions are im​ported (see 2.5).

CleanProgram XE "CleanProgram" \b
=
{Module}+

Module XE "Module" \b
=
DefinitionModule

|
ImplementationModule

DefinitionModule XE "DefinitionModule " \b
=
definition XE "definition" \b module XE "module" \b ModuleName ;

{DefDefinition}

|
system XE "system" \b module ModuleName ;

{DefDefinition}

ImplementationModule XE "ImplementationModule" \b
=
[implementation XE "implementation" \b] module Modu​le​Name ;

{ImplDefinition}

•
An executable Clean program consists at least of one implementation module, the main or start module, which is the top-most module (root module) of a Clean program.

•
Each Clean module has to be put in a separate file.

•
The name of a module (i.e. the module name) should be the same as the name of the file (minus the suffix) in which the module is stored.

•
A definition module should have as.dcl as suffix, an implementation module should have as .icl as suffix.

•
A definition module can have at most one cor​responding im​ple​menta​tion module.

•
Every implementation module (except the main module, see 2.3.1) must have a corre​spond​ing definition module.

2.3
Implementation Modules

2.3.1
The Main or Start Module

•
In the main module XE "main module" a Start rule has to be defined (see Chapter 1).

•
Only in the main module one can leave out the keyword implementation in the module header. In that case the implementation module does not need to have a corre​sponding defi​ni​tion module (which makes sense for a top-most module).

A very tiny but complete Clean program consisting of one implementation module.

module hello

Start = "Hello World!"

Evaluation of a Clean pro​gram consists of the evaluation of the ap​plication de​fined in the right-hand side of the Start rule to nor​mal form (see Chapter 1). The right-hand side of the Start rule is regarded to be the ni​tial expression XE "ini​tial expression" to be computed.

It is allowed to have a Start rule in other implementation mo​dules as well. This can be handy for test​ing functions defined in such a module: to eval​uate such a Start rule simply generate an application with the module as root and execute it.

The definition of the left-hand side of the Start rule con​sists of the symbol Start XE "Start" \b with one optional ar​gu​ment (of type *World XE "World"), which is the envi​ronment pa​rame​ter which is neces​sary to write interactive applications.

A Clean programs can run in two modes.

I/O Using the Console

The first mode is a console mode XE "console mode" \b . It is chosen when the Start rule is defined as a nullary func​tion. XE "mode:console" \b
Start:: TypeOfStartFunction

Start = …

//
initial expression

In the console mode, that part of the initial expression XE "initial expression" \b (indicated by the right-hand side of the Start rule) which is in root normal form XE "root normal form" (also called the head normal form XE "head normal form" or root stable form XE "root stable form"), is printed as soon as possible. The console mode can be used for instance to test or debug func​tions.

One can choose to print the result of a Start expression with or without the data constructors. For ex​ample, the initial expression

Start:: String

Start = "Hello World!"

in mode "show data constructors" will print: "Hello World!", in mode "don't show data constructors" it will print: Hello World!

I/O on the Unique World

The second mode is the world mode XE "world mode" \b . It is chosen when the optional additional parameter (which is of type *World) is added to the Start rule and delivered as result. XE "mode:world" \b
Start:: *World -> *World

Start w = …

//
initial expression returning a changed world
The world which is given to the initial expression is an abstract data structure, an abstract world of type *World which models the concrete physical world as seen from the program. The ab​stract world can in principle contain anything what a func​tio​nal program needs to in​ter​act during execution with the con​crete world. The world can be seen as a state and modifica​tions of the world can be realised via state transition functions defined on the world or a part of the world. By re​qui​ring that these state transition functions work on a unique world the modifi​cations of the abstract world can di​rectly be realized in the real physical world, without loss of effi​ciency and without losing referen​tial trans​parency (see Chapter 4) XE "world:abstract" \b

 XE "world:concrete physical" \b

The concrete way in which one can handle the world in Clean is determined by the system pro​gram​mer. One way to handle the world is by using the predefined Clean I/O library XE "I/O library" which can be regarded as a platform independent mini operating system. It makes it possible to do file I/O, win​dow based I/O, dynamic process creation and process communication in a pure functional language in an efficient way. The definition of the I/O library is treated in a separate document (Standard Libraries for Clean, Achten et al., 1997).

2.3.2
Scope of Global Definitions in Implementation Modules

In an implementation module the following global definitions can be specified in any order.

ImplDefinition XE "ImplDefinition" \b
=
ImportDef

//
see 2.5

|
FunctionDef

//
see Chapter 3

|
GraphDef

//
see 3.5.4

|
MacroDef

//
see Chapter 5

|
TypeDef

//
see Chapter 4

|
ClassDef

//
see 4.4
Definitions on the global level (= outermost level in the module,) have in principle the whole imple​men​tation mo​dule as scope (see Figure 2.1).

Figure 2.1 (Scope of global definitions inside an implementation module).

implementation module XXX

:: TypeName typevars = type_expression

// definition of a new type

functionName:: type_of_args -> type_of_result
// definition of the type of a function
functionName args = expression

// definition of a function

selector = expression

// definition of a constant graph

class className = expression

// definition of a class

macroName args = expression

// definition of a macro
Types can only be defined globally (see Chapter 4) and therefore always have a meaning in the whole implementation module. Type variables introduced on the left-hand side of a (algebraic, record, syn​onym, overload, class, in​stance, func​tion, graph) type definition have the right-hand side of the type definition as scope. XE "type:global"
Functions, the type of these functions, constants (selectors) and macro's can be defined on the global level as well as on a local level in nested scopes. When defined globally they have a meaning in the whole implementa​tion module. Arguments introduced on the left-hand side of a definition (formal ar​guments) only have a meaning in the corresponding right-hand side. XE "function:local"

 XE "function:global"

 XE "constant:local"

 XE "constant:global"

 XE "macro:global" XE "macro:local "
Functions, the type of these functions, constants (selectors) and macro's can also be defined locally in a new scope XE "scope" . However, new scopes can only be intro​duced at certain points. In functional languages local definitions are by tradition defined by using let-expressions (definitions given before they are used in a certain expression, nice for a bottom-up style of programming) and where-blocks (definitions given af​terwards, nice for a top-down style of program​ming). These constructs are explained in detail in Chapter 3. XE "global definition"

 XE "local definition"

 XE "definition:local"

 XE "definition:global"
2.3.3
Begin and End of a Definition: the Lay-Out Rule

Clean programs can be written in two modes: lay-out sensitive mode 'on' and 'off'. The lay-out sensi​tive mode is switched off when a semi-colon is specified after the module name. In that case each defi​nition has to be ended with a semicolon ';'. A new scope has to begin with '{' and ends with a '}'. This mode is handy if Clean code is generated automatically (e.g. by a compiler). XE "mode:lay-out" \b XE "lay-out rule" \b
Example of a Clean program not using using the lay-out rule.

module primes;

import StdEnv;

primes:: [Int];

primes = sieve [2..];

where
{
sieve:: [Int] -> [Int]; sieve [pr:r] = [pr:sieve (filter pr r)];

filter:: Int [Int] -> [Int];

filter pr [n:r] | n mod pr == 0 = filter pr r;

| otherwise

= [n:filter pr r];

}

Programs look a little bit old fashioned C-like in this way. Functional programmers generally prefer a more mathematical style. Hence, as is common in modern functional languages, there is a lay-out rule in Clean. When the definition of the module header of a module is not ended by a semicolon a Clean program has become lay-out sensi​tive. The lay-out rule XE "lay-out rule" assumes the omission of the semi-colon (';') that ends a definition and of the braces ('{' and '}') that are used to group a list of definitions. These symbols are automati​cally added according to the following rules:

In lay-out sensitive mode the indentation of the first lexeme after the keywords let, #, let!, #!, of, where, or with deter​mines the indentation that the group of definitions fol​lowing the keyword has to obey. De​pend​ing on the indentation of the first lexeme on a subse​quent line the following happens. A new def​ini​tion is assumed if the lexeme starts on the same in​dentation (and a semicolon is inserted). A previous defini​tion is assumed to be continued if the lex​eme is in​dented more. The group of defini​ti​ons ends (and a close brace is inserted) if the lexeme is indented less. Global definition XE "Global definition" s are as​su​med to start in col​umn 0.

We strongly advise to write programs in lay-out sensitive mode. For reasons of portability it is assumed that a tab space is set to 4 white spaces and that a non-pro​portional font is used.

Same program using the lay-out sensitive mode.

module primes

import StdEnv

primes:: [Int]

primes = sieve [2..]

where

sieve:: [Int] -> [Int]

sieve [pr:r]
= [pr:sieve (filter pr r)]

filter:: Int [Int] -> [Int]

filter pr [n:r]

| n mod pr == 0
= filter pr r

| otherwise

= [n:filter pr r]

2.4
Definition Modules

The definitions given in an implementation module only have a meaning in the module in which they are defined. If you want to export a definition, you have to specify the definition in the corresponding definition module. Some definitions can only appear in implementation modules, not in definition modules. The idea is to hide the actual implementa​tion from the outside world. The is good for soft​ware engineering reasons while another advantage is that an implementation module can be recompiled separately without a need to recompile other modu​les. Recompilation of other modules is only neces​sary when a definition module is changed. All mod​u​les depending on the changed module have to be recompiled as well. Implementations of func​tions, graphs and class instances are therefore only allowed in implementation modules. They are exported by only specifying their type definition in the definition module. Also the right-hand side of any type de​f​inition can remain hidden. In this way an abstract data type is created (see 4.2.4). XE "recompilation"
In a definition module XE "definition module" \b the following global definitions can be given in any order. XE "module:definition" \b

 XE "corresponding module"

 XE "module:corresponding"
DefDefinition XE "DefDefinition" \b
=
ImportDef

//
see 2.5

|
FunctionTypeDef

//
see 4.3

|
MacroDef

//
see 5.3

|
TypeDef

//
see Chapter 4

|
ClassDef

//
see 4.4

|
TypeClassInstanceExportDef

//
see 4.4
•
The definitions given in an implementation module only have a meaning in the module in which they are defined (see 2.3) unless these definitions are exported by putting them into the cor​re​s​pon​d​ing definition module. In that case they also have a meaning in those other modules in which the de​fi​nitions are imported (see 2.5).

•
The definitions (with exception of TypeClassInstanceExportDef's) given in a definition module have to be repeated in the corresponding implemen​tation module (this restriction will be removed in a future version of Clean).

•
In the corresponding implementation module all exported definitions have to get an appropriate imple​men​tation(this holds for functions, abstract data types, class instances).

•
An abstract data type XE "abstract data type" is exported by specifying the left-hand side of a type rule in the defini​tion module. In the corre​spond​ing implementation module the abstract type has to be de​fined again but then right-hand side has to be defined as well. It can be either an algebraic type, record type or syn​onym type defini​tion. For such an abstract data type only the name of the type is ex​ported but not its defini​tion.

•
A function, global graph or class instance is exported by repeating the type header in the definition module. For optimal efficiency it is recommended also to specify strictness annotations (see 5.1). For library functions it is recommended also to specify the uniqueness type attributes (see Chapter 4). The implementation of the function, graph, class instance has to be given in the implementa​tion module.

Definition module.

definition module ListOperations

::complex

//
abstract type definition

re:: complex -> Real

//
function taking the real part of complex number
im:: complex -> Real

//
function taking the imaginary part of com​plex
mkcomplex:: Real Real -> Complex
//
function creating a complex number

corresponding implementation module):

implementation module ListOperations

::complex :== (!Real,!Real)

//
a type synonym
re:: complex -> Real

//
type of function followed by its implementation
re (frst,_) = frst

im:: complex -> Real

im (_,scnd) = scnd

mkcomplex:: Real Real -> Complex

mkcomplex frst scnd = (frst,scnd)

2.5
Importing Definitions

Via an import statement XE "import statement" a definition exported by a definition module (see 2.4) can be imported into any other (definition or implementation) module. There are two kind of import statements, explicit im​ports and implicit imports.

ImportDef XE "ImportDef" \b
=
ImplicitImportDef

|
ExplicitImportDef

A module depends on another module if it imports something from that other module XE "depending module" \b

 XE "module:depending" \b
•
Cyclic depen​dencies of definition modules are prohibited, i.e. if a definition module M1 de​pends on another definition module M2 then M2 is not allowed to de​pend on M1.

2.5.1
Explicit Imports of Definitions

Explicit imports are import statements in which the modules to import from as well as the identifiers indicating the definitions to import are explicitly specified. XE "explicit import" \b

 XE "import:explicit" \b
ExplicitImportDef XE "ExplicitImportDef" \b
=
from XE "from" \b ModuleName import {Imports}-list ;

Imports XE "Imports" \b
=
FunctionName

|
ConstructorName

|
SelectorVariable

|
FieldName

|
MacroName

|
TypeName

|
ClassName

All identifiers explicitly being imported in a definition or implementation module will be included in the global scope XE "global scope" level (= outermost scope, see 2.3.2) of the module which does the import. Importing identifiers can cause error messages because the imported identifiers may be in conflict with other identifiers in this scope (remember that identifiers belonging to the same name space must all have dif​ferent names within the same scope, see 2.1). This problem can be solved by renaming the internally defined identifiers or by renaming the imported identifiers (eg by adding an additional module layer just to rename things). XE "identifiers:renaming"
Explicit import.

implementation module XXX

from ListOperations import complex, re, im, mkcomplex

2.5.2
Implicit Imports of Definitions

ImplicitImportDef XE "ImplicitImportDef" \b
=
import XE "import" \b {ModuleName}-list ;

Implicit imports are import statements in which only the module name to import from is men​tioned. In this case all definitions that are exported from that module are imported as well as all definitions that on their turn are imported in the indicated definition module, and so on. So, all related defini​tions from va​ri​ous modules can be imported with one single im​port. This opens the possibil​ity for definition mod​u​les to serve as a kind of 'pass-through' module XE "pass-through module" \b Hence, it is meaningful to have definition modules with import state​ments but with​out any definitions and without a corresponding implementation module. XE "module:pass-through" \b .;ib.import:implicit XE "implicit import.\;ib.import:implicit" \b
Example of an implicit import: all (arithmetic) rules which are predefined can be imported easily with one import state​ment.

import StdEnv

im​porting implicitly all definitions imported by the definition module 'StdEnv' which is defined below (note that de​fi​nition mod​ule 'StdEnv' does not have a corresponding implementation module) :

definition module MyStdEnv

import

StdBool, StdChar, StdInt, StdReal, StdString

All identifiers implicitly being imported in a definition or implementation module will be included in the global scope level (= outermost scope, see 2.3.2) of the module which does the import. Importing identifiers can cause error messages because the imported identifiers may be in conflict with other identifiers in this scope (remember that identifiers belonging to the same name space must all have dif​ferent names within the same scope, see 2.1). This problem can be solved by renaming the internally defined identifiers or by renaming the imported identifiers (eg by adding an additional module layer just to rename things).

2.6
System Definition and Implementation Modules

System modules are special modules. A system definition module XE "system definition module" \b indicates that the correspond​ing im​plementa​tion module is a system implementation module XE "system implementation module" \b which does not contain ordi​nary Clean rules. In system imple​mentation modules it is allowed to define foreign function XE "foreign function" \b s: the bod​ies of these foreign functions are written in another language than Clean. System implementation mod​u​les make it possi​ble to create interfaces to operating sys​tems, to file systems or to increase exe​cu​tion speed of heavily used functions or complex data struc​tures. Typically, predefined function and operators for arithmetic and File I/O are imple​mented as system modules.

System implementation modules may use machine code, C-code, abstract machine code (PABC-code) or code written in any other language. What exact is allowed is dependent from the Clean compiler used and the platform for which code is generated. The keyword code XE "code" \b is reserved to make it possible to write Clean programs in a for​eign language. This is not treated in this reference ma​n​ual.

When one writes system implementation modules one has to be very careful because the correct​ness of the func​tions can no longer be checked by the Clean compiler. Therefore, the programmer is now re​s​ponsible for the follow​ing:

!
The function must be correctly typed.

!
When a function destructively updates one of its (sub-)arguments, the corresponding type of the arguments should have the uniqueness type attribute. Furthermore, those arguments must be strict.

[image: image11.jpg]. Clean |

Chapter 3

Defining Functions

	3.1
Defining Functions
3.2
Patterns
3.3
Guards
	3.4
Expressions
3.5
Local Definitions
3.6
Special Local Definitions

In this Section function definitions are treated (actually: graph rewrite rules). XE "graph rewrite rule" Op​er​a​tor defini​tions are re​garded as spe​cial kind of function definitions (see 3.1 and 4.3). The body of a function consists of a root expression (see 3.4). With help of patterns (see 3.2) and guards (see 3.3) a distinction can be made between several alternative defini​tions for a function. Functions and graphs can be defined locally in a function definition (see 3.5). For programming convenience (forcing evaluation, observation of unique objects and threading of se​quen​cial operations) special let constructions are provided (see 3.6).

3.1
Defining Functions

FunctionDef XE "FunctionDef" \b
=
[FunctionTypeDef] DefOfFunction

//
see Chapter 4 for typing functions
DefOfFunction XE "DefOfFunction" \b
=
{FunctionAltDef}+

FunctionAltDef XE "FunctionAltDef" \b
=
Function {Pattern}

//
see 3.2 for patterns

{LetBeforeExpression}

//
see 3.6

{{| Guard} =[>] FunctionBody}+

//
see 3.3 for guards

[LocalFunctionAltDefs]

//
see 3.5
Function XE "Function " \b
=
FunctionName

//
ordinary function

|
(FunctionName)

//
operator function

FunctionBody XE "FunctionBody" \b
=
[StrictLet]

//
see 3.6

RootExpression ;

//
see 3.4

[LocalFunctionDefs]

//
see 3.5
A function definition XE "function: definition" \b consist of one or more definitions of function alternative XE "function: alternative" \b s (rewrite rules) which are tried in textual order. On the left-hand side of such a function alternative a pattern can be specified which can serve a whole se​quence of guarded function bodies (called the rule alternative XE "rule: alternative" \b s) XE "guarded function body" \b The root ex​pression (see 3.4) of a particular rule alternative is cho​sen for evaluation when

+
the pattern ;on the left-hand side matches the corresponding actual arguments of the func​tion ap​plication (see 3.2) and
+
the optional guard XE "guard " (see 3.3) specified on the right-hand side evaluates to True.

A func​tion can be preceded by a defini​tion of its type (see 4.3).

•
Function definitions are only allowed in implementa​tion modules (see 2.3).

•
It is required that the function alterna​tives of a function are textually grouped together (separated by semi-co​lons when the lay-out sensitive mode is not chosen).

•
Each alternative of a function must start with the same function symbol.

•
The function name must in principle be different from other names in the same name space and same scope (see 2.1). However, it is possible to overload functions and operators (see 4.4).

•
A function has a fixed arity, so in each rule the same number of formal arguments must be spec​i​fied. Functions can be applied to any number of arguments though, as usual in higher or​der func​tional languages (see 3.4.1 and 4.3).

Function definition.
module example

//
module header
import StdInt

//
implicit import
map:: (a -> b) [a] -> [b]

//
type of map
map f list = [f e \\ e <- list]

//
definition of the function map
square:: Int -> Int

//
type of square
square x = x * x

//
definition of the function square
Start:: [Int]

//
type of Start rule
Start = map square [1..1000]

//
definition of the Start rule
An operator XE "operator" is a function with arity two which can be used as infix operator (brackets are left out) or as ordinary prefix function (the operator name preceding its arguments has to be sur​rounded by brackets).

•
When an operator is used in infix position XE "infix position" both arguments have to be present. Operators can be used in a curried way, but then they have to be used as ordinary prefix functions (see also 4.3.2).

A constant function XE "constant function" \b def​ini​tion is a function defined with arity zero. XE "function:constant"
Operator definition.

(++) infixr 0:: [a] [a] -> [a]

(++) []

ly
=
ly

(++) [x:xs]
ly
= [x:xs ++ ly]

(o) infixr 9:: (a -> b) (c -> a) -> (c -> b)

(o) f g = \x -> f (g x)

An operator has a precedence XE "precedence" (0 through 9, default 9) and a fixity XE "fixity" (infixl XE "infixl" \b , infixr XE "infixr" \b or just .i infix; de​fault infixl). This is defined in its type (see 4.3.2). See also 3.4.1.

3.2
Patterns

In this Section the different kind of formal arguments (patterns) that can be specified on the left-hand side of a function definition (rewrite rule definition) are described. XE "formal argument" \b

 XE "argument:formal" \b A pattern XE "pattern" \b generally con​sists of some data constructor XE "data constructor" with its optional arguments which on their turn can contain sub-pat​terns (see 3.2.1). A node-id vari​able XE "node-id vari​able" \b XE "variable:node-id" \b can be at​tached to a pat​tern (using the symbol '=:') which makes it possible to iden​tify (label) the whole pat​tern as well as its contents XE "pattern:bracket" \b Bracketed pat​terns are formal arguments that form a syn​tac​tic unit (see 3.2.2 - 3.2.6).

Pattern XE "Pattern" \b
=
[Variable =:] BrackPattern

BrackPattern XE "BrackPattern" \b
=
(GraphPattern)

//
see 3.2.1

|
Constructor

//
see 3.2.2

|
PatternVariable

//
see 3.2.3

|
BasicValuePattern

//
see 3.2.4

|
ListPattern

//
see 3.2.5

|
TuplePattern

//
see 3.2.6

|
RecordPattern

//
see 3.2.7

|
ArrayPattern

//
see 3.2.8
•
It is possible that the specified patterns turn a function into a partial function XE "partial function"

 XE "function:partial" (see 4.3.3). When a par​tial function is applied outside the domain for which the function is defined it will result into a run-time error. A compile time warning is generated that such a situation might arise.

3.2.1
Constructor Patterns

GraphPattern XE "GraphPattern" \b
=
Constructor {Pattern}

//
Constructor pattern

|
GraphPattern ConstructorName GraphPattern
//
Constructor opera​tor

|
Pattern

//
a pattern in brac​kets

A constructor pattern XE "constructor pattern" \b (see above) consists of a constant tag called a data constructor (see 3.4.1 and 4.2.1) with its op​tional ar​gu​ments which on its turn can contain sub-pattern XE "sub-pattern" \b s XE "pattern:constructor" \b A constructor pattern forces evalua​tion of the cor​responding actual argument to strong root normal form since the strategy has to deter​mine whe​ther the actual ar​gument indeed is equal to the speci​fied constructor.

•
the data con​structor XE "data con​structor" must have been defined in an algebraic data type definition XE "algebraic data type definition" (see 4.2.1).

Algebraic data type definition and constructor pattern in function definition.

::Tree a
= Node a (Tree a) (Tree a)

| Nil

Mirror:: (Tree a) -> Tree a

Mirror (Node e left right)
= Node e (Mirror right) (Mirror left)

Mirror Nil

= Nil

Data constructors with arity two (see 3.1, see 4.2.1) can also be defined as infix constructor XE "infix constructor" \b s (or con​struc​tor op​erator XE "con​struc​tor op​erator" \b). XE "operator:constructor " In a pattern match they can be written down in infix position XE "infix position" as well.

•
When a constructor operator is used in infix position in a pattern match both arguments have to be present. Constructor operators can occur in a curried way, but then they have to be used as or​di​nary prefix construc​tors (see also 3.2.1 and 2.3). XE "curried constructor application"
Algebraic type definition and constructor pattern in function definition.

::Tree2 a
= (/\) infixl 0 (Tree a) (Tree a)

| Value a

Mirror:: (Tree2 a) -> Tree2 a

Mirror (left/\right)
= Mirror right/\Mirror left

Mirror leaf

= leaf

3.2.2
Simple Constructor Patterns

Constructor XE "Constructor" \b
=
ConstructorName

|
(ConstructorName)
Constructor symbols without arguments are just simple zero-arity constant. They form a syntactic unit (for non-operators no brackets are needed in this case). Be​sides the brackets that can be omitted they behave just like other data construc​tor patterns (see 3.4.2 and 3.2.1) XE "constructor:of zero arity"
3.2.3
Variables and Wildcards in Patterns

A pattern variable XE "pattern variable" \b can be a (node) variable or a wildcard XE "variable:pattern" \b
PatternVariable XE "PatternVariable" \b
=
Variable

|
_

A node variable XE "node variable" \b is a formal argument XE "formal argument" of a function which matches on any concrete value of the corre​sponding actual argu​ment and therefore it does not force evalua​tion of this argument. A wildcard XE "wildcard" \b is an anonymous node vari​able XE "anonymous node vari​able" ("_") one can use to indi​cate that the correspond​ing argument is not used in the right-hand side of the function. The formal arguments of a function and the function body are contained in a new scope. See also 2.3.2
 XE "node variable:anonymous"
functionName args = expression

•
All variable symbols introduced at the left-hand side of a function definition must have differ​ent names.

Use of pattern variables.

:: Complex :== (!Real,!Real)

//
synonym type def
realpart:: Complex -> Real

realpart (re,_) = re

//
re and _ are pattern variables
3.2.4
Constant Values of Basic Type as Pattern

BasicValuePattern XE "BasicValuePattern" \b
=
BasicValue

BasicValue XE "BasicValue" \b

=
IntDenotation

|
RealDenotation

|
BoolDenotation

|
CharDenotation

A constant value XE "constant value" \b of predefined basic type XE "basic type" \b Int XE "Int" , Real XE "Real" , Bool XE "Bool" or Char XE "Char " (see 4.1) can be speci​fied as pat​tern XE "pattern:of basic type"
•
The denotation of such a value must obey the syntactic description given in Section 3.4.4.

Use of basic values as pattern.

nfib:: Int -> Int

nfib 0 = 1

nfib 1 = 1

nfib n = 1 + nfib (n-1) * nfib (n-2)

3.2.5
List Patterns

An object of the predefined algebraic type list XE "list" (see 3.4.5 and 4.1.3) can be specified as pattern XE "list pattern" \b

 XE "pattern:list" \b
ListPattern XE "ListPattern" \b
=
[[{LGraphPattern}-list [: GraphPattern]]]
LGraphPattern XE "LGraphPattern" \b
=
GraphPattern

|
CharsDenotation

Notice that only simple list patterns can be specified on the left-hand side (one cannot use a dot-dot expression or list comprehension to define a list pattern).

Use of list patterns, use of guards, use of variables to identify patterns and sub-patterns; merge merges two (sorted) lists into one (sorted) list.

merge:: [Int] [Int] -> [Int]

merge f []
= f

merge [] s
= s

merge f=:[x:xs] s=:[y:ys]

| x<y

= [x:merge xs s]

| x==y

= merge f ys

| otherwise
= [y:merge f ys]

3.2.6
Tuple Patterns

An object of the predefined algebraic type tuple XE "tuple" (see 3.4.6 and 4.1.4) can be specified as pattern XE "tuple pattern" \b

 XE "pattern:tuple" \b
TuplePattern XE "TuplePattern" \b
=
(GraphPattern,{GraphPattern}-list)

3.2.7
Record Patterns

An object of type record XE "record" (see 3.4.7 and 4.2.2) can be specified as pattern. Only those fields which con​tents one would like to use in the right-hand side need to be mentioned in the pattern XE "record pattern" \b

 XE "pattern:record" \b
RecordPattern XE "RecordPattern"
=
{[TypeName |] {FieldName [= GraphPattern]}-list}
•
The type of the record must have been defined in a record type definition (see 4.2.2).

•
The field name XE "field name" s specified in the pattern must be identi​cal to the field names specified in the cor​re​spond​ing type.

•
When matching a record, the type contructor which can be used to disambiguate the record from other records, can only be left out if there is at least one field name is speci​fied which is not being defined in some other record.

Use of record patterns.

::Tree a

=
Node (RecTree a)

|
Leaf a

::RecTree a
=
{ elem
:: a

, left
:: Tree a

, right
:: Tree a

}

Mirror:: (Tree a) -> Tree a

Mirror (Node tree=:{left=l,right=r})
= Node {tree & left=r,right=l}

Mirror leaf

= leaf

The first alternative of function Mirror defined in another equivalent way.

Mirror (Node tree) = Node {tree & left=tree.right,right=tree.left}

or

Mirror (Node tree=:{left,right}) = Node {tree & left=right,right=left}

3.2.8
Array Patterns

An object of type array XE "array" (see 3.4.8 and 4.1.5) can be specified as pattern. Notice that only simple array pat​terns can be specified on the left-hand side (one cannot use array comprehensions). Only those array ele​ments which contents one would like to use in the right-hand side need to be mentioned in the pat​tern XE "array:pattern" \b

 XE "pattern:array" \b
ArrayPattern XE "ArrayPattern"
=
{{GraphPattern}-list}

|
{{ArrayIndex = Variable}-list}

|
StringDenotation

•
All array elements of an array need to be of same type.

•
An array .i .index; must be an integer value between 0 and the number of elements of the array-1. Ac​cessing an array with an index out of this range will result in a run-time error.

It is allowed in the pattern to use an index expression in terms of the other formal arguments (of type Int) passed to the function to make a flexible array access possible.

Use of array patterns.

Swap:: !Int !Int !*(a e) ->.(a e) | Array a & ArrayElem e

Swap i j a=:{[i]=ai,[j]=aj} = {a & [i]=aj,[j]=ai}

3.3
Guards

Guard XE "Guard" \b
=
BooleanExpr

A guard XE "guard" \b is a Boolean expression attached to a rule alternative XE "rule alternative" that can be regarded as generalisa​tion of the pattern match XE "pattern match" ing mechanism: the alternative only matches when the patterns defined on the left hand-side match and its (optional) guard evaluates to True (see 3.1). Otherwise the next alter​native is tried. Pattern matching always takes place before the guards are evalu​ated.

The guards are tried in textual order. The alterna​tive corre​spond​ing to the first guard that yields True will be evalu​ated. A right-hand side without a guard can be re​garded to have a guard that always evalu​ates to True (the ‘otherwise’ or ‘default’ case). In StdBool otherwise XE "otherwise" \b is predefined as syn​o​nym for True for people who like to emphasize the default option.

•
Only the last rule alternative of a function alternative can have no guard.

•
It is possible that the guards turn the function into a partial function (see 4.3.3). When a partial func​tion XE "partial func​tion" is ap​plied outside the domain for which the function is defined it will result into a run-time error. At compile time this cannot be detected.

Function definition with guards.

filter:: Int [Int] -> [Int]

filter pr [n:str]

| n mod pr == 0
= filter pr str

= [n:filter pr str]

Equivalent definition of previous filter.

filter:: Int [Int] -> [Int]

filter pr [n:str]

| n mod pr == 0
= filter pr str

| otherwise

= [n:filter pr str]

Guards can be nested. When a guard on one level evaluates to True, the guards on a next level are tried.

•
To ensure that at least one of the alternatives of a nested guard will be successful, a nested guarded alternative must always have a ‘default’ case as last alternative. XE "nested guards"

 XE "guard:nested"
Nested guard.

example arg1 arg2

| predicate11 arg1

//
if predicate11 arg1

| predicate21 arg2
= calculate1 arg1 arg2

//
 then (if predicate21 arg2

| predicate22 arg2
= calculate2 arg1 arg2

//
 elseif predicate22 arg2 then

= calculate3 arg1 arg2

//
 else …)
| predicate12 arg1

= calculate4 arg1 arg2

//
elseif predicate12 arg1 then …
3.4
Expressions

The main body of a function is called the root expression. The root expression is a graph expression.

RootExpression XE "RootExpression" \b
=
GraphExpr

y is the root expression referring to a cyclic graph.

ham:: [Int]

ham = y

where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]

A graph expression gen​erally expresses an application of a function to its arguments or the (automatic) creation of a data structure simply by ap​py​ing a data constructor to its ar​gu​ments (see 3.4.1). A case expression and condi​tional ex​pression are added for notational conve​nience (see 3.4.10). With a let ex​pression new functions and graphs can be locally defined in an expression (see 3.4.11). One can op​tionally de​mand the interleaved or parallel evaluation of the ex​pres​sion by an​other pro​cess or on another pro​ces​sor (see Chapter 5) XE "evaluation:parallel"

 XE "evaluation:interleaved"
GraphExpr XE "GraphExpr" \b
=
[Process] Application

//
see 3.4.1
Application XE "Application" \b
=
{BrackGraph}+

//
see 3.4.1

|
GraphExpr Operator GraphExpr

//
see 3.4.1
BrackGraph XE "BrackGraph" \b
=
(GraphExpr)

//
see 3.4.1

|
ConstructorOrFunction

//
see 3.4.2

|
GraphVariable

//
see 3.4.3

|
BasicValue

//
see 3.4.4

|
List

//
see 3.4.5

|
Tuple

//
see 3.4.6

|
Record

//
see 3.4.7

|
RecordSelection

//
see 3.4.7

|
Array

//
see 3.4.8

|
ArraySelection

//
see 3.4.8

|
LambdaAbstr

//
see 3.4.9

|
CaseExpr

//
see 3.4.10

|
LetExpr

//
see 3.4.11
3.4.1
Applications

Application XE "Application" \b
=
{BrackGraph}+

//
application

|
GraphExpr Operator GraphExpr

//
operator application

Operator XE "Operator" \b
=
FunctionName

|
ConstructorName

A (graph) application XE "application" \b or graph expression XE "expression" \b in principle consists of the application of a function or data con​structor to its (actual) arguments XE "currying" Each function or data construc​tor can be used in a curried way and can therefore be applied to any number (zero or more) of argu​ments (see 4.3). For conve​nience and ef​ficiency special syntax is pro​vided to denote va​lues of data struc​tures of prede​fined type (see 3.4.4 - 3.4.8). A function can only be rewritten if it is applied to a number of argu​ments equal to the arity of the function (see 3.1).

•
All expressions have to be of correct type (see Chapter 4).

•
All symbols that appear in an expression must have been defined somewhere within the scope in which the expression appears (see 2.1).

Operators are special functions or constructors defined with arity two (see 4.3.2) which can be ap​plied in infix position XE "operator" The precedence XE "precedence " (0 through 9) and fixity XE "fixity" (infixleft, infixright, infix) which can be defined in the type definition of the opera​tors (see 4.3) deter​mine the priority of the op​erator applica​tion in an ex​pression. A higher precedence binds more tightly. When operators have equal precedence, the fix​ity determines the priority. In an expression an ordinary function appli​cation has a very high pri​or​ity (10). Only selection of record elements and ar​ray elements (see 3.4.7 and 3.4.8) binds more tightly (11). Besides that, due to the priority, brackets can sometimes be omitted, op​erator appli​cations behave just like other applications (see 3.4.1).

•
It is not allowed to apply operators with equal precedence in an expression in such a way that theirfixitycon​flict.So,whenina1op1a2op2a3theoperatorsop1andop2havethesamepre​ce​denceaconflictariseswhenop1isdefinedasinfixrimplyingthattheexpressionmustbereadasa1op1(a2op2a3)whileop2isdefinedasinfixlimplyingthattheexpres​sionmustbereadas(a1op1a2)op2a3.

•
When an operator is used in infix position both arguments have to be present. Operators can be used in a curried way (applied to less than two arguments), but then they have to be used as ordi​nary prefix functions / con​struc​tors. When an operator is used as prefix function c.q. constructor, it has to be surrounded by brac​k​ets.

3.4.2
Constructor or Function Name

ConstructorOrFunction XE "ConstructorOrFunction" \b
=
Constructor

|
Function

Function XE "Function" \b
=
FunctionName

|
(FunctionName)
Constructor XE "Constructor" \b
=
ConstructorName

|
(ConstructorName)
Function and constructors applied on zero arguments just form a syntactic unit (for non-operators no brackets are nee​ded in this case). Be​sides the brackets that can be omitted they behave just like other application XE "application" s (see 3.4.1) XE "zero arity symbol"
3.4.3
Graph Variables

GraphVariable XE "GraphVariable" \b
=
Variable

|
SelectorVariable

There are two kinds of variables which can appear in a graph expression: variable XE "variable" \b s introduced as for​mal ar​gument XE "for​mal ar​gument" of a function (see 3.1 and 3.2) and selector variable XE "selector variable" \b s (defined in a selector to identify parts of a graph expression, see 3.5.4) XE "variable:selector" \b
•
There has to be a definition for each node variable and selector variable within in the scope of the graphs ex​pression.

3.4.4
Creating Constant Values of Basic Type

In a graph expression constant values of i.basic type ;Int XE "Int" , Real XE "Real" , Bool XE "Bool" ;or Char XE "Char" can be created. These prede​fined types introduced for reasons of efficiency and con​venience are treated in Section 4.1.1. There is a special notation to denote a string (an unboxed array XE "array" of characters, see 3.4.8) as well as to denote a list of characters (see 3.4.5).

BasicValue XE "BasicValue" \b

=
IntDenotation

|
RealDenotation

|
BoolDenotation

|
CharDenotation

IntDenotation XE "IntDenotation" \b ;
=
[Sign]~{Digit}+

// decimal number XE "decimal number"

|
[Sign]~ 0~{OctDigit}+

// octal number XE "octal number"

|
[Sign]~ 0x~{HexDigit}+

// hexadecimal number XE "hexadecimal number"
Sign XE "Sign" \b
=
+ | - | ~
RealDenotation XE "RealDenotation" \b
=
[Sign~]{Digit~}+.{~Digit}+[~E[~Sign]{~Digit}+]

BoolDenotation XE "BoolDenotation" \b
=
True XE "True" \b | False XE "False" \b
CharDenotation XE "CharDenotation" \b
=
CharDel~AnyChar/ EQ \D\ba5() ~CharDel~CharDel

CharsDenotation XE "CharsDenotation" \b
=
CharDel~{AnyChar/ EQ \D\ba5() ~CharDel}+~CharDel

StringDenotation XE "StringDenotation" \b
=
StringDel~{AnyChar/ EQ \D\ba5() ~StringDel}~StringDel

AnyChar XE "AnyChar" \b
=
IdChar | ReservedChar | Special

ReservedChar XE "ReservedChar" \b
=
(
|
)
|
{
|
}
|
[
|
]
|
;
|
,
|
.
Special XE "Special" \b
=
\n
|
\r
|
\f
|
\b

// new​line,return,formf,backspace

|
\t
|
\\
|
\CharDel

// tab,backslash,character delete

|
\StringDel

// string delete

|
\{OctDigit}+

// octal number

|
\x{HexDigit}+

// hexadecimal number

OctDigit XE "OctDigit" \b
=
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
HexDigit XE "HexDigit" \b
=
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9

|
A
|
B
|
C
|
D
|
E
|
F

|
a
|
b
|
c
|
d
|
e
|
f
CharDel XE "CharDel" \b
=
'
StringDel XE "StringDel" \b
=
"
Denotations.

Integer (decimal):

0|1|2|…|8|9|10| … |-1|-2| …

Integer (octal):

00|01|02|…|07|010| … |-01|-02| …

Integer (hexadecimal):

0x0|0x1|0x2|…|0x8|0x9|0xA|0xB … |-0x1|-0x2| …

Real:

0.0|1.5|0.314E10| …

Boolean:

True | False

Character:

'a'|'b'|…|'A'|'B'|…

String:

"" | "Rinus"|"Marko"|…

List of characters:

['Rinus']|['Marko']|…

3.4.5
Creating Lists

Because lists are very convenient and frquently used data structure there are several syntactical con​structs in Clean for creating lists including ib.dot-dot expression; and ZF-expression XE "ZF-expression" \b s. ib.generator:list; XE "generator:array" \b The pre​de​fi​ned type list is treated in Section 4.1.3.

List XE "List" \b
=
ListDenotation

|
DotDotexpression

|
ZF-expression

•
A list expression must be of type list (see 4.1.3).

•
All elements of a list must be of the same type.

Simple Lists

ListDenotation XE "ListDenotation" \b
=
[[{LGraphExpr}-list [: GraphExpr]]]
LGraphExpr XE "LGraphExpr" \b
=
GraphExpr

|
CharsDenotation

One way to create a list is by explicit enumeration of the list elements. List are constructed by adding one or more elements to an existing list. A special nota​tion is pro​vided for the frequently used list of characters (see also 3.2). i.list of characters; XE "type:list"
Various ways to define a list with the integer elements 1,3,5,7,9.

[1:[3:[5:[7:[9:[]]]]]]

[1,3,5,7,9]

[1:[3,5,7,9]]

[1,3,5:[7,9]]

Various ways to define a list with the characters 'a', 'b' and 'c'.

['a':['b':['c':[]]]]

['a','b','c']

['abc']

['ab','c']

DotDot Expressions

DotDotexpression XE "DotDotexpression" \b
=
[GraphExpr [,GraphExpr]..[GraphExpr]]
With a dot-dot expression the list elements can be enumerated by giving the first element (n1), an op​tional second element (n2) and an optional last element (e). The generated list is calculated as follows:

from_then_to:: !a !a !a -> .[a] | Enum a

from_then_to n1 n2 e

| n1 <= n2
= _from_by_to n1 (n2-n1) e

= _from_by_down_to n1 (n2-n1) e

where

from_by_to n s e

| n<=e
= [n : _from_by_to (n+s) s e]

= []

from_by_down_to n s e

| n>=e
= [n : _from_by_down_to (n+s) s e]

= []

The step size is one by default. If no last element is specified an infinite list is generated.

•
Dotdot expression can only be used if one imports StdEnum from the standard library.

•
Dot-dot expressions are predefined on objects of type Int, Real and Char, but dot-dots can also be applied to any user defined data structure for which the class enumeration type XE "enumeration type" has been instanti​ated (see Cleans Standard Library). XE "class:enumeration type"
Alternative ways to define a list a dot dot expression.

[1,3..9]

//
[1,3,5,7,9]
[1..9]

//
[1,2,3,4,5,6,7,8,9]
[1..]

//
[1,2,3,4,5 and so on…
['a'..'c']

//
['abc']

List Comprehensions

ZF-expression XE "ZF-expression" \b
=
[GraphExpr \\ {Qualifier}-list]
Qualifier XE "Qualifier" \b
=
Generators {|Guard}

Generators XE "Generators" \b
=
{Generator}-list

|
Generator {& Generator}

Generator XE "Generator" \b
=
Selector <- ListExpr

|
Selector <-: ArrayExpr

Selector XE "Selector" \b
=
BrackPattern

//
for brack patterns see 3.2
ListExpr XE "ListExpr" \b
=
GraphExpr

ArrayExpr XE "ArrayExpr" \b
=
GraphExpr

Guard XE "Guard" \b
=
BooleanExpr

BooleanExpr XE "BooleanExpr" \b
=
GraphExpr

With a list generator called a ZF-expression one can construct a list composed from elements drawn from other lists or arrays. With a list genera​tor XE "list list genera​tor" \b one can draw elements from a list. With an array genera​tor XE "array: genera​tor" \b one can draw elements from an array. XE "generator:list" \b One can define several generators in a row separated by a comma. The last generator in such a sequence will vary first. One can also define several genera​tors in a row separated by a ‘&’. All genera​tors in such a sequence will vary at the same time but the drawing of el​ements will stop as soon of one the generators is exhausted. This construct can be used instead of the zip-functions which are com​monly used. Selectors are simple patterns to iden​tify parts of a graph ex​pression. They are ex​plained in Section 3.5.4. Only those lists produced by a generator which match the specified selector are taken into account. Guards can be used as filter in the usual way XE "guard"

The scope of the selector variables introduced on the left-hand side of a generator is such that the vari​ables can be used in the guards and other generators that follow. All variables introduced in this way can be used in the expression before the \\ (see the picture below).

[expression \\
selector <- expression

|
guard

,
selector <- expression

|
guard

]

ZF-expression:

expr1 yields [(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2)]

expr2 yields [(0,0), (1,1), (2,2)].

expr3 yields [(0,0), (1,0), (1,1), (2,0), (2,1), (2,2), (3,0), (3,1), (3,2), (3,3)])

expr1 = [(x,y) \\ x <- [0..3] , y <- [0..2]]

expr2 = [(x,y) \\ x <- [0..3] & y <- [0..2]]

expr3 = [(x,y) \\ x <- [0..3] , y <- [0..x]]

ZF-expression: a well-know sort.

sort:: [a] -> [a] | Ord a

sort []

= []

sort [p:ps]
= sort [x\\x<-ps|x<=p] ++ [p] ++ sort [x\\x<-ps|x>p]

ZF-expression: converting an array into a list.

ArrayA = {1,2,3,4,5}

ListA = [a \\ a <-: ArrayA]

3.4.6
Creating Tuples

 XE "tuple" Tuples can be created that can be used to combine different (sub-)graphs into one data structure with​out being forced to define a new type for this combination. The elements of a tuple need not be of the same type. Tuples are in particular handy for functions that return multiple results. The prede​fined type tuple is treated in Section 4.1.4.

Tuple XE "Tuple" \b
=
(GraphExpr,{GraphExpr}-list)
Example of a Tuple.

("this is a tuple with",3,['elements'])

3.4.7
Creating Records and Selection of Record Fields

A record XE "record" is a tuple-like algebraic data structure that has the advantage that its elements can be se​lected by field name XE "field name" rather then by position.

Record XE "Record" \b
=
RecordDenotation

|
RecordUpdate

Simple Records

The first way is to create a record is by explicitly define a value for each of its fields.

RecordDenotation XE "RecordDenotation" \b
=
{[TypeName|] {FieldName = GraphExpr}-list]}
Creation of a record .

::Point

=
{ x:: Real

//
record type definition

, y:: Real

}

::ColorPoint
=
{ p:: Point

//
record type definition

, c:: Color

}

::Color

=
Red | Green | Blue

//
algebraic type definition
CreateColorPoint:: (Real,Real) Color -> ColorPoint
//
type of function
CreateColorPoint (px,py) col =
{ c = col

//
function creating a new re​cord

, p = { x = px

 , y = py

 }

}

•
A record can only be used if its type has been defined in a record type definition (see 4.2.2); the field name XE "field name" s used must be identi​cal to the field names specified in the cor​re​spond​ing type.

•
When creating a record explicitly, the order in which the record fields are instantiated is irrele​vant, but all fields have to get a value; the type of these values must be an instantiation of the corre​sponding type specified in record type definition. Curried use of records is not possible (see 4.2).

•
When creating a record, its type contructor that can be used to disambiguate the record from other records; the type constructor can be left out if there is at least one field name is speci​fied which is not being defined in some other record.

Record Update

The second way is to construct a new record out of an existing one (a functional record up​date XE "functional record up​date" \b).

RecordUpdate XE "RecordUpdate" \b
=
{[TypeName|][RecordExpr &][{FieldName {Selection} = GraphExpr}-list]}
Selection XE "Selection" \b
=
. FieldName

|
. ArrayIndex

RecordExpr XE "RecordExpr" \b
=
GraphExpr

•
The record expression must yield a record.

The re​cord written to the left of the & (r & f = v is pronounced as: r with for f the value v) is the re​cord to be duplicated. On the right from the & the structures are specified in which the new record dif​fers from the old one. A structure can be any field of the record or a selection of any field or array ele​ment of a record or array stored in this record. All other fields are duplicated and cre​ated implicitly. Notice that the functional update is not an update in the classi​cal, de​struc​tive sense since a new record is cre​ated. However, when the given record is of unique type *T, the update is done de​structively (!) which in this particular case is safe since the original record is known not to be used any​more (see 9.2). XE "update of a record:destructive" \b The functional update of records is performed very efficient such that we have not added support for destructive updates of records of unique type. The &-operator is strict in its ar​guments.

Updating a record within arecord using the functional update.

MoveColorPoint:: ColorPoint (Real,Real) -> ColorPoint

MoveColorPoint cp (dx,dy) = {cp & p.x = cp.p.x + dx, p.y = c.p.y + dy}

Selection of a Record Field XE "
Selection of a Record Field" \b
RecordSelection XE "RecordSelection" \b
=
RecordExpr [. TypeName] . FieldName {Selection}

|
RecordExpr [. TypeName] ! FieldName {Selection}

Selection XE "Selection" \b
=
. FieldName

|
. ArrayIndex

With a record selection XE "record selection" \b (using the '.' symbol) one can select the value stored in the indicated record field. A "unique" selection using the '!' symbol returns a tuple containg the demanded record field and the original record. This type of record selection can be very handy for destructively updating of uniquely typed records with values which depend on the current contents of the record. Record selec​tion binds more tightly (priority 11) than application (priority 10).

Record selection.

GetPoint:: ColorPoint -> Point

GetPoint cp = cp.p

//
selection of a record field
GetXPoint:: ColorPoint -> Real

GetXPoint cp = cp.p.x

//
selection of a record field
GetXPoint2:: *ColorPoint -> (Real,.ColorPoint)

GetXPoint2 cp = cp!p.x

//
selection of a record field
3.4.8
Creating Arrays and Selection of field Elements

An array XE "array" \b is a tuple/record-like data structure in which all elements are of the same type. Instead of se​lection by position or field name the elements of an array can be selected very efficiently in con​stant time by indexing XE "selection:by index" \b . The update of arrays is done destructively in Clean and therefore arrays have to be uni​que (see Chapter 4) if one wants to use this feature. Arrays are very useful if time and space con​sumption is becoming very critical (Clean arrays are implemented very efficiently). If efficiency is not a big issue we recomment not to use arrays but to use lists instead: lists induce a much better pro​gramming style. Lists are more flexible and less error prone: array elements can only be accessed via in​dices and if you make a calculation error indices may point outside the array bounds. This is detected, but only at run-time. In Clean, array indices al​ways start with 0. More di​mensional arrays (e.g. a ma​trix) can be defined as an ar​ray of arrays.

For efficiency reasons, arrays are available of several types: there are lazy arrays (type {a}), strict arrays (type {!a}) and unboxed arrays for elements of basic type (e.g. type {#Int}). All these arrays are conside​red to be of different type. By using the overloading mechanism (type constructor classes) one can still define (overloaded) functions which work on any of these arrays. The pre​de​fined type array is treated in Section 4.1.2.

Array XE "Array" \b
=
ArrayDenotation

|
ArrayUpdate

•
All elements of an array need to be of same type.

Simple Array

A new array can be created in a number of ways. A direct way is to simply list the array elements.

ArrayDenotation XE "ArrayDenotation" \b
=
{{GraphExpr}-list}

|
StringDenotation

By default a lazy array will be created. Arrays are created uni​que (the * or. attribute in front of the type, see Chapter 4) to make destructive updates possible.

A lazy array is a box with pointers pointing to the array elements. One can also create a strict array (explicitly define its type as {!Int}), which will have the property that the elements to which the ar​ray box points will always be evaluated. One can furthermore create an unboxed array (explicitly define its type as {#Int}), which will have the property that the evaluated elements (which have to be of basic value) are stored directly in the array box itself. Clearly the last one is the most efficient representa​tion (see also Chapter 5).

Creating a lazy array, strict and unboxed unique array of integers with elements 1,3,5,7,9.

MyLazyArray:: .{Int}

MyLazyArray = {1,3,5,7,9}

MyStrictArray:: .{!Int}

MyStrictArray = {1,3,5,7,9}

MyUnboxedArray:: .{#Int}

MyUnboxedArray = {1,3,5,7,9}

Creating a two dimensional array, in this case a unique array of unique arrays of unboxed integers.

MatrixA:: {.{#Int}}

MatrixA = {{1,2,3,4},{5,6,7,8}}

To make it possible to use operators such as array selection on any of these arrays (of actually dif​ferent type) a type constructor class has been defined (in StdArray) which expresses that "some kind of array structure is created". The compiler will therefore deduce the following general type:

Array:: .(a Int) | Array a

Array = {1,3,5,7,9}

A string is equivalent to an unboxed array of character {#Char}. A type synonym is defined in module StdString. Notice that this array is not unique, such that a destructive update of a string is not allowed. There is special syntax to denote strings (see 3.2).

Some ways to define a string, i.e. an unboxed array of character.

"abc"

{'a','b','c'}

There are a number of handy functions for the creation and manipulation of arrays prede​fined in Cleans Standard LIbrary. These functions are overloaded to be able to deal with any type of array. The class restrictions for these functions express that "an array structure is requi​red" contai​n​ing "an ar​ray element".

Type of some predefined functions on Arrays.

createArray
:: !Int e ->.(a e) | Array a & ArrayElem e
// size arg1, a.[i] = arg2
size

:: (a e) -> Int
| Array a & ArrayElem e

// number of elements in array

Array Update

It is also possible to construct a new array out of an existing one (a functional array up​date XE "functional array up​date" \b).

ArrayUpdate XE "ArrayUpdate" \b
=
{ ArrayExpr & [{ArrayIndex {Selection} = GraphExpr}-list] [\\ {Qualifier}-list]}

|
{[ArrayExpr &] GraphExpr \\ {Qualifier}-list}
Selection XE "Selection" \b
=
. FieldName

|
. ArrayIndex

ArrayExpr XE "ArrayExpr" \b
=
GraphExpr

Left from the & (a & [i] = v is pronounced as: array a with for a.[i] the value v) the old array has to be speci​fied which has to be of unique type to make destructive updating possible. On the right from the & those ar​ray elements are listed in which the new array dif​fers from the old one. One can change any eelement of the array or any field or array element of a record or array stored in the array. The &-operator is strict in its ar​guments.

•
An array expression must be of type array.

•
The array expression to the left of the update operator '&' should yield an ob​ject of type unique ar​ray.

•
An array index XE "array: index" must be an integer value between 0 and the number of elements of the array-1. An index out of this range will result in a run-time error.

•
A unique array of any type created by an overloaded function cannot be converted to a non-unique ar​ray.

Important: For reasons of efficiency we have defined the updates only on arrays which are of uni​que type (*{…}), such that the update can always be done de​structively (!) which is se​mantically sound be​cause the original unique array is known not to be used any​more (see 4.5) XE "update of an array:destructive" \b

Creating an array with the integer elements 1,3,5,7,9 using the update operator.

{CreateArray 5 0 & [0] = 1, [1] = 3, [2] = 5, [3] = 7, [4] = 9}

{CreateArray 5 0 & [1] = 3, [0] = 1, [3] = 7, [4] = 9, [2] = 5}

One can use an array comprehension XE "array: comprehension" \b or a list comprehension (see 3.4.5) to list these ele​ments com​pactly in the same spirit as with an list comprehension.

Array comprehensions can be used in combination with the update operator. Used in combination with the update operator the original uniquely typed array is updated destructively. The combina​tion of array comprehensions and update operator makes it possible to selectively update array el​ements on a high level of abstraction.

Creating an array with the integer elements 1,3,5,7,9 using the update operator in combination with ar​ray and list comprehensions.

{CreateArray 5 0 & [i] = 2*i+1 \\ i <- [0..4]}

{CreateArray 5 0 & [i] = elem \\ elem <-: {1,3,5,7,9} & i <- [0..4]}

{CreateArray 5 0 & elem \\ elem <-: {1,3,5,7,9}}

Array comprehensions used without update operator automatically generate a whole new array. The size of this new array will be equal to the size of the first array or list gene​rator from which el​ements are drawn. Drawn elements which are rejec​ted by a corresponding guard result in an un​defined ar​ray ele​ment on the corresponding posi​tion.

Creating an array with the integer elements 1,3,5,7,9 using array and list comprehensions.

{elem \\ elem <-: {1,3,5,7,9}}

{elem \\ elem <- [1,3,5,7,9]}

Array creation, selection, update). The most general types have been defined. One can of course always restrict to a more specific type.

MkArray:: !Int (Int -> e) ->.(a e) | Array a & ArrayElem e

MkArray i f = {f j \\ j <- [0..i-1]}

SetArray:: *(a e) Int e ->.(a e) | Array a & ArrayElem e

SetArray a i v = {a & [i] = v}

CA:: Int e ->.(a e) | Array a & ArrayElem e

CA i e = createArray i e

InvPerm:: {Int} ->.{Int}

InvPerm a = {CA (size a) 0 & [a.[i]] = i \\ i <- [0..maxindex a]}

ScaleArray:: e (a e) ->.(a e) | Array a & ArrayElem e & Arith e

ScaleArray x a = {x * e \\ e <-: a}

MapArray:: (a -> b) (ar a) ->.(ar b) | Array ar & ArrayElem a & ArrayElem b

MapArray f a = {f e \\ e <-: a}

inner:: (a e) (a e) ->.(a e) | Array a & ArrayElem e & Arith e

inner v w

| size v == size w
= {vi * wi \\ vi <-: v & wi <-: w}

| otherwise

= abort "cannot take inner product"

ToArray:: [e] ->.(a e) | Array a & ArrayElem e

ToArray list = {e \\ e <- list}

ToList:: (a e) ->.[e] | Array a & ArrayElem e

ToList array = [e \\ e <-: array]

Example of operations on 2 dimensional arrays generating new arrays.

maxindex n :== size n - 1

Adj:: {{#Int}} ->.{.{#Int}}

Adj ma =
{ {ma.[i,j] \\ i <- rowindex}
\\ j <- colindex }

where

rowindex = [0..maxindex ma]

colindex = [0..maxindex ma.[0]]

Multiply:: {{#Int}} {{#Int}} ->.{.{#Int}}

Multiply a b =
{ {sum [a.[i,j]*b.[j,k] \\ j <- colindex] \\ k <- rowindex}

\\ i <- rowindex

}

where

rowindex = [0..maxindex a]

colindex = [0..maxindex a.[0]]

Updating unique arrays using a unique array selection.

MyArray:: .{#Real}

MyArray = {1.5,2.3,3.4}

ScaleArrayElem:: *{#Real} Int Real -> .{#Real}

ScaleArrayElem ar i factor

(elem,ar) = ar![i]

= {ar & [i] = elem*factor}

Scale2DArrayElem:: {*{#Real}} (Int,Int) Real -> {.{#Real}}

Scale2DArrayElem ar (i,j) factor

(elem,ar)

= ar![i].[j]

= {ar & [i].[j]
= elem*factor}

Scale2DArrayElem2:: {*{#Real}} (Int,Int) Real -> {.{#Real}}

Scale2DArrayElem2 ar (i,j) factor

(elem,ar)

= ar![i,j]

= {ar & [i,j]
= elem*factor}

Selection of an Array Element XE "
Selection of an Array Element" \b
ArraySelection XE "ArraySelection" \b
=
ArrayExpr. ArrayIndex {Selection}

|
ArrayExpr! ArrayIndex {Selection}

ArrayIndex XE "ArrayIndex" \b
=
[{IntegerExpr}-list]
IntegerExpr XE "IntegerExpr" \b
=
GraphExpr

Selection XE "Selection"
=
. FieldName

|
. ArrayIndex

With an array selection XE "array: selection" \b (using the '.' symbol) one can select an array element. When an object a is of type Array, the ith el​e​ment can be selected (computed) via a.[i]. Array selection is left-associa​tive: a.[i,j,k] means ((a.[i]).[j]).[k]. A "unique" selection using the '!' symbol returns a tuple containg the demanded array element and the original array. This type of array selection can be very handy for destructively updating of uniquely typed arrays with values which depend on the current contents of the array. Array se​lection binds more tightly (priority 11) than application (priority 10).

3.4.9
Lambda Abstraction

Sometimes it can be convenient to define a tiny function in an expression "right on the spot". For this purpose one can use a lambda abstraction. An anonymous function is defined which can have several formal arguments which can be patterns as common in or​dinary function definitions (see Chapter 3). However, only simple functions can be defined in this way: no guards, no rule alternatives, no local definitions. Since the dot is already used for record and array selection a '->' is ued to separate the for​mal arguments from the functionbody:

LambdaAbstr XE "LambdaAbstr" \b
=
\ XE "\\" \b {Pattern} -> GraphExpr

A lambda expression introduces a new scope (see 2.1).

The arguments of the anonemeous function being defined have the only a meaning in the corresponding functionbody.

\ arg1 arg2 ... argn -> function_body

Example of a Lambda expression.

AddTupleList:: [(Int,Int)] -> [Int]

AddTupleList list = map (\(x,y) -> x+y) list

3.4.10
Case Expression and Conditional Expression

For programming convenience a case expression and conditional expres​sion are added.

CaseExpr XE "CaseExpr" \b
=
case XE "case" \b GraphExpr of XE "of" \b

{ {CaseAltDef}+ }

|
if XE "if " \b BrackGraph BrackGraph BrackGraph

CaseAltDef XE "CaseAltDef" \b
=
{Pattern}

{LetBeforeExpression}

{{| Guard} -> FunctionBody}+

[LocalFunctionAltDefs]

In a case expression XE "case expression" \b first the discriminating expression is evaluated after which the case alternatives are tried in textual order. Case alternatives are similar to functionalternatives. This is not so strange because a case expression is internally translated to a function definition (see the example below). Each alterna​tive contains a left-hand side pattern (see 3.2) which is optionally followed by a let-before (see 3.6) and a guard (see 3.3). When a pattern matches and the optional guard evaluates to True the corresponding al​ternative is cho​sen. A new block struc​ture XE "block struc​ture" (scope XE "scope") is cre​a​ted for each case alternative (see 2.1).

The variables defined in the patterns have the only a meaning in the corresponding alternative.

case expression of

pattern1 -> case_alternative1

pattern2 -> case_alternative2

...

patternn -> case_alternativen

•
All alternatives in the case expression must be of the same type.

•
When none of the pat​terns matches a run-time error is gener​ated.

The case expression.

h x = case g x of

[hd:_]
-> hd

[]

-> abort "result of call g x in h is empty"

is semantically equivalent to:

h x = mycase (g x)

where

mycase [hd:_]
= hd

mycase []

= abort "result of call g x in h is empty"

In a conditional expression XE "conditional expression" \b first the Boolean expression is evaluated after which either the then- or the else-part is chosen. The conditional expression can be seen as a simple kind of case expres​sion.

•
The then- and else-part in the conditional expression must be of the same type.

•
The discriminating ex​pression must be of type Bool.

3.4.11
Let Expression: Local Definitions for Expressions

Sometimes it is convenient to introduce local function definitions (see 3.5.3) or constant (graph) def​i​nitions (see 3.5.4) which are only visible for a certain expres​sion. So, a let expression is an expressions which introduces a new scope (see 2.1).

The function and selectors defined in the let block only have a meaning within expression.

let

function arguments = function_body

selector = expr

...

in
expression

Such local definitions can be introduced anywhere using a let expression with the following syntax.

LetExpresssion XE "LetExpresssion" \b
=
let XE "let " \b { {LocalDef}+ } in XE "in " \b GraphExpr

LocalDef XE "LocalDef" \b
=
GraphDef

|
FunctionDef

Example of a let expression used within a list comprehension.

doublefibs n = [let a = fib i in (a, a) \\ i <- [0..n]]

3.5
Local Definitions

In a function definition one can locally define functions (see 3.5.3) and constant graphs (see 3.5.4).

LocalDef XE "LocalDef" \b
=
GraphDef

|
FunctionDef

Both kind of local definitions can be introduced by using a let expression (see 3.4.11), by using a where block (see 3.5.1) and by using a with block (see 3.5.2). Constant graph definitions can also be defined by using a strict let expression (see 3.6.1), and, in a let-be​fore expression(see 3.6.2).

3.5.1
Where Block: Local Definitions for a Function Alternative

At the end of each function alternative one can locally define functions and constant graphs in a where block XE "where block" \b .

LocalFunctionAltDefs XE "LocalFunctionAltDefs"
=
[where XE "where"] { {LocalDef}+ }
Functions and graphs defined in a where block can be used anywhere in the corre​sponding function alternative (i.e. in all guards and rule alternatives following a pattern, see 3.1) as in​dicated in the fol​low​ing picture showing the scope of a where block.

The function and selectors defined in the where block can be locally used in the whole function definition.

function arguments

| pattern1 = function_alternative1

| pattern2 = function_alternative2

| otherwise = default_alternative

where

selector = expr

local_function args = function_body

sieve and filter are local functions defined in a where block. They have only a meaning inside primes. At the global level the functions are unknown.

primes::[Int]

primes = sieve [2..]

where

sieve::[Int] -> [Int]

//
local function of primes

sieve [pr:r]
= [pr:sieve (filter pr r)]

filter::Int [Int] -> [Int]

//
local function of primes

filter pr [n:r]

| n mod pr == 0
= filter pr r

| otherwise

= [n:filter pr r]

Notice that the scope rules are such that the arguments of the surrounding function alternative are vis​i​ble to the locally defined functions and graphs. The arguments can therefore directly be addressed in the local definitions. Such local definitions cannot always be typed explicitly (see 4.3).

Alternative definition of primes. The function filter is locally defined for sieve. filter can directly access argumet pr of sieve.

primes::[Int]

primes = sieve [2..]

where

sieve::[Int] -> [Int]

//
local function of primes

sieve [pr:r]
= [pr:sieve (filter r)]

where

filter::[Int] -> [Int]

//
local function of sieve

filter [n:r]

| n mod pr == 0
= filter r

| otherwise

= [n:filter r]

3.5.2
With Block: Local Definitions for a Guarded Alternative

One can also locally define functions and graphs at the end of each guarded rule alternative using a with block XE "with block" \b .

LocalFunctionDefs XE "LocalFunctionDefs"
=
[with XE "with"] { {LocalDef}+ }
LocalDef XE "LocalDef" \b
=
GraphDef

|
FunctionDef

Functions and graphs (see 3.5.4) defined in a with block can only be used in the corresponding rule al​ternative as indicated in the following picture showing the scope of a with block.

The function and selectors defined in the with block can be locally only be used in the corresponding function alternative.

function arguments

| pattern1
=
function_alternative1

with

selector = expr

local_function args = function_body

| pattern2
=
function_alternative2

with

selector = expr

local_function args = function_body

Notice that the scope rules are such that the arguments of the surrounding guarded rule alternative are visible to the locally defined functions and graphs. The arguments can therefore directly be addressed in the local definitions. Such local definitions cannot always be typed explicitly (see 4.3).

3.5.3
Defining Local Functions

One can define functions which have a local scope, i.e. which have only a meaning in a certain pro​gram region (see 3.4.11, 3.5.1, 3.5.3). Outside the scope the functions are unknown. This locality can be used to get a better program structure: functions which are only used in a certain program area can re​main hidden outside that area. Programs can also become more readable because arguments of the sur​rounding function can directly be accessed in the local function body. Local functions therefore of​ten need less arguments than functions defined on a global level (see 3.5.1). However, such local defi​ni​tions cannot always be typed explicitly (see 4.3).

3.5.4
Defining Local Constants

One can give a name to a constant expression (actually a graph), such that the expression can be used in (and shared by) other expressions. One can also identify cer​tain parts of a constant via a projection function called a selector (see below). Selectors are also used in list comprehensions and array compre​hensions (see 3.4.5 and 3.4.8).

GraphDef XE "GraphDef"
=
Selector =[:] GraphExpr ;
Graph locally defined in a function: the graph labelled last is shared in the function StripNewline and compu​ted only once.

StripNewline:: String -> String

StripNewline "" = ""

StripNewline string

| string !! last<>'\n'
= string

| otherwise

= string%(0,last-1)

where

last = maxindex string

 XE "graph definition" \b .When a graph is defined actually a name is given to (part) of an expression. The definition of a graph can be compared with a definition of a constant (data) or a constant (projection) function. i.constant function; XE "function:constant" However, no​tice that graphs are constructed according to the basic semantics of Clean (see Chapter 1) which means that multiple references to the same graph will result in sharing XE "sharing" \b of that graph. Recur​sive refer​ences will result in cyclic graph XE "cyclic graph" \b structures. Graphs have the property that they are computed only once and that their value is remembered within the scope they are de​fined in.

Graph definitions differ from constant function definitions. A constant function def​ini​tion is just a function defined with arity zero (see 3.1). A constant function defines an ordinary graph rewriting rule: multiple references to a function just means that the same def​ini​tion is used such that a (constant) function will be recomputed again for each occurrence of the function symbol made. This difference can have consequences for the time and space behaviour of function definitions (see 5.2).

The Hamming numbers defined using a locally defined cyclic constant graph and defined by us​ing a globally de​fined recursive constant function. The first definition (ham1) is efficient because already computed num​bers are reused via sharing. The second definition (ham2) is much more inefficient because the recur​sive function recomputes everything.

ham1:: [Int]

ham1 = y

where y = [1:merge (map ((*) 2) y) (merge (map ((*) 3) y) (map ((*) 5) y))]

ham2:: [Int]

ham2 = [1:merge (map ((*) 2) ham2) (merge (map ((*) 3) ham2) (map ((*) 5) ham2))]

Syntactically the definition of a graph is distinguished from the definition of a function by the sym​bol which sepa​rates left-hand side from right-hand side: "=:" is used for graphs while "=>" is used for func​tions. However, in general the more common symbol "=" is used for both type of definitions. Gen​erally it is clear from the context what is meant (functions have parameters, selectors are also easy recognisi​ble). However, when a simple con​stant is defined the syntax is ambiguous (it can be a constant func​tion definition as well as a constant graph definition).

To allow the use of the "=" whenever possible, the following rule is followed. Locally constant defini​tions are by default taken to be graph definitions and therefore shared, globally they are by default taken to be function defini​tions (see 3.1) and therefore recomputed. If one wants to obtain a different be​haviour one has to explicit state the na​ture of the constant definition (has it to be shared or has it to be recomputed) by using "=:" (on the global level, meaning it is a constant graph which is shared) or "=>" (on the local level, meaning it is a constant function and has to be recomputed).

Local constant graph versus local constant function definition: biglist1 and biglist2 is a graph which is com​puted only once, biglist3 is a constant function which is computed every time it is ap​plied.

biglist1
=
[1..10000]

//
a graph (if defined locally)
biglist2
=:
[1..10000]

//
a graph
biglist3
=>
[1..10000]

//
a constant function
Graphs defined locally will be collected by the garbage collector XE "garbage collector" when they are no longer connected to the root of the program graph (see Chapter 1).

Selectors

The left-hand side of a graph definition can be a simple name, but is can also be a more complicated pattern called a selector. A selector XE "selector" \b is a pattern which introduces one or more new selector variable XE "selector variable" \b s im​plicitly defining pro​jection function XE "pro​jection function" \b s to identify (parts of) a constant graph being defined XE "variable:selector" \b One can iden​tify the sub-graph as a whole or one can identify its components. A selector can contain constants (also user defined constants introduced by algebraic type definitions), variables and wildcards. With a wild​card XE "wild​card" \b one can indi​cate that one is not interested in certain com​ponents.

Selector XE "Selector" \b
=
BrackPattern

//
for bracket patterns see 3.2
•
When a selector on the left-hand side of a graph definition is not matching the graph on the right-hand side it will result in a run-time error.

•
The selector variables introduced in the selector must be different from each other and not al​ready be used in the same scope and name space (see 1.2).

•
To avoid the specification of patterns which may fail at run-time, it is not allowed to test on zero arity constructors. For instance, list used in a selector pattern need to be of form [a:_]. [a] cannot be used because it stands for [a:[]] implying a test on the zero arity constructor []. If the pattern is a record only those fields which contents one is interested in need to be in dicated in the pat​tern XE "record pattern" \b

 XE "pattern:record" \b
•
Arrays cannot be used as pattern in a selector.

Remark: a selector can also appear on the left-hand side of a generator in a list comprehension (see 3.4.5) or array comprehension (see 3.4.8).

Use of a selectors to locally select tuple elements.

unzip::[(a,b)] -> ([a],[b])

unzip []

= ([],[])

unzip [(x,y):xys]
= ([x:xs],[y:ys])

where

(xs,ys) = unzip xys

3.6
Special Local Definitions

In addition to ordinary let expressions there are also special let expressions with which one can locally de​fine graphs (see 3.5.4), but not functions (!). These special let expressions are introduced for very specific reasons.

3.6.1
Strict Let Expression: Strict Local Constants

Although Clean is by default a lazy language one can force evaluation in several ways. By forcing eval​uation one generally obtains a more time- and space-efficient program (see 5.1). Forcing evaluation can influ​ence the termination be​haviour of the program (a terminating pro​gram may be turned into a non-terminat​ing program). See also Section 5.1.
The nicest way to force evaluation is by defining (partially) strict data structures. But it can also be handy to force evaluation on ad-hoc basis. This can be done by annotating function arguments as being strict (see 5.1.2). Another way to force evaluation is by using a strict let ex​pression XE "strict let ex​pression" \b . The strict let expression looks similar to an ordinary let expression albeit that only graphs can be defined in a strict let expression which will be evaluated to strong root normal form before the root expression is being eval​uated (see 3.5);. To ensure that evaluation indeed takes place, a strict let expression can only be used before the root ex​pression (which will be evaluated) and it can only contain graph definitions (which can be evaluated). The order in which the graphs in the let expression will be evalu​ated is un​defined. The scope introduced by a strict let expression is the same as with an ordinary let expression.

Strict let expressions can be used to force unique objects in a strict con​text such that they can be ob​ser​ved before they are destructively updated.

StrictLet XE "StrictLet" \b
=
let! XE "let!" \b { {GraphDef}+ } in XE "in" \b
Let! expression forcing evaluation.

SquareArrayElem:: *{Int} Int ->.{Int}

SquareArrayElem a i =
let! e = a.[i]

in {a & [i]=e*e}

3.6.2
Let-Before Expression: Local Constants for a Guard

Many of the functions for input and output in the Clean I/O library are state transition functions. Such a state is often passed from one function to another in a single threaded way (see Chapter 4) to force a specific order of evaluation. This is certainly the case when the state is of unique type. The threading parameter has to be renamed to distinghuish its different versions. The following example shows a typical example:

Use of state transition functions. The uniquely typed state file is passed from one function to another involving a number of renamings: file, file1, file2)

readchars:: *File -> ([Char], *File)

readchars file

| not ok

= ([],file1)

| otherwise
= ([char:chars], file2)

where

(ok,char,file1)
= freadc file

(chars,file2)

= readchars file1

This explicit renaming of threaded parameters not only looks very ugly, these kind of definitions are sometimes also hard to read as well (in which order do things happen? which state is passed in which situation?). We have to admit: an imperative style of programming is much more easier to read when things have to happen in a certain order such as is the case when doing I/O. That is why we have in​troduced let-before expressions.

Let-before expressions are special let expressions which can be defined before a guard or function body. In this way one can specify sequential actions in the order in which they suppose to happen. Let-before expressions have the following syntax:

LetBeforeExpression XE "LetBeforeExpression" \b
=
Lets {GraphDef}+

Lets XE "Lets" \b
=
let XE "let " \b | # XE "" \t "" \b | let! XE " let!" \b | #! XE "" \t "!" \b
The form with the exclamation mark forces the evaluation of the node-ids that appear in the left-hand sides of the definitions (see strict let-expressions, Section 3.6.1). Instead of the keyword let the #-sym​bol is often used because it looks nice in combination with the |-symbol used for guards.

Let-before expressions have a special scope rule to obtain an imperative programming look. The vari​ables in the left-hand side of these definitions do not appear in the scope of the right-hand side of that definition, but they do appear in the scope of the other definitions that follow (including the root ex​pression, excluding local definitions in where blocks.

This is shown in the following picture:

Function args

selector1
= expression1

| guard1

= expression2

selector2
= expression3

| guard2

= expression4

where

local_definitions

Note that the scope of variables in the let before expressions does not extent to the definitions in the where expression of the alternative. The reverse is true however: definitions in the where expression can be used in the let before expressions.

Use of let before expressions, short notation, re-using names taking use of the special scope of the let before)

readchars:: *File -> ([Char], *File)

readchars file

#
(ok,char,file)
= freadc file

|
not ok

= ([],file)

#
(chars,file)

= readchars file

=
([char:chars], file)

Equivalent definition renaming threaded parameters)

readchars:: *File -> ([Char], *File)

readchars file

#
(ok,char,file1)
= freadc file

|
not ok

= ([],file1)

#
(chars, file2)
= readchars file1

=
([char:chars], file2)

Equivalent definition, using keyword let instead of #)

readchars:: *File -> ([Char], *File)

readchars file

let
(ok,char,file)
= freadc file

|
not ok

= ([],file)

let
(chars,file)

= readchars file

=
([char:chars], file)

The notation can also be dangerous: the same name is used on different spots while the meaning of the name is not always the same (one has to take the scope into account which changes from definition to definition). However, the notation is rather safe when it is used to thread parameters of unique type. The type system will spot it when such parameters are not used in a correct single threaded manner. We do not recommend the use of let before expressions to adopt a imperative pro​gram​ming style for other cases.

Abuse of let before expression.

exchange:: (a, b) -> (b, a)

exchange (x, y)

#
temp = x

x
= y

y
= temp

=
(x, y)

[image: image12.jpg]. Clean |

Chapter 4

Defining Types

	4.1
Predefined Types
4.2
Defining New Types
4.3
Typing Functions
	4.4
Typing Overloaded Functions
4.5
Defining Uniqueness Types

 XE "strong type system" Clean is a strongly typed language. The basic type system of Clean is based on the classical po​ly​mor​p​hic Mil​ner/Hindley/Mycroft (Milner XE "Milner" 1978; Hindley XE "Hindley" 1969, Mycroft, 1984) type sys​tem. This type sys​tem is adapted for graph rewrit​ing sys​tems and extended with basic types, (possibly ex​is​tentially quanti​fied) algebraic ty​pes, record types, ab​stract types and synonym types. These types are explained in the Sec​ti​ons 4.1, 4.2 and 4.3.

In Clean each classical type is furthermore extended with uniqueness type attributes. This very special and important extension is explained in Section 4.5.

Clean allows functions and operators to be overloaded. Type classes and type constructor classes are pro​vided (which look similar to Haskell (Hudak et al. , 1992) and Gofer (Jones, 1993) although they have slightly different semantics) with which a re​stricted context can be imposed on a type variable in a type specification. This is explained in Section 4.4.

Although Clean is purely functional, operations with side-effects (I/O operations, for instance) are permitted. To achieve this without violating the semantics, the classical types are supplied with so cal​led uniqueness attributes. This is explained in Section 4.5.

4.1
Predefined Types

Clean is a strongly typed language XE "strongly typed language" \b : every object (graph) and function (graph rewrite rule) in Clean has a type. The types of functions can be explic​itly specified by the programmer or they can be inferred auto​mat​ically (see 4.3) XE "type:explicitly specified" \b

 XE "type:inferred" \b Types can be formed by taking instances of type constructors which have been de​fined explicitly as algebraic type (see 4.2.1), record type (see 4.2.2), synonym type (see 4.2.3), abstract type (see 4.2.4) or by taken instances of a predefined type (see 4.1.1 - 4.1.6). A type instance XE "type instance" \b from a given type is ob​tained by uniformly sub​stituting a type for a type vari​able. A type instance can be preceded by a uniqueness type attribute XE "uniqueness type attribute" . This is further explained in Section 4.5.1.

Type XE "Type" \b
=
{BrackType}+

BrackType XE "BrackType" \b
=
[UnqTypeAttrib] SimpleType

SimpleType XE "SimpleType" \b
=
TypeConstructor

//
see 4.2, 4.4

|
TypeVariable

|
BasicType

//
see 4.1.1

|
PredefAbstrType

//
see 4.1.2

|
ListType

//
see 4.1.3

|
TupleType

//
see 4.1.4

|
ArrayType

//
see 4.1.5

|
ArrowType

//
see 4.1.6

|
(Type)
4.1.1
Basic Types

 XE "type:basic"

 XE "basic type" \b Basic types are algebraic types (see 4.2) which are predefined for reasons of efficiency and con​ve​nience: Int XE "Int" (for 32 bits integer values), Real XE "Real" (for 64 bit double precision floating point values), Char XE "Char" (for 8 bits ASCII XE "ASCII" character values) and Bool XE "Bool" (for 8 bits Boolean values). For pro​gramming convenience spe​cial syntax is introduced to denote constant values (data constructors) of these prede​fined types (see 3.2). Functions to create and manipu​late objects of basic types can be found in the Clean li​brary (as indi​cated below).

BasicType XE "BasicType" \b
=
Int XE "Int" \b

//
see StdInt.dcl

|
Real XE "Real" \b

//
see StdReal.dcl

|
Char XE "Char" \b

//
see StdChar.dcl

|
Bool XE "Bool" \b

//
see StdBool.dcl
4.1.2
Predefined Abstract Types

 XE "abstract data type:predefined" \b As is explained in Section 4.2.4, Abstract data types are types of which the actual def​ini​tion is hid​den. In Clean the types World XE "World" , File XE "File" and ProcId XE "ProcId" are predefined abstract data types. They are recognised by the compiler and treated specially, either for effi​ciency or because they play a special role in the lan​guage. Since the ac​tual defini​tion is hidden it is not possible to denotate constant val​ues of these prede​fined abstract ty​pes. There are functions predefined in the Clean li​brary for the creation and manipu​la​tion of these predefined ab​stract data types. Some func​tions work (only) on unique objects (see Chap​ter 4).

An object of type *World XE "World" \b (* indicates that the world is unique, see 4.5.1) is automatically created when a pro​gram is started. This object is optionally given as argument to the Start function (see 2.3). With this object effi​cient in​terfacing with the outside world (which is indeed unique) is made pos​sible (see Chapter 4).

An object of type File XE "File" \b or *File can be created by means of the functions defined in Std​Fi​leIO (see Cleans Standard Library). It makes direct manipulation of persistent data possible. The type File is pre​de​fined for rea​sons of efficiency: Clean Files are directly coupled to concrete files.

An object of type ProcId XE "ProcId" \b can be created by means of the functions defined in StdProcId (see Cleans Standard Library). These objects are used in process annotations to allow process creation on an in​di​cated pro​ces​sor (see Chapter 5) in a network topology.

PredefAbstrType XE "PredefAbstrType" \b
=
World

//
see StdWorld.dcl

|
File

//
see StdFileIO.dcl

|
ProcId

//
see StdProcId.dcl
4.1.3
List Types

 XE "type:list" \b A list XE "list" \b is an algebraic data type predefined just for programming convenience. A list can contain an in​fi​nite number of elements. All elements must be of the same type. Lists are very often used in func​tional languages and therefore the usual syntactic sugar is provided for the creation and ma​ni​pu​lation of lists (dot-dot expressions, list comprehensions) while there is also special syntax for list of characters. (see 3.4.5 and 3.2.5)

•
Lists cannot be annotated as strict or spine strict. To create such lists a new algebraic data type has to be defined with appropriate strictness annotations (see 5.1.3). We are working on removing this restriction.

ListType XE "ListType" \b
=
[Type]
4.1.4
Tuple Types

 XE "type:tuple" \b A tuple XE "tuple" \b is an algebraic data type predefined for reasons of programming conve​nience and effi​ciency (see 5.1). Tuples have as advantage that they allow to bundle a finite number of objects of arbitrary type into a new object with​out being forced to define a new algebraic type for such a new object (see 3.4.6 and 3.2.6). This is in particular handy for functions that return several val​ues.

The tuple arguments can optionally be annotated as being strict (see 5.1.1). This can be used to in​crease the efficiency of a program (see 5.1). The compiler will automatically take care of the con​ver​sion between lazy and strict tuples where needed (see 5.1.4).

TupleType XE "TupleType " \b
=
([Strict] Type,{[Strict] Type}-list)
4.1.5
Array Types

 XE "type:array" \b An array XE "array" \b is an algebraic data type predefined for reasons of efficiency. Arrays contain a finite num​ber of elements that all have to be of the same type. An array has as property that its ele​ments can be ac​cessed via indexing in constant time. An array index XE "array:index" \b must be an integer value between 0 and the number of el​ements of the array-1. Destructive updates of array ele​ments is possible thanks to unique​ness typ​ing. For pro​gramming con​venience special syntax is provided for the cre​a​tion, se​lec​tion and updating of ar​ray elements (array comprehensions) while there is also special syntax for strings (i.e. unboxed ar​rays of characters) (see 3.4.8 and 3.2.8). Arrays have as disad​vantage that their use increases the possi​bility of a run-time error (indices that might get out-of-range).

To obtain optimal efficiency in time and space, arrays are implemented different depending on the concrete type of the array elements. By default an array is implemented as a lazy array (type {a}), i.e. an array consists of a contiguous block of memory containing pointers to the array elements. The same re​presentation is chosen if strict arrays (define its type as {!a}) are being used. For ele​ments of basic type an unboxed array (define its type as {#a}) can be used. In that latter case the pointers are replaced by the array elements themselves. Lazy, strict and unboxed arrays are regarded by the Clean compiler as ob​jects of different types. However, most predefined operations on arrays are overloaded such that they can be used on lazy, on strict as well as on unboxed ar​rays.

ArrayType XE "ArrayType" \b
=
{[Strict] Type}

|
{#BasicType}
4.1.6
Arrow Types

 XE "type:arrow" \b The arrow type XE "arrow type" \b is used for function object XE "function object" \b s (these functions have at least arity one) XE "cartesian product" One can use the Cartesian product (uncurried version) to denote the function type (see 4.3) to obtain a com​pact no​ta​tion. Curried functions appli​cations and types are automatically converted to their uncurried equiva​lent versions (see 4.3.1) XE "curried type"

 XE "type:curried"
ArrowType XE "ArrowType" \b
=
({BrackType}+ -> Type)
Example of an arrow type.

((a b -> c) [a] [b] -> [c])

being equivalent with:

((a -> b -> c) -> [a] -> [b] -> [c])

4.2
Defining New Types

New types can be defined in an implementation as well as in a definition module. Types can only be defined on the global level. Abstract types can only be defined in a definition module hiding the actual implementation in the corresponding im​plementation module (see 4.2.4 and Chapter 2).

TypeDef XE "TypeDef " \b
=
AlgebraicTypeDef

//
see 4.2.1 and 4.5.2

|
RecordTypeDef

//
see 4.2.1 and 4.5.2

|
SynonymTypeDef

//
see 4.2.3 and 4.5.2

|
AbstractTypeDef

//
see 4.2.4 and 4.5.2
FunctionDef XE "FunctionDef" \b
=
[FunctionTypeDef] DefOfFunction

//
see 4.3 and 4.5.3
ClassDef XE "ClassDef" \b
=
TypeClassDef

//
see 4.4 and 4.5.4

|
TypeInstanceDef

//
see 4.4 and 4.5.4

|
TypeClassInstanceExportDef

//
see 4.4

4.2.1
Defining Algebraic Data Types

With an algebraic data type XE "algebraic data type" \b one assigns a new type constructor (a new type) to a newly in​troduced data structure XE "data structure" . The data structure consists of a new constant value XE "constant value" \b (called the data constructor XE "data constructor" \b) which can have zero or more arguments (of any type). Every data con​struc​tor must unambigu​ously have been (pre)defined in an algebraic data type definition XE "type:algebraic data" \b Sev​eral data con​struc​tors can be introduced in one al​gebraic data type defini​tion which makes it possible to define alter​native data structures of the same al​gebraic data type. The data constructors can, just like functions, be used in a curried way. Also type constructors can be used in a curried way, albeit only in the type world of course.

 XE "polymorphic algebraic data type" \b Polymorphic algebraic data types can be defined by adding (possibly existentially quanti​fied, see below) type variable XE "type variable" \b s to the type constructors on the left-hand side of the algebraic data type definition XE "type:variable" \b

 XE "variable:type" \b The argu​ments of the data constructor in a type definition are type instances of ty​pes (that are defined or are being de​fi​ned).

Types can be preceded by uniqueness type attributes (see 4.5.2). The argu​ments of a defined data con​structor can optionally be annotated as being strict (see 5.1).

AlgebraicTypeDef XE "AlgebraicTypeDef" \b
=
::TypeLhs = [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ;
TypeLhs XE "TypeLhs"
=
[*]TypeConstructor {[*] TypeVariable}

TypeConstructor XE "TypeConstructor " \b
=
TypeName

ConstructorDef XE "ConstructorDef" \b
=
ConstructorName {[Strict] BrackType}

|
(ConstructorName) [Fix][Prec] {[Strict] BrackType}

QuantifiedVariables XE "QuantifiedVariables"
=
{E. TypeVariable}+

Fix XE "Fix" \b
=
infixl XE "infixl" \b

|
infixr XE "infixr" \b

|
infix XE "infix" \b
Prec XE "Prec" \b
=
Digit

Example of an algebraic type definition and its use.

::Day = Mon | Tue | Wed | Thu | Fri | Sat | Sun

::Tree a
= NilTree

| NodeTree a (Tree a) (Tree a)

MyTree:: (Tree Int)

//
constant function yielding a Tree of Int

MyTree = NodeTree 1 NilTree NilTree

An algebraic data type definition can be seen as the specification of a grammar in which is specified what legal data objects are of that specific type. All data constructors being de​fi​ned must therefore have different names, to make type inferencing possible. Notice that the other Clean ty​pes (basic, list, tuple, array, record, abstract types) can be regarded as special cases of an algebraic type.

Scope of type definitions.

implementation module XYZ

:: Type_contructor type_vars = expression

other_definitions

Defining Infix Data Constructors

Constructors with two arguments can be defined as in​fix constructor .ib .in​fix constructor;, in a similar way as function op​era​tors (with fixity (infixl XE "infixl" , infixr .i in​fixr; or just infix XE "infix" , default infixl) and prece​dence (0 through 9, default 9). Infix construc​tors can also be used in prefix posi​tion when they are surrounded by brackets (see 3.1).

Example of an algebraic type defining an infix data constructor, a function on this type; notice that one cannot use a ':' because this character is already reserved.

::List a
= (<:>) infixr 5 a (List a)

| Nil

Head:: (List a) -> a

Head (x<:>xs) = x

Using Higher Order Types

In an algebraic type definition ordinary types can be used (such as a basic type, e.g. Int, or a list type, e.g. [Int], or an instantiation of a user defined type, e.g. Tree Int), but one can also use higher order ty​pes. Higher order types can be constructed by curried applications of the type constructors. Higher or​der types can be applied in the type world in a similar way as higher order functi​ons in the function world. The use of higher order types increases the flexibility with which al​gebraic types can be defined. Higher or​der types play an important role in combination with type classes (see 4.4).

Type XE "Type"
=
{BrackType}+

BrackType XE "BrackType"
=
[UnqTypeAttrib] SimpleType

SimpleType XE "SimpleType"
=
TypeConstructor

|
TypeVariable

|
BasicType

|
PredefAbstrType

|
ListType

|
TupleType

|
ArrayType

|
ArrowType

|
(Type)
TypeConstructor XE "TypeConstructor" \b
=
TypeName

//
a user defined type

|
[]

//
list type constructorype XE "type:constructor:list" \b

|
({,}+)

//
tuple type constructor (arity >= 2) XE "type:constructor:list" \b

|
{}

//
lazy array type constructor XE "type:constructor:lazy array" \b

|
{!}

//
strict array type constructor XE "type:constructor:strict array" \b

|
{#}

//
unboxed array type constructor XE "type:constructor:unboxed array" \b

|
(->)

//
arrow type constructor XE "type:constructor:arrow" \b
Predefi​ned types can also be used in curried way. To make this possible all predefined types can be written down in prefix notation as well, as follows:

[] a

is equivalent with [a]

(,) a b

is equivalent with (a,b)

(,,) a b c
is equivalent with (a,b,c) and so on for n-tuples

{} a

is equivalent with {a}

{!} a

is equivalent with {!a}

{#} a

is equivalent with {#a}

(->) a b

is equivalent with (a -> b)

Of course, one needs to ensure that all types are applied in a correct way. To be able to specify the rules that indicate whether a type itself is correct, we introduce the notion of kind. A kind can be seen as the `type of a type`. In our case, the kind of a type expresses the number of type arguments this type may have. The kind X stands for any so-called first-order type: a type expecting no forther arguments ((Int, Bool, [Int], etcetera). The kind X -> X stands for a type that can be be applied to a (first-order) type, which then yields another first-order type, x -> x -> x expecting two type arguments of, and so on.

Int, Bool, [Int], Tree [Int]
:: X

[], Tree, (,) Int, (->) a, {}
:: X -> X

(,), (->)

:: X -> X -> X

(,,)

:: X -> X -> X -> X

In Clean each top level type should have kind X. A top level type is a type that occurs either as an argu​ment or result type of a function or as argument type of a data constructor (in some algebraic type de​finition). The rule for determining the kinds of the type variables (which can be of any order) are fairly simple: The kind of a type variable directly follows from its use. If a variable has no arguments, its kind is X. Otherwise, its kind corresponds to the number of arguments to whch the variable is applied. The kind of type variable determines its possible instantiations, i.e. it can only be instantiated with a type which is of the same kind as the type variable itself.

Example of an algebraic type using higher order types; the type variable t in the definition of Tree2 s of kind X -> X. Tree2 is instantiated with a list (also of kind X -> X) in the definition of MyTree2.

::Tree2 t
= NilTree

| NodeTree (t Int) (Tree2 t) (Tree2 t)

MyTree2:: Tree2 []

MyTree2 = NodeTree [1,2,3] NilTree NilTree

Defining Algebraic Data Types with Existentially Quantified Variables

An al​ge​braic type defi​nition can contain existen​tially quantified type variable XE "existen​tially quantified variable" \b s (or, for short, existential type variables) (Läufer XE "Läufer" 1992) XE "variable:existentially quantified" \b These special vari​a​bles are indicated by preceding them with "E. .; XE "E." \b ". Exis​tential types are use​ful if one wants to create (recursive) data struc​tures in which objects of different ty​pes are being stored (e.g. a list with elements of different ty​pes).

Example of an existential type definitions and theis use. In this example a list-like structure is defined in which functions can be stored. The functions in this structure can be applied one after another in a pipe-line fashion. Each function in the pi​peline can yield a result of arbitrary type which is exactly of the type required by the next function in the pipe-line. The first function in the pipeline expects type a, the last will yield type b. Hence, the function composed in this way is a function of type a -> b. The recursive func​tion ApplyPipe happens to be an example of a recursive function which type cannot be inferred (with the Milner type system), however its specified type can be checked (with the My​croft type system.

::Pipe a b
=
Direct (a -> b)

|
E.via:
Indirect (a -> via) (Pipe via b)

ApplyPipe:: (Pipe a b) a -> b

ApplyPipe (Direct func) val

= func val

ApplyPipe (Indirect func pipes) val
= ApplyPipe pipes (func val)

Start = ApplyPipe (Indirect toReal (Indirect exp (Direct toInt))) 3

To ensure correctness of typing, there is a limitation imposed on the use of existentially quantified data structures XE "type:existential" \b

•
Once a data structure containing existentially quantified parts is created the type of these compo​nents are forgotten. This means that, in general, if such a data structured is passed to another function it is statically impossible to determine the actual types of those components: it can be of any type. The​re​fore, a function having an existentially quantified data structure as input is not al​lowed to make specific type assumptions on the parts that correspond to the existential type va​ri​ables. This implies that one can only instantiate an existen​tial type variable with a concrete type when the object is created.

Counter Example. Illegal use of an object with existentially quantified components; the concrete type of the components of the Pipe are unknown.

ApplFunc:: (Pipe Int b) -> ??

ApplFunc (Indirect func pipes) = func 3

Semantic Restrictions on Algebraic Data Types

Other semantic restrictions on algebraic data types:

•
The name of a type must be different from other names in the same scope and name space (see 2.1).

•
All type variables on the left-hand side must be different.

•
All type variables used on the right-hand side are bound, i.e. must be introduced on the left-hand side of the algebraic type being defined.

•
A data constructor can only be defined once within the same scope and name space. So, each data con​struc​tor unambiguously identifies its type to make type inferrencing possible.

•
When a data constructor is used in infix position both arguments have to be present. Data con​structors can be used in a curried way in the function world, but then they have to be used as ordi​nary prefix constructors.

•
Type constructors can be used in a curried way in the type world; to use predefined bracket-like type construc​tors (for lists, tuples, arrays) in a curried way they must be used in prefix notation.

•
The right-hand side of an algebraic data type definition should yield a type of kind X, all argu​ments of the data constructor being defined should be of kind X as well.

•
A type can only be instantiated with a type that is of the same kind.

•
An existentially quantified type variable specified in an algebraic type can only be instantiated with a con​crete type (= not a type variable) when a data struc​ture of this type is created.

4.2.2
Defining Record Types

 XE "type:record" \b A record type XE "record type" \b is basically an algebraic data type in which exactly one constructor is defined. Spe​cial about records is

-
that a field name XE "field name" \b is attached to each of the arguments of the data con​structor;

•
that records cannot be used in a curried way.

Compared with ordinary algebraic data structures the use of records gives a lot of notational con​ve​nience because the field names enable selection by field name instead of selection by posi​tion XE "selection:by field name" \b

 XE "selection:by position" \b When a re​cord is created all arguments of the constructor have to be defined but one can spec​ify the arguments in any order (see 3.4.7). Furthermore, when pattern matching is performed on a record, one only has to mention those fields one is interested in (see 3.2.6). A record can be created via a functional update (see 3.4.7). In that case one only has to specify the values for those fields which differ from the old record. Matching and creation of records can hence be specified in Clean in such a way that after a change in the structure of a record only those functions have to be chan​ged which are explicitly referring to the changed fields.

Existential type variables (see 4.2.1) are allowed in record types (as in any other type). The arguments of the constructor can op​tio​n​ally be annotated as being strict (see 5.1). The op​tional uni​queness at​tri​butes are treated in 4.5.2.

RecordTypeDef XE "RecordTypeDef"
=
::TypeLhs = [QuantifiedVariables :] {{FieldName :: [Strict] Type}-list};
As data constructor for a record the name of the record type is used internally.

•
The se​mantic restrictions which apply for algebraic data types also hold for record types.

•
The field names inside one record all have to be different. It is allowed to use the same field name in different records.

Example of an record definition.

::Complex
=
{ re
:: Real

, im
:: Real

}

The combination of existential type variables in record types are of use for an object ori​en​ted style of programming XE "object oriented programming"
Example of using an existentially quantified records to create object of same type but which can have different representations.

::Object
= E.x:
{ state
:: x

, get
:: x -> Int

, set
:: x Int -> x

}

CreateObject1:: Object

CreateObject1 = {state = [], get = myget, set = myset}

where

myget:: [Int] -> Int

myget [i:is]
= i

myget []

= 0

myset:: [Int] Int -> [Int]

myset is i = [i:is]

CreateObject2 = {state = 0.0, get = myget, set = myset}

where

myget:: Real -> Int

myget r = toInt r

myset:: Real Int -> Real

myset r i = r + toReal i

Get:: Object -> Int

Get {state,get} = get state

Set:: Object Int -> Object

Set o=:{state,set} i = {o & state = set state i}

Start:: [Object]

Start = map (Set 3) [CreateObject1,CreateObject2]

4.2.3
Defining Synonym Types

 XE "synonym type" \b

 XE "type:synonym" \b Synonym types permit the programmer to introduce new type names for an existing type.

SynonymTypeDef XE "SynonymTypeDef"
=
::TypeLhs :== [QuantifiedVariables :]Type ;
•
For the left-hand side the same restrictions hold as for algebraic types (see 4.2.1).

•
Cyclic definitions of synonym types (e.g. ::T a b :== G a b; ::G a b :== T a b) are not al​lowed.

Example of a type synonym definition.

::Operator a :== a a -> a

map2:: (Operator a) [a] [a] -> [a]

map2 op [] []

= []

map2 op [f1:r1] [f2:r2]
= [op f1 f2 :map2 op r1 r2]

Start:: Int

Start = map2 (*) [2,3,4,5] [7,8,9,10]

4.2.4
Defining Abstract Data Types

 XE "type:abstract data" \b

 XE "abstract data type" \b A type can be exported by defining the type in a Clean definition module (see Chapter 2). For soft​ware engineering reasons it sometimes better only to export the name of a type but not its con​crete de​finition (the right-hand side of the type definition). The type then becomes an abstract data type. In Clean this is done by specifying only the left-hand-side of a type in the definition mo​dule while the concrete definition (the right-hand side of the type definition) is hidden in the imple​mentation mo​d​ule. So, Clean's module structure is used to hide the actual implementation. When one wants to do so​me​thing useful with objects of ab​stract types one needs to export func​tions that can create and mani​pu​late objects of this type as well.

•
Abstract data type def​initions are only allowed in definition module XE "definition module" s, the con​crete definition has to be given in the corresponding implementation module .i .implementation module;.

•
The left-hand side of the concrete type should be identical to (modulo alpha conversion for va​ri​a​ble names) the left-hand side of the abstract type definition (inclusive strictness and unique​ness type attributes).

AbstractTypeDef XE "AbstractTypeDef"
=
::TypeLhs ;
Example of an abstract data type.

definition module stack

::Stack a

Empty
:: (Stack a)

isEmpty
:: (Stack a) -> Bool

Top

:: (Stack a) -> a

Push

:: a (Stack a) -> Stack a

Pop

:: (Stack a) -> Stack a

implementation module stack

::Stack a :== [a]

Empty:: (Stack a)

Empty = []

isEmpty:: (Stack a) -> Bool

isEmpty [] = True

isEmpty s = False

Top:: (Stack a) -> a

Top [e:s] = e

Push:: a (Stack a) -> Stack a

Push e s = [e:s]

Pop:: (Stack a) -> Stack a

Pop [e:s] = s

4.3
Typing Functions

 XE "type:inferred" \b

 XE "function type" \b

 XE "type:of a function" \b Although one is in general not obligated to explicitly specify the type of a function (the Clean compiler can infer the type) the explicit specification of the type is highly recommended to increase the readabil​ity of the program.

FunctionDef XE "FunctionDef "
=
[FunctionTypeDef] DefOfFunction

FunctionTypeDef XE "FunctionTypeDef"
=
FunctionName :: FunctionType ;

|
(FunctionName) [Fix][Prec] [:: FunctionType] ;
Fix XE "Fix "
=
infixl XE "infixl" \b

|
infixr XE "infixr" \b

|
infix XE "infix" \b
Prec XE "Prec "
=
Digit

FunctionType XE "FunctionType"
=
[{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]

An explicit specification is required when a function is exported, or when the programmer wants to im​pose addi​tional restrictions on the application of the function (e.g. a more restricted type can be speci​fied, strict​ness informa​tion can be added as explained in Section 5.1, a class context for the type vari​a​bles can be de​fined as explained in Section 4.4, uniqueness information can be added as ex​plained in Section 4.5.3). The Clean type system uses a combination of Milner/Mycroft type assignment. This has as consequence that the type system in some rare cases is not capable to infer the type of a function (using the Milner/Hindley system) although it will approve a given type (using the Mycroft system; see Plasmeijer and Van Eekelen, 1993; see also the example in 4.2.1).

 XE "cartesian product" \b The Cartesian product is used for the specification of the function type. Cartesian product is de​noted by juxtaposition of the bracketed argument types. For the case of a single argument the brac​kets can be left out. In type specifications the binding priority of the application of type con​struc​tors is higher than the binding of the arrow ->. To indicate that one defines an operator the function name is on the left-hand side surrounded by brackets.

•
The function symbol before the double colon should be the same as the function symbol of the cor​re​sponding rewrite rule.

•
 XE "arity of a function" The arity of the func​tions has to correspond with the number of arguments of which the Carte​sian product is taken. So, in Clean one can tell the arity of the function by its type.

Showing how the arity of a function is reflected in type.

map:: (a->b) [a] -> [b]

//
map has arity 2
map f []

=
[]

map f [x:xs]
=
[f x : map f xs]

domap:: ((a->b) [a] -> [b])

//
domap has arity zero
domap = map

•
The arguments and the result types of a function should be of kind X.

•
In the specification of a type of a locally defined function one cannot refer to a type variable in​tro​duced in the type specifica​tion of a surrounding function (there is not yet a scope rule on ty​pes de​fined). The type of such a local function can therefore not yet be specified by the pro​grammer. However, the type will be inferred and checked (after it is lifted by the compiler to the global le​vel) by the type system.

Counter example (illegal type specification). The function g returns a tuple. The type of the first tuple el​ement is the same as the type of the polymorphic argument of f. Such a dependency (here indicated by "^" cannot be specified yet.

f:: a -> (a,a)

f x = g x

where

// g:: b -> (^a,b)

g y = (x,y)

4.3.1
Typing Curried Functions

 XE "arity of a function" \b In Clean all symbols (functions and constructors) are defined with fixed arity. However, in a appli​ca​tion it is of course al​lowed to apply them to an arbi​trary number of arguments. A curried appli​cation XE "curried appli​cation" \b of a function is an application of a function with a number of arguments which is less than its arity (note that in Clean the arity of a function can be de​rived from its type) XE "function:arity of a" \b

 XE "function:curried application of a" \b With the aid of the pre​de​fined in​ter​nal function _AP a curried func​tion applied on the required number of arguments is trans​formed into an equivalent uncurried func​tion application.

The type axiom's of the Clean type system include for all s defined with arity n the equiva​lence of s::(t1->(t2->(…(tn->tr)…)) with s::t1 t2 … tn -> tr.

4.3.2
Typing Operators

An operator XE "operator" \b is a function with arity two that can be used in infix position. An operator can be de​fined by en​closing the operator name between parentheses in the left-hand-side of the function defini​tion. An operator has a precedence XE "precedence" \b (0 through 9, default 9) and a fixity XE "fixity" \b (infixl .ib .infixl;, infixr .ib .in​fixr; or just infix .ib .infix;, default infixl). A higher precedence binds more tightly. When operators have equal prece​dence, the fixity de​termines the priority. In an expression an ordinary function applica​tion al​ways has the highest priority (10). See also Section 2.3 and 3.1.

•
The type of an operator must obey the requirements as defined for typing functions with ar​ity two.

•
If the opera​tor is explicitly typed the operator name should also be put be​tween parentheses in the type rule.

•
When an infix operator is enclosed be​tween parentheses it can be applied as a prefix func​tion. Pos​sible re​cur​sive definitions of the newly defined opera​tor on the right-hand-side also fol​low this con​vention.

Example of an operator definition and its type.

(o) infix 8:: (x -> y) (z -> x) -> (z -> y)

// function composition

(o) f g = \x -> f (g x)

4.3.3
Typing Partial Functions

 XE "function:partial" \b

 XE "type:of partial function" \b Patterns and guards imply a condition that has to be fulfilled before a rewrite rule can be applied (see 3.2 and 3.3). This makes it possible to define partial function XE "partial function" \b s, functions which are not de​fi​ned for all possible values of the specified type.

•
When a partial function is applied to a value outside the domain for which the function is de​fined it will result into a run-time error.

The compiler gives a warning when functions are defined which might be partial.

 XE "function:total" \b With the abort expression (see StdMisc.dcl) one can change any partial function into a total func​tion XE "total func​tion" \b (the abort XE "abort" \b expression can have any type). The abort expression can be used to give a user-defined run-time error mes​sage

Use of abort to make a function total.

fac:: Int -> Int

fac 0

= 1

fac n

| n>=1

= n * fac (n - 1)

| otherwise

= abort "fac called with a negative number"

4.4
Typing Overloaded Functions

The names of the functions one defines generally all have to be different within the same scope and name space (see 2.1). How​ever, it is some​times very convenient to overload certain functions and opera​tors (e.g. +, -, ==), i.e. use identi​cal names for different functions or operators that perform simi​lar tasks albeit on objects of diffe​r​ent types.

In principle it is possible to simulate a kind of overloading by using records. One simply defines a re​cord (see 4.2.2) in which a collection of functions are stored that somehow belong to each other. Now the field name of the record can be used as (overloaded) synonym for any con​crete func​tion stored on the corresponding position. The record can be re​garded as a kind of dic​tio​nary XE "dic​tio​nary" \b in which the concrete function can be looked up.

Example of the use of a dictionary record to simulate overloading/type classes). sumlist can use the field name add as syno​nym for any concrete function obeying the type as specified in the record definition. The operators +., +^, -. and -^ are assumed to be predefined primitives opera​tors for addition and sub​traction on the basic types Real and Int.

::Arith a =
{
add

:: a a -> a

,
subtract
:: a a -> a

}

ArithReal = { add = (+.), subtract = (-.) }

ArithInt = { add = (+^), subtract = (-^) }

sumlist:: (Arith a) [a] [a] -> [a]

sumlist arith [x:xs] [y:ys]
=
[arith.add x y:sumlist arith xs ys]

sumlist arith x y

=
[]

Start = sumlist ArithInt [1..10] [11..20]

A disadvantage of such a dictionary record is that it is syntactically not so nice (e.g. one explicitly has to pass the record to the appropriate function) and that one has to pay a huge price for effi​ciency (due to the use of higher order func​tions) as well. Clean's overloading system as introduced below enables the Clean system to automatically create and add dictionaries as argument to the appropriate function de​finitions and function applications. To avoid effi​ciency loss the Clean com​pi​ler will substitute the in​tended concrete function for the over​loaded func​tion application where pos​sible. In worst case however Clean's overloading system will indeed have to generate a dictionary record which is then automati​cally passed as additional para​me​ter to the appropriate function.

4.4.1
Type Classes

 XE "type class:definition of" \b

 XE "type class:member of" \b In a type class XE "type class" \b def​inition one gives a name to a set of overloaded functions (this is similar to the definition of a type of the dictionary record as explained above). For each over​loaded XE "over​loaded" \b func​tion or operator which is a member of the class the overloaded name and its overloaded type is specified. A special overloaded type class variable indicates how the different instantiations of the class can vary from each other.

TypeClassDef XE "TypeClassDef" \b
=
class XE "class" \b ClassName TypeVariable [ClassContext]

[[where] { {ClassMemberDef}+ }]

|
class FunctionName TypeVariable :: FunctionType;

|
class (FunctionName) [Fix][Prec] TypeVariable :: Function​Type;
ClassMemberDef XE "ClassMemberDef" \b
=
FunctionTypeDef

[MacroDef]

Example of the definition of a type class; in this case the class named Arith contains two overloaded operators.

class Arith a

where

(+) infixl 6:: a a -> a

(-) infixl 6:: a a -> a

With an in​stance .ib .in​stance; declara​tion an instance of a given class can be defined (this is simi​lar to the creation of a dictionary record). When the instance is made it has to be specified for which concrete type an in​stance is created. For each overloaded function in the class a concrete function or op​erator has to be defi​ned. The type of a concrete function must exactly match the correspon​ding overloaded type af​ter uni​form substi​tution of the concrete type for the overloaded function type in the type class defini​tion.

TypeClassInstanceDef XE "TypeClassInstanceDef" \b
=
instance XE "instance" \b ClassName [BrackType [default XE "default" \b] [ClassContext]]

[[where XE "where" \b] {{DefOfFunction}+ }]

Example of the XE "type:context" \b definition of an instance of a type class Arith for type Int). Notice that the type of the concrete functions can be deduced by substituting the concrete type for the overloaded type variable in the cor​responding class definition. One is not obliged to repeat the type of the concrete functions instantiated (nor the fixity or associativity in the case of op​era​tors.

instance Arith Int

where

(+):: Int Int -> Int

(+) x y = x +^ y

(-):: Int Int -> Int

(-) x y = x -^ y

 XE "type:context" \b
Example of the definition of an instance of a type class Arith for type Real.

instance Arith Real

where

(+) x y = x +. y

(-) x y = x -. y

One can define as many instances of a class as one likes. Instances can be added later on in any module.

•
When an instance of a class is defined a concrete definition has to be gi​ven for all the class mem​bers.

4.4.2
Functions Defined in Terms of Overloaded Functions

When an overloaded name is encountered in an expression, the compiler will determine which of the corresponding concrete functions/operators is meant by looking at the concrete type of the expres​sion. This type is used to determine which concrete function to apply. All instances of the over​loa​ded type variable of a certain class (with exception of the default instance, see below) must there​fore not overlap (being not unifyable) with each other and they all have to be of flat type (see the restrictions mentioned in 4.4.11). If it is clear from the type of the ex​pres​sion which one of the con​crete instantiations is me​ant the compiler will in principle substitute the concrete func​tion for the overloaded one, such that no efficiency is lost.

Example of the substitution of a concrete function for an overloaded one). given the definitions above the func​tion

inc n = n + 1

will be internally transformed into

inc n = n +^ 1

However, it is very well possible that the compiler, given the type of the expression, cannot decide which one of the corresponding concrete functions to apply. The new function then be​comes over​loa​ded as well.

For instance, the function

add x y = x + y

becomes overloaded as well because anyone of the concrete instances can be applied. Consequently, add can be ap​plied to ar​guments of any type as well, as long as addition (+) is defined on them.

This has as consequence that an additional restriction must be im​posed on the type of such an ex​pres​sion. A class context has to be added to the function type to ex​press that the function can only be ap​plied provided that the appropriate type classes have been instantiated (in fact one speci​fies the type of the dictionary record which has to be passed to the function in worst case). Such a context can also be regarded as an additional restriction imposed on a type variable, introducing a kind of bounded poly​morphism.

FunctionType XE "FunctionType"
=
[{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]

ClassContext XE "ClassContext"
=
| ClassName-list TypeVariable {& ClassName-list TypeVariable }

Example of the use of a class context to impose a restriction on the instantiation of type variable). The function add can be ap​plied on arguments of any type under the condition that an instance of the class Arith is defined on them.

add:: a a -> a | Arith a

add x y = x + y

Clean’s type system can infer contexts automatically. If a type class is specified as restricted con​text the type system will check the correct​ness of the specification (as al​ways a type specifica​tion can be more restrictive than is deduced by the com​piler).

4.4.3
Instances of Type Classes Defined in Terms of Overloaded Functions

The concrete functions defined in a class instance definition can also be defined in terms of (other) overloa​ded functions. This is reflected in the type of the instantiated functions. Both the concrete type and the context the class instantiation (and its members) is depending on need to be speci​fied.

Example of an instance declaration of which type is depending on the same type class). The function + on lists can be de​fined in terms of the overloaded operator + on the list elements. With this definition + is de​fi​ned not only on lists, but also on a list of lists etcetera.

instance Arith [a] | Arith a

//
on lists

where

(+) infixl 6:: [a] [a] -> [a] | Arith a

(+) [x:xs] [y:ys]
= [x + y:xs + ys]

(+) _
 _

= []

(-) infixl 6:: [a] [a] -> [a] | Arith a

(-) [x:xs] [y:ys]
= [x - y:xs - ys]

(-) _
 _

= []

Equality class.

class Eq a

where

(==) infix 2:: a a -> Bool

instance Eq [a] | Eq a

//
on lists

where

(==) infix 2:: [a] [a] -> Bool | Eq a

(==) [x:xs] [y:ys]
= x == y && xs == ys

(==) [] []
= True

(==) _ _
= False

4.4.4
Type Constructor Classes

The Clean type system offers the possibility to use higher order types (see 4.2.1). This makes it possi​ble to define type constructor classes (similar to constructor classes as introduced in Gofer, Jones (1993)). In that case the overloaded type variable of the type class is not of kind X, but of higher order, e.g. X -> X, X -> X -> X, etcetera. This offers the possibility to define overloaded functions which can be instan​ti​a​ted with type constructors of higher order (as usual, the overloaded type variable and a concrete in​stan​tiation of this type variable need to be of the same kind). This makes it possible to overload more complex functions like map and the like.

Example of a definition of a type constructor class. The class Functor including the overloaded function map which varies in type variable f of kind X -> X.

class Functor f

where

map:: (a -> b) (f a) -> (f b)

Example of an instantiation of a type constructor class. An instantiation of the well-known function map applied on lists ([] is of kind X -> X), and a map function defined on Tree's (Tree is of kind X -> X.

instance Functor []

where

map:: (a -> b) [a] -> [b]

map f [x:xs]
= [f x : map f xs]

map f []

= []

::Tree a
= (/\) infixl 0 (Tree a) (Tree a)

| Leaf a

instance Functor Tree

where

map:: (a -> b) (Tree a) -> (Tree b)

map f (l/\r)

= map f l /\ map f r

map f (Leaf a)
= Leaf (f a)

4.4.5
Generic Instances

It is possible to specify a generic instance (in that case a type variable is specified as instance for the over​loaded type variable in the instance declaration) which will be taken when none of the other defined instances happens to be applica​ble. Since such a function must work for any in​stance the type of the generic instance must be equivalent to the type of the overloaded function. Therefore it can only per​form very general tasks.

Example of a generic instance. In this example any two objects of arbitrary type can be compared with each other but they are by default unequal unless specified other​wise.

instance Eq a

// generic instance for Eq

where

(==) infix 2:: a a -> Bool

(==) x y = False

4.4.6
Default Instances

It is possible that a Clean expression using overloaded functions is internally ambiguously over​loaded.

•
The problem can occur when an overloaded function is used which has on overloaded type in which the overloaded type variable only appears on the right-hand side of the ->. If such a func​tion is applied in such a way that the overloaded type does not appear in the resulting type of the appli​cation, any of the available instances of the overloaded function can be used. In that case the system cannot determine which instance to take, such that a type error is given.

Counter example (ambiguous overloaded expression). The function body of f is ambiguously over​loa​ded which results in a type error. It is not possible to determine whether its argument should be con​ver​ted to an Int or to a Bool.

class Read a:: a -> String

class Write a:: String -> a

instance Read Int, Bool

// export of class instance, see 4.4.10
instance Write Int, Bool

f:: String -> String

f x = Write (Read x)

// ! This results in a type error !

One can solve such an ambiguity by splitting up the expression in parts that are typed explicitly such that it becomes clear which of the instances should be used.

f:: String -> String

f x = Write (MyRead x)

where

MyRead:: Int -> String

MyRead x = Read x

Another way to solve the ambiguity is to mark one of the instances as the default instance (indicated by the keyword default in the instance declaration) which will be taken in the case an ambiguously over​loaded expression is encountered.

Example of a default instance declaration used to solve ambiguities. The function body of f is ambi​gu​ously overloaded. Due to the default instance specified the argument is converted to an Int.

class Read a:: a -> String

class Write a:: String -> a

instance Read Int default, Bool

instance Write Int default, Bool

f:: String -> String

f x = Write (Read x)

4.4.7
Defining Derived Members in a Class

The members of a class consists of a set of functions or operators which logically belong to each other. It is often the case that the effect of some members (derived members) can be expressed in others. For instance, <> can be regarded as synonym for not (==). For software engineering (the fixed relation is made explicit) and efficiency (one does not need to include such deri​ved mem​bers in the dictionary re​cord) it is good to make this relation explicit. In Clean the existing macro facili​ties (see Chapter 5) are used for this purpose.

Classes with macro definitions to specify derived members.

class Eq a

where

(==) infix 2:: a a -> Bool

(<>) infix 2:: a a ->
Bool | Eq a

(<>) x y :== not (x == y)

class Ord a

where

(<) infix 2:: a a
->
Bool

(>) infix 2:: a a
->
Bool | Ord a

(>) x y :== y < x

(<=) infix 2:: a a ->
Bool | Ord a

(<=) x y :== not (y<x)

(>=) infix 2:: a a ->
Bool | Ord a

(>=) x y :== not (x<y)

min:: a a -> a | Ord a

min x y :== if (x<y) x y

max:: a a -> a | Ord a

max x y :== if (x<y) y x

4.4.8
A Shorthand for Defining Overloaded Functions

A class definition seems sometimes a bit overdone when a class actually only consists of one member. Special syntax is provided for this case.

TypeClassDef XE "TypeClassDef" \b
=
class XE "class" \b ClassName TypeVariable [ClassContext]

[[where] { {ClassMemberDef}+ }]

|
class FunctionName TypeVariable :: FunctionType;

|
class (FunctionName) [Fix][Prec] TypeVariable :: Function​Type;
Example of an overloaded function/operator.

class (+) infixl 6 a:: a a -> a

which is shorthand for:

class + a

where

(+) infixl 6:: a a -> a

The instantiation of such a simple one member class is done in a similar way as with ordinary clas​ses, using the name of the overloaded function as class name (see the syntax definition for instan​tiation).

Example of an instantiation of an overloaded function/operator.

instance + Int

where

(+) x y = x +^ y

4.4.9
Classes Defined in Terms of Other Classes

In the definition of a class one can optionally specify that other classes which already have been defined elsewhere are included. The classes to include are specified as context after the overloaded type variable. It is not needed (but it is allowed) to define new members in the class body of the new class. In this way one can give a new name to a collec​tion of existing classes creating a hierarchy of classes (cyclic de​pendencies are forbidden). Since one and the same class can be included in se​veral other classes, one can combine classes in different kinds of meaningful ways. For an ex​ample have a closer look at the Clean standard library (see e.g. StdOverloaded and Std​Class)

Example of defining classes in terms of existing classes. The class Arith consists of the class + and -.

class (+) infixl 6 a:: a a -> a

class (-) infixl 6 a:: a a -> a

class Arith a | +,- a

4.4.10
Exporting Type Classes

To export a class one simply repeats the class definition in the definition module (see Chapter 2). To export an instantiation of a class one simply repeats the instance definition in the definition mo​d​ule, however without re​vealing the concrete implementation (which can only be specified in the im​plemen​ta​tion module).

Exporting classes and instances.

definition module example

class Eq a

//
the class Eq is exported
where

(==) infix 2:: a a -> Bool

instance Eq [a] | Eq a

//
an instance of Eq on lists is exported
instance Eq a

//
a generic instance of Eq is exported
For reasons of efficiency the compiler will always try to make specialised efficient versions of functi​ons which have become overloaded (see above). In principle one version is made for each possi​ble concrete application. However, when an overloaded function is exported it is unknown with which concrete in​stances the function will be applied. So, a record is constructed in which the con​crete function is stored as is explained in the introduction of this Section. This approach can be very inefficient, especially in comparison to a specialised version for instantiations of basic type. The compiler can generate much better code for other modules if it is informed about the instances known in the implementation mo​d​ule. The compiler is unaware of such information (it only inspects definition modules in case of sepa​rate compilation). The information should therefore be provided in the cor​re​sponding definition mo​dule. To make this possible a special export definition is provided. It is re​c​ommended to add such an export definition if speed matters, leaf it out when it does not matter or when a small code size matters more. The export definition will only have an effect for instances of basic type (for these types it can really help to have a special version).

TypeClassInstanceExportDef XE "TypeClassInstanceExportDef" \b
=
export XE "export" \b ClassName BasicType-list;

Exporting class instances.

export Eq Int, Real

4.4.11
Semantic Restrictions on Type Classes

Semantic restrictions:

•
When a class is instantiated a concrete definition must be given for each of the members in the class (not for derived members).

•
The type of a concrete function or operator must exactly match the overloaded type af​ter uniform substi​tution of the overloaded type variable by the concrete type as specified in the correspon​ding type instance declaration.

•
The overloaded type variable and the concrete type must be of the same kind.

•
 XE "type:flat" \b A type instance of an overloaded type must be a flat type XE "flat type" \b , i.e. a type of the form T a1 … an where ai are type vari​ables which are all different.

•
All instances other than the default instance of a given overloaded type must differ from each other (be ununifyable with each other).

•
It is not allowed to use a type synonym as instance.

•
The start rule cannot have an overloaded type.

•
If a default instance is specified the type of the corresponding concrete default function must be identical to the type of the overloaded function or operator.

•
For the specification of derived members in a class the same restrictions hold as for defining ma​cros.

•
A restricted context can only be imposed on one of the type variables appearing in the type of the expression.

•
The specification of the concrete functions can only be given in im​plementation modules.

4.4.12
The Costs of Overloading

In Section 4.4 the overloading mechanism of Clean is treated. The use of overloading and type classes certainly gives a lot of notational convenience. However, one should be aware of the time and space costs that might be caused by using overloading and type classes.

When an overloaded function is used in such a way that the system can replace the overloaded func​tion by the concrete one, no overhead is introduced (see Section 4.4).

Overloading can cause code explosion. When in a certain function another overloaded function is ap​plied in such a way that the type system cannot deduce which concrete instance of the over​loa​ded function has to be used the system will in principle generate several versions of the function: one ver​sion is made for each of the con​crete (combination of) instances possible. In principle spe​cial versions will only be generated for instantiations of basic types. Although the system avoids to generate ver​sions that are not being used, code explosion might occur when all versions are being used or when the system simply cannot tell which versions are used. The latter can be the case when such functions are being exported to other modules.

Overloading can cause inefficiency. Instances which are recursively defined in terms of the class it​self can lead to an infinite amount of concrete instances. New instances can also be declared in modules that import the overloaded function. To handle all these cases the system will generate one special ver​sion of the overloaded function which is parametrised with a type class record (see the introduc​tion of 4.4). In such cases overloading is implemented by using records as a dictionary in which the con​crete function is looked up. This means that the record is used to store higher order functions. Calling such a higher function in this way is much more inefficient than a direct call of the cor​re​spond​ing concrete function. One can avoid unnecessary efficiency loss as follows. When an over​loaded function is ex​por​ted it is advised also to export the concrete instances of the overloaded func​tions. The concrete names of the functions need not to be exported. The system needs only to know which concrete in​stances al​ready exist.

4.5
Defining Uniqueness Types

Although Clean is purely functional, operations with side-effects (I/O operations, for instance) are permitted. To achieve this without violating the semantics, the classical types are supplied with so cal​led uniqueness attributes. If an argument of a function is indicated as unique, it is guaranteed that at run-time the corresponding actual object is local, i.e. there are no other references to it. Clearly, a de​structive update of such a “unique object” can be performed safely.

The uniqueness type system makes it possible to define di​rect interfaces with an operating sys​tem, a file system (updating per​sis​tent data), with GUI's libra​ries, it allows to create ar​rays, records or user defined data struc​tures that can be updated de​structively. The time and space behaviour of a functional pro​gram therefore greatly benefits from the unique​ness typ​ing.

Uniqueness types are deduced automatically. Type attributes are poly​mor​p​hic: attribute variables and inequalities on these variables can be used to indicate relations between and restrictions on the corre​s​ponding concrete attribute values.

Sometimes the inferred ty​pe attributes give some extra information on the run-time be​haviour of a function. The uniqueness type system is a transparent extension of classical typing which means that if one is not interested in the uniqueness information one can simply ignore it.

Since the uniqueness typing is a rather complex matter we ex​plain this type system and the mo​tivation behind it in more detail. The first Section (4.5.1) explains the basic motivation for and ideas behind uni​queness typing. Section 4.5.2 focusses on the so-called uniqueness propagation property of (algebraic) type constructors. Then we show how new data structures can be defined containing unique objects (Section 4.5.3). Sharing may destroy locality properties of objects. In Section 4.5.4 we describe the ef​fect of sharing on uniqueness types. In order to maintain referential transparency, it appears that func​tion ty​pes have to treated specially. The last Section (4.5.5) describes the combination of unique​ness typing and overloading. Especially, the subsections on constructor classes and higher-oder type defini​tions are very complex: we suggest that the reader skips these sections at first instance.

4.5.1
Basic Ideas Behind Uniqueness Typing

The uniqueness typing is an extension of classical Milner/Mycroft typing. In the unique​ness type sys​tem u​niqueness type attributes XE "u​niqueness type attribute" \b are attached to the classical types. Uniqueness type at​tributes appear in the type speci​fi​cations of func​tions (see 4.5.4) but are also permitted in the definitions of new data types (see 4.5.3). A classical type can be prefixed by one of the follo​w​ing unique​ness type at​tributes:

Type XE "Type"
=
{BrackType}+

BrackType XE "BrackType"
=
[TypeAttrib] SimpleType

UnqTypeAttrib XE "UnqTypeAttrib" \b
=
*

//
type attribute "unique"

|
UniqueTypeVariable:

//
a type attribute variable

|
.

//
an anonymous type attribute variable

The basic idea behind uniqueness typing is the following. Suppose a function, say F, has a unique ar​gument (an argument with type *, for some ). This attribute imposes an ad​ditional re​striction on applications of F.

-
It is guaranteed that F will have private ("unique") access to this particular argument (see Barendsen and Smet​sers, 1993; Plasmeijer and Van Eeke​len, 1993): the object will have a refer​ence count of 11 at the moment it is in​spected by the func​tion. It is important to know that there can be more than 1 reference to the ob​ject before this specific ac​cess takes place. If a uniquely typed argument is not used to construct the function re​sult it will be​come garbage (the reference has dropped to zero). Due to the fact that this analysis is performed statically the object can be garbage collected (see Chapter 1) at compile-time. It is harmless to reuse the space occupied by the argu​ment to create the func​tion re​sult. In other words: it is allowed to up​date the unique ob​ject de​struc​tively without any conse​quences for referential transparency.
Example: the I/O library function fwritec is used to write a character to a file yielding a new file as result. In gen​eral it is se​mantically not allowed to overwrite the argument file with the given character to construct the re​sult​ing file. Howe​ver, by demanding the argument file to be unique by specifying

fwritec:: Char *File -> *File

it is guaranteed by the type system that fwritec has private access to the file such that overwriting the file can be done without violating the functional semantics of the program. The result​ing file is unique as well and can therefore be passed as continuation to another call of e.g. fwritec to make further writ​ing possi​ble.

WriteABC:: *File -> *File

WriteABC file = fwritec 'c' (fwritec 'b' (fwritec 'a' file))

Observe that a unique file is passed in a single threaded way (as a kind of unique token) from one func​tion to another where each function can safely modify the file knowing that is has private ac​cess to that file. One can make these intermediate files more vissible by by writing the WriteABC as follows.

WriteABC file = file3

where

file1 = fwritec 'a' file

file2 = fwritec 'b' file1

file3 = fwritec 'c' file2

or, alternatively (to avoid the explicit numbering of the files),

WriteABC file

#
file = fwritec 'a' file

file = fwritec 'b' file

=
fwritec 'c' file

The type system makes it possible to make no distinction between a Clean file and a physical file of the real world: file I/O can be treated as efficiently as in imperative lan​guages.

The uniqueness typing prevents writing while other readers/writers are active. E.g. one can​not ap​ply fwritec to a file being used elsewhere

For instance, the following expression is not approved by the type system:

(file, fwritec 'a' file)

-
Function arguments with no uniqueness attributes added to the classical type are considered as “non-unique”: there are no reference requirements for these arguments. The function is only al​lowed to have read access (as usual in a func​tional lan​guage) even if in some of the function appli​cations to actual ar​gu​ment ap​pears to have reference count 1.

freadc:: File -> (Char, File)

The function freadc can be applied to both a unique as well as non-unique file. This is fine since the function only wants read ac​cess on the file. The type indicates that the result is always a non-unique file. Such as file can be passed for further reading, but not for further writing.

-
To indicate that functions don’t change uniqueness properties of arguments, one can use attribute variables. The most simple example is the identity functions that can be typed as follows:

id:: u:a -> u:a

id x = x

Here a is an ordinary type variable, whereas u is an attribute variable. If id is applied to an unique object the result is also unique (in that case u is instantiated with the concrete attribute *). Of course, if id is applied to a non-unique object, the result remains non-unique. As with ordinary type variables, attribute variables should be instantiated uniformly.

A more interesting example is the function freadc which is typed as

freadc:: u:File -> u:(Char, u:File)

Again freadc can be applied to both unique and non-unique files. In the first case the resulting file is also unique and can, for example, be used for further reading or writing. Moreover, observe that not only the resulting file is attributed, but also the tuple containing that file and the charac​ter that has been read. This is due to the so called uniqueness propagation rule; see below.

To summarize, uniqueness typing makes it possible to update objects destructively within a purely functional lan​guage. For the development of real world applications (which manipulate files, windows, arrays, data​bases, states etc.) this is an indispensable property.

4.5.2
Attribute Propagation

Having explained the general ideas of uniqueness typing, we can now focus on some details of this ty​ping system.

If a unique object is stored in a data structure, the data structure itself becomes unique as well. This uniqueness propagation rule prevents that unique objects are shared indirectly via the data structure in which these objects are stored. To explain this form of hidden sharing, consider the following defini​tion of the function head

head:: [*a] -> *a

head [hd:tl] = hd

The pattern causes head to have access to the “deeper” arguments hd and tl. Note that head does not have any uniqueness requirements on its direct list argument. This means that in an application of head the list might be shared, as can be seen in the following function heads

heads list = (head list, head list)

If one wants to formulate uniqueness requirements on, for instance, the hd argument of head, it is not sufficient to attribute the corresponding type variable a with *; the surrounding list itself should also be​come unique. One can easily see that, without this additional requirement the heads example with type

heads:: [*a] -> (*a,*a)

heads list = (head list, head list)

would still be valid although it delivers the same object twice. By demanding that the surrounding list becomes unique as well, (so the type of head becomes head:: *[*a] -> *a) the function heads is re​jected. In general one could say that uniqueness propa​gates outwards.
Some of the readers will have noticed that, by using attribute variables, one can assign a more general uniqueness type to head:

head:: u:[u:a] -> u:a

The above propagation rule imposes additional (implicit) restrictions on the attributes appearing in type specifications of functions.

Another explicit way of indicating restrictions on attributes is by using coercion statements. These state​ments consist of attribute variable inequalities of the form u <= v. The idea is that attribute substituti​ons are only allowed if the resulting attribute inequalities are valid, i.e. not resulting in an equality of the form

‘non-unique ≤ unique’.

The use of coercion statements is illustrated by the next example in which the uniqueness type of the well-known append function is shown.

append:: v:[u:a] w:[u:a] -> x:[u:a],

[v<=u, w<=u, x<=u,w<=x]

The first three coercion statements express the uniqueness propagation for lists: if the elements a are unique (by choosing * for u) these statements force v,w and x to be instantiated with * also. (Note that u <= * iff u = *.) The statement w <= x expresses that the spine uniqueness of append’s result depends only on the spine attribute w of the second argument.

In Clean it is permitted to omit attribute variables and attribute inequalities that arise from propaga​tion properties; these will be added automatically by the type system. As a consequence, the following type for append is also valid.

append:: [u:a] w:[u:a] -> x:[u:a],

[w<=x]

Of course, it is always allowed to specify a more specific type (by instantiating type or attribute vari​a​bles). All types given below are valid types for append.

append:: [u:a] x:[u:a] -> x:[u:a],

append:: *[*Int] *[*Int] -> *[*Int],

append:: [a] *[a] -> *[a].

To make types more readable, Clean offers the possibility to use anonymous attribute variables. These can be used as a shorthand for indicating attribute variables of which the actual names are not essential. This allows us to specify the type for append as follows.
append:: [.a] w:[.a] -> x:[.a],

[w<=x]

The type system of Clean will substitute real attribute variables for the anonymous ones. Each dot gives rise to a new attribute variable except for the dots attached to type variables: type variables are at​tribu​ted uniformly in the sense that all occurrences of the same type variable will obtain the same at​tribute. In the above example this means that all dots are replaced by one and the same new attribute variable.

4.5.3
Defining New Types with Uniqueness Attributes

Although one mostly uses uniqueness attributes in type specifications of functions, they are also al​lo​wed in the definition of new data types.

AlgebraicTypeDef XE "AlgebraicTypeDef" \b
=
::TypeLhs = [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ;
TypeLhs XE "TypeLhs"
=
[*]TypeConstructor {[*] TypeVariable}

TypeConstructor XE "TypeConstructor "
=
TypeName

ConstructorDef XE "ConstructorDef"
=
ConstructorName {[Strict] BrackType}

|
(ConstructorName) [Fix][Prec] {[Strict] BrackType}

QuantifiedVariables XE "QuantifiedVariables"
=
{E. TypeVariable}+

BrackType XE "BrackType"
=
[UnqTypeAttrib] SimpleType

UnqTypeAttrib XE "UnqTypeAttrib"
=
*

|
UniqueTypeVariable:

|
.
As can be inferred from the syntax, the attributes that are actually allowed in data type definitions are ‘*’ and ‘.’; attribute variables are not permitted. The (unique) * attribute can be used at any subtype whereas the (anonymous). attribute is restricted to non-variable positions.

If no uniqueness attributes are specified, this does not mean that one can only build non-unique in​stances of such a data type. Attributes not explicitly specified by the programmer are added automati​cally by the type system. To explain this standard uniqueness attribution mechanism, first remember that the types of data constructors are not specified by the programmer but derived from their corre​s​ponding data type definition. For example, the (classical) definition of the List type

:: List a = Cons a (List a) | Nil

leads to the following types for its data constructors.

Cons:: a (List a) -> List a

Nil:: List a

To be able to create unique instances of data types, the standard attribution of Clean will automati​cally derive ap​propriate uniqueness variants for the types of the corresponding data constructors. Such a uniqueness variant is obtained via a consistent attribution of all types and subtypes appearing in a data type defini​tion. Here, consistency means that such an attribution obeys the following rules (assume that we have a type definition for some type T).

•
Attributes that are explicitly specified are adopted.

•
Each (unattributed) type variable and each occurrence of T will receive an attribute variable. This is done in a uniform way: equal type variables will receive equal attributes, and all occurrence of T are also equally attributed.

•
Attribute variables are added at non-variable positions if they are required by the propagation pro​perties of the corresponding type constructor. The attribute variable that is chosen depends on the argument types of this constructor: the attribution scheme takes the attribute variable of first ar​gument appearing on a propagating position (see example below).

•
All occurrences of the. attribute are replaced by the attribute variable assigned to the occurrences of T.

Example of standard attribuation for data constructors. For Cons the standard attribution leads to the type

Cons:: u:a v:(List u:a) -> v:List u:a, [v<=u]

The type of Nil becomes

Nil:: v:List u:a, [v<=u]

Consider the following Tree definition

:: Tree a
=
Node a [Tree a]

The type of the data constructor Node is

Node:: u:a v:[v:Tree u:a] -> v:Tree u:a, [v<=u]

Another Tree variant.

:: Tree *a
=
Node *a [Tree *a]

leading to

Node:: *a *[*Tree *a] -> *Tree *a

Note that, due to propagation, all subtypes have become unique.

Next, we will formalize the notion of uniqueness propagation. We say that an argument of a type con​structor, say T, is propagating if the corresponding type variable appears on a propagating position in one of the types used in the right-hand side of T’s definition. A propagating position are characterized by the fact that it is not surrounded by an arrow type or by a type constructor with non-propaga​t​ing arguments. Observe that the definition of propagation is cyclic: a general way to solve this problem is via a fixedpoint construction.

Example of the propagation rule. Consider the (record) type definition for Object.

Object a b::
{state:: a, fun:: b -> a}

The argument a is propagating. Since b does not appear on a propagating position inside this definition, Object is not propagating in its second argument.

4.5.4
Uniqueness and Sharing

The type inference system of Clean will derive uniqueness information after the classical Mil​ner/Mycroft ty​pes of func​tions have been inferred (see 4.3). As explained in Section 4.5.1, a function may require a non-unique object, a unique object or a possi​bly unique ob​ject. Uniqueness of the result of a func​tion will de​pend on the attributes of its arguments and how the result is constructed. Until now, we distinguished objects with reference count 1 from objects with a larger reference count: only the former might be unique (depending on the uniqueness type of the object itself). In practice, how​ever, one can be more liberal if one takes the evaluation order into account. The idea is that mul​tiple refer​ence to an (unique) object are harmless if one knows that only one of the references will be present at the moment it is accessed destructively. This has been used in the following function.

AppendAorB:: *File -> *File

AppendAorB file

|
fc == 'a'
= fwritec 'a' file

= fwritec 'b' file

where

(fc,nf)
= freadc file

When the right-hand side of AppendAorB is evaluated, the guard is determined first (so access from freadc to file is not unique), and subsequently one of the alternatives is chosen and evaluated. De​pending on cond, either the reference from the first fwritec application to function file or that of the second application is left and therefore unique.

For this reason, the uniqueness type system uses a kind of shar​ing analysis XE "shar​ing analysis" \b . This sharing analy​sis is in​put for the uniqueness type system itself to check uniqueness type consis​tency (see 4.5.3). The analysis will label each refer​ence in the right-hand side of a function definition as read-only (if destructive access might be dangerous) or write-permitted (otherwise). Objects accessed via a read-only reference are al​ways non-unique. On the other hand, uniqueness of objects accessed via a reference labeled with write-permitted solely depend on the types of the objects themselves.

Before describing the labeling mechanism of Clean we mention that the “lifetime” of references is de​termined on a syntactical basis. For this reason we classify references to the same expression in a func​tion definition (say for f) according to their estimated run-time use, as alternative, observing and paral​lel.

-
Two references are alternative if they belong to different alternatives of f. Note that alternatives are distinguished by patterns (including case expressions) or by guards.

-
A reference r is observing w.r.t. a reference r’ if the expression containing r’ is either (1) guarded by an expression or (2) preceded by a strict let expression containing r.

-
Otherwise, references are in parallel.

The rules used by the sharing analysis to label each reference are the following.

-
A reference, say r, to a certain object is labeled with read-only if there exist another reference, say r’, to the same object such that either r is observing w.r.t r’ or r and r’ are in parallel.

-
Multiple references to cyclic structures are always labeled as read-only.

-
All other references are labeled with write-permitted.

Unfortunately, there is still a subtlety that has to be dealt with. Observing references belonging in a strict context do not always vanish totally after the expression containing the reference has been evalu​ated: further analysis appears to be necessary to ensure their disappearance. More concretely, Suppose e[r] denotes the expression containing r. If the type of e[r] is a basic type then, after evaluation, e[r] will be reference-free. In particular, it does not contain the reference r any​more. However, If the type of e[r] is not a basic type it is assumed that, after evaluation, e[r] might still refer to r. But even in the latter case a further refinement is possible. The idea is, depending on e[r], to correct the type of the object to which r refers partially in such way that only the parts of this object that are still shared lose their uniqueness.

Consider, for example, the following rule

f l =

let!

x = hd (hd l)

in

(x, l)

Clearly, x and l share a common substructure; x is even part of l. But the whole “spine” of l (of type [[...]]) does not contain any new external references. Thus, if l was spine-unique originally, it re​mains spine unique in the result of f. Apparently, the access to l only affected part of l’s structure. More technically, the type of l itself is corrected to take the partial access on l into account. In the pre​vious example, x, regarded as a function on l has type [[a]] -> a. In f’s definition the part of l’s type corresponding to the variable a is mode non-unique. This is clearly reflected in the derived type for f, being

f:: u:[w:[a]] -> (a,v:[x:[a]]), [w <= x, u <= v]

In Clean this principle has been generalized: If the strict let expression e[r] regarded as a function on r has type

T (... a...) -> a

Then the a-part of the type of the object to which r refers becomes non-unique; the rest of the type re​mains unaffected. If the type of e[r] is not of the indicated form, r is not considered as an observing reference (w.r.t. some reference r’), but, instead, as in parallel with r’.

Higher Order Uniqueness Typing

Higher-order functions give rise to partial (often called Curried) applications, i.e. applications in which the actual number of arguments is less than the arity of the corresponding symbol. If these partial ap​plications contain unique sub-expressions one has to be careful. Consider, for example the following the function fwritec with type

fwritec:: *File Char -> *File

in the application

fwritec unifile

(assuming that unifile returns a unique file). Clearly, the type of this application is of the form o:(Char -> *File). The question is: what kind of attribute is o? Is it a variable, is it *, or, is it not uni​que? Before making a decision, one should notice that it is dangerous to allow the above application to be shared. For example, if the expression fwritec unifile is passed to a function

WriteAB write_fun = (write_fun ‘a’, write_fun ‘b’)

Then the argument of fwritec is not longer unique at the moment one of the two write operations take place. Apparently, the fwritec unifile expression is essentially unique: its reference count should never become greater than 1. To prevent such an essentially unique expression from being co​pied, Clean considers the -> type constructor in combination with the * attribute as special: it is not permitted to discard its uniqueness. Now, the question about the attribute o can be answered: it is set to *. If WriteAB is typed as follows

WriteAB:: (Char -> u:File) -> (u:File, u:File)

WriteAB write_fun = (write_fun ‘a’, write_fun ‘b’)

the expression WriteAB (fwritec unifile) is rejected by the type system because it does not allow the ar​gument of type *(Char -> *File) to be coerced to (Char -> u:File). One can easily see that it is im​possi​ble to type WriteAB in such a way that the expression becomes typable.

To define data structures containing Curried applications it is often convenient to use the (anonymous). attribute. Example

:: Object a b = { state:: a, fun::.(b -> a) }

new:: * Object *File Char

new = { state = unifile, fun = fwritec unifile }

By adding an attribute variable to the function type in the definition of Object, it is possible to store unique functions in this data structure. This is shown by the funcion new. Since new contains an es​sen​tially unique expression it becomes essentially unique itself. So, new can never loose its uniqueness, and hence, it can only be used in a context in which a unique object is demanded.

Determining the type of a Curried application of a function (or data constructor) is somewhat more involved if the type of that function contains attribute variables instead of concrete attributes. Mostly, these variables will result in additional coercion statements. as can be seen in the example below.

Prepend:: u:[.a] [.a] -> v:[.a],
[u<=v]

Prepend a b = Append b a

PrependList:: u:[.a] -> w:([.a] -> v:[.a]),

[u<=v, w<=u]

PrependList a = Prepend a

Some explanation is in place. The expression (PrependList some_list) yields a function that, when applied to another list, say other_list, delivers a new list extended consisting of the concatenation of other_list and some_list. Let’s call this final result new_list. If new_list should be unique (i.e. v be​comes *) then, because of the coercion statement u<=v the attribute u also becomes *. But, if u = * then also w = *, for, w<=u. This implies that (arrow) type of the original expression (PrependList some_list) becomes unique, and hence this expression cannot be shared.

Uniqueness Type Coercions

As said before, offering a unique object to a function which requires a non-unique argument is safe (unless we are dealing with unique arrow types; see above). The technical tool to express this is via a co​ercion (subtype) relation based on the ordering

‘unique’ ≤ ‘non-unique’

on attributes. Roughly, the validity of  ≤ ’ depends subtype-wise on the validity of u ≤ u’ with u,u’ at​tributes in ,’. One has, for example

u:[v:[w:Int]] ≤ u’:[v’:[w’:Int]] iff u ≤ u’, v ≤ v’, w ≤ w’.

However, a few refinements are necessary. Firstly, the uniqueness constraints expressed in terms of co​ercion statements (on attribute variables) have to be taken into account. Secondly, the coercion re​stric​tion on arrow types should be handled correctly. And thirdly, due to the so-called contravariance of -> in its first argument we have that

u:( -> ’) ≤ u:( -> ’) iff  ≤ , ’ ≤ ’

Since -> may appear in the definitions of algebraic type constructors, these constructors may inherit the co- and contravariant subtyping behaviour with respect to their arguments. We can classify the ‘sign’ of the arguments of each type constructor as + (positive, covariant), - (negative, contravariant) or top (both positive and negative). In general this is done by analysing the (possible mutually recursive) alge​braic type definitions by a fixedpoint construction, with basis sign(->) = (-,+).

Example: a has sign T, b has sign + in

::FunList a b
=
FunCons (a, a -> b) (FunList a b)

|
FunNil

This leads to the following coercion rules

•
Attributes of two corresponding type variables as well as of two corresponding arrow types must be equal.

•
The sign classification of each type constructor is obeyed. If, for instance, the sign of ’s argument is negative, then

  ≤  ’ iff ’ ≤ 
•
In all other cases, the validity of a coercion relation depends on the validity of u ≤ u’, where u,u’ are attributes of the two corresponding subtypes.

The presence of sharing inherently causes a (possibly unique) object to become non-unique, if it is ac​cessed via a read-only reference. In Clean this is achieved by a type correction operation which con​verts each unique type S to its smallest non-unique supertype, simply by making the outermost at​tribute of S non-unique. Note that this operation fails if S is a function type.

4.5.5
Combining Uniqueness Typing and Overloading

An overloaded function actually stands for a collection of real functions. The types of these real functi​ons are obtained from the type of the overloaded function by substituting the corresponding instance type for the class variable. These instance types may contain uniqueness information, and, due to the propagation requirement, the above-mentioned substitution might give rise to uniqueness attributes overloaded type specification.

Consider, for instance, the identity class

class id a:: a -> a

If we want to define an instance of id for lists, say id L, which leaves uniqueness of the list elements in​tact, the (fully expanded) type of idL becomes

instance id L v:[u:a] -> v:[u:a]

However, as said before, the type specification of such an instance is not specified completely: it is deri​ved from the overloaded type in combination with the instance type (i.e. [...] in this particular ex​am​ple).

In Clean we require that the type specification of an overloaded operator anticipates on attributes ari​sing from uniqueness propagation, that is, the uniqueness attribute of the class variable should be cho​sen in such a way that for any instance type this `class attribute’ does not conflict with the correspon​d​ing uniqueness attribute(s) in the fully expanded type of this instance. In the above example this means that the type of id becomes

class id a:: a -> a

Another possibility is

class id a:: *a -> *a

However, the latter version of id will be more restrictive in its use, since it will always require that its argument is unique.

Constructor Classes

The combination of uniqueness typing and constructor classes (with their higher-order class variables) introduces another difficulty. Consider, for example, the overloaded map function.

class map m:: (a -> b) (m a) -> m b

Suppose we would add (distinct) attribute variables to the type variables a and b (to allow `unique in​stances’ of map)

class map m:: (.a ->.b) (m.a) -> m.b

The question that arises is: Which attributes should be added to the two applications of the class va​ri​able m? Clearly, this depends on the actual instance type filled in for m. E.g., if m is instantiated with a propagating type constructor (like []), the attributes of the applications of m are either attribute vari​a​bles or the concrete attribute ‘unique’. Otherwise, one can chose anything.

Example

instance map []

where

map f l = [f x // x <- l]

::
T a = C (Int -> a)

instance map T

where

map f (C g) = C (f o g)

In this example, the respective expanded type of the both instances are

map:: (u:a -> v:b) w:[u:a] -> x:[v:b], w <= u, x <= v

map:: (u:a -> v:b) (T u:a) -> T v:b

The type system of Clean requires that a possible propagation attribute is explicitly indicated in the type specification of the overloaded function. In order to obtain versions of map producing spine uni​que data structures, its overloaded type should be specified as follows:

class map m:: (.a ->.b).(m.a) ->.(m.b)

This type will provide that for an application like

map inc [1,2,3]

indeed yields a spine unique list.

Observe that if you would omit the (anonymous) attribute variable of the second argument, the input data structure cannot contain unique data on propagating positions, e.g. one could not use such a ver​sion of map for mapping a destructive write operator on a list of unique files.

In fact, the propagation rule is used to translate uniqueness properties of objects into uniqueness pro​p​erties of the data structures in which these objects are stored. As said before, in some cases the actual data structures are unknown.

Consider the following function

DoubleMap f l = (map f l, map f l)

The type of this function is something like

DoubleMap:: (.a ->.b) (m.a) -> (.(m.b),.(m.b))

Clearly, l is duplicated. However, this does not necessarily mean that a cannot be unique anymore. If, for instance, m is instantiated with a non-propagating type constructor (like  as defined on the pre​vi​ous page) then uniqueness of a is still permitted. On the other hand, if m is instantiated with a propa​gat​ing type constructor, a unique instantiation of a should be disapproved. In Clean, the type system `remembers’ sharing of objects (like l in the above example) by making the corresponding type at​tri​bute non-unique. Thus, the given type for DoubleMap is exactly the type inferred by Clean’s type sys​tem. If one tries to instantiate m with a propagating type constructor, and, at the same type, a with some unique type, this will fail.

The presence of higher-order class variables, not only influences propagation properties of types, but also the coercion relation between types. These type coercions depend on the sign classification of type constructors. The problem with higher-order polymorphism is that in some cases the actual type con​structors substituted for the higher order type variables are unknown, and therefore one cannot decide whether coercions in which higher-order type variable are involved, are valid.

Consider the functions

double x = (x,x)

dm f l = double (map f l)

Here, map’s result (of type.(m.a)) is coerced to the non-unique supertype (m.a). However, this is only allowed if m is instantiated with type constructors that have no coercion restrictions. E.g., if one tries to substitute *WriteFun for m, where

WriteFun a = C.(a -> *File)

this should fail, for, *WriteFun is essentially unique. The to solve this problem is to restrict coercion properties of type variable applications (m ) to

u:(m ) ≤ u:(m ) iff  ≤  &&  ≤ 
A slightly modified version of this solution has been adopted in Clean. For convenience, we have added the following refinement. The instances of type constructors classes are restricted to type con​structors with no coercion restrictions. Moreover, it is assumed that these type constructors are uniqueness pro​pagating. This means that the WriteFun cannot be used as an instance for map. Consequently, our coercion relation we can be more liberal if it involves such class variable applica​tions.

Overruling this requirement can be done adding the anonymous attribute. the class variable. E.g.

class map.m:: (.a ->.b).(m.a) ->.(m.b)

Now

instance map WriteFun

where

map..

is valid, but the coercions in which (parts of) map’s type are involved are now restricted as explained above.

To see the difference between the two indicated variants of constructor variables, we slightly modify map’s type.

class map m:: (.a ->.b) *(m.a) ->.(m.b)

Without overruling the instance requirement for m the type of dm (dm as given on the previous page) be​comes.

dm:: (.a ->.b) *(m.a) ->.(m b, m b)

Observe that the attribute of disappeared due to the fact that each type constructor substituted for m is assumed to be propagating.

If one explicitly indicates that there are no instance restriction for the class variable m (by attributing m with.), the function dm becomes untypable.

4.5.6
Higher-Order Type Definitions

We will describe the effect of uniqueness typing on type definitions containing higher-order type va​ri​ables. At it turns out, this combination introduces a number of difficulties which would make a full description very complex. But even after skipping a lot of details we have to warn the reader that some of the remaining parts are still hard to understand.

As mentioned earlier, two properties of newly defined type constructor concerning uniqueness typing are important, namely, propagation and sign classification. One can probably image that, when dealing with higher-order types the determination on these properties becomes more involved. Consider, for example, the following type definition.

::
T m a = C (m a)

The question whether T is propagating in its second argument cannot be decided by examining this definition only; it depends on the actual instantiation of the (higher-order) type variable m. If m is in​stantiated with a propagating type constructor, like [], then T becomes propagating in its second ar​gu​ment as well. Actually, propagation is not only a property of type constructors, but also of types them​selves, particularly of `partial types’ For example, the partial type [] is propagating in its (only) argu​ment (Note that the number of arguments a partial type expects, directly follows from the kinds of the type constructors that have been used). The type T [] is also propagating in its argument, so is the type T ((,) Int)).

The analysis in Clean that determines propagation properties of (partial) types has been split into two phases. During the first phase, new type definitions are examined in order to determine the propaga​tion dependencies between the arguments of each new type constructor. To explain the idea, we return to our previous example.

::
T m a = C (m a)

First observe that the propagation of the type variable m is not interesting because m does not stand for `real data’ (which is always of kind *). We associate the propagation of m in T with the position(s) of the occurrence(s) of m’s applications. So in general, T is propagating in a higher-order variable m if one of m’s applications appears on a propagating position in the definition of T. Moreover, for each higher order type variable, we determine the propagation properties of all first order type variables in the fol​lowing way: m is propagating in a, where m and a are higher-order respectively first-order type variables of T, if a appears on a propagating position in one of m’s applications. In the above example, m is pro​p​agating in a, since a is on a propagating position in the application (m a). During the second phase, the propaga​tion properties of (partial) types are determined using the results of the first phase. This (roughly) pro​ceeds as follows. Consider the type T  for some (partial) type , and T as defined earlier. First, deter​mine (recursively) the propagation of . Then the type T  is propagating if (1)  is propa​gating, (2) T is propagating in m, and moreover (3) m is propagating in a (the second argument of the type construc​tor). With T as defined above, (2) and (3) are fulfilled. Thus, for example T [] is propa​gating and there​fore also T (T []). Now define

::
T2 a = C2 (a -> Int)

The T T2 is not propagating.

The adjusted uniqueness propagation rule (see also...) becomes:

-
Let , be two uniqueness types. Suppose  has attribute u. Then, if  is propagating the applica​tion () should have an attribute v such that v ≤ u.

Some of the readers might have inferred that this propagation rule is a ‘higher-order’ generalization of the old ‘first-order’ propagation rule.

As to the sign classification, we restrict ourselves to the remark that that sign analysis used in Clean is adjusted in a similar way as described above for the propagation case.

Example

::
T m a = C ((m a) -> Int)

The sign classification of T if (-,). Here  denotes the fact the a is neither directly used on a positive nor on a negative position. The sign classification of m w.r.t. a is +. The partial type T [] has sign -, which e.g. implies that

T [] Int ≤ T [] *Int

The type T T2 (with T2 as defined on the previous page) has sign +, so

T T2 Int ≥ T T2 *Int

It will be clear that combining uniqueness typing with higher-order types is far from trivial: the de​scription given above is complex and moreover incomplete. However explaining all the details of this combination is far beyond the scope of the reference manual.

4.5.7
Destructive Updates using Uniqueness Typing

So, it is allowed to update a uniquely typed function argument (*) destructively when the ar​gument does not reappear in the function result. The question is: when does the compiler indeed make use of this possibility.

Destructive updates takes place in some predefined functions and operators which work on predefined data structures such arrays (&-operator) and files (writing to a file). Arrays and files are intended to be updated destructively and their use can have a big influence on the space and time behaviour of your application (a new node does not have to be clai​med and fil​led, the garbage collec​tor is invoked less often and the locality of memory references is in​creased).

Performing destructive updates is only sensible when informa​tion is stored in nodes. Arguments of basic type (Int, Real, Char or Bool) are stored on the B-stack or in registers and it therefore does not make sense to make them unique.

The Clean compiler also has an option to re-use user-defined unique data structures: the space being occupied by a function argument of unique type will under certain conditions be reused de​struc​tively to con​struct the function result when (part of) this result is of the same type. So, a more space and time efficient program can be obtained by turning heavily used data structures into unique data structures. This is not just a matter of changing the uniqueness type attributes (like turning a lazy data structure into a strict one). A unique data structure also has to be used in a “single threaded” way (see Chapter 4). This means that one might have to restructure parts of the program to maintain the unicity of objects.

The compiler will do compile-time garbage collection for user defined unique data-structures only in certain cases. In that case run-time garbage collection time is reduced. It might even drop to zero. It also possible that you gain even more then just garbage collection time due to better cache behaviour.

[image: image13.jpg]. Clean |

Chapter 5

Annotations and Directives

	5.1
Defining Partially Strict Data Structures and Func​tions
5.2
Defining Graphs on the Global Level
	5.3
Defining Macros
5.4
Process Annotations
5.5
Efficiency Tips

Programming in a functional language means that one should focus on algorithms and without wor​ry​ing about all kinds of efficiency details. However, when large applications are being written it may hap​pen that this attitude re​sults in a program which is unacceptably inefficient in time and/or space.

In this Chapter we explain several kinds of annotations and directives which can be defined in Clean. These annotations and directives are designed to give the programmer some means to influence the time and space behaviour of Clean applications.

Clean is by default a lazy language: applications will only be evaluated when their results are needed for the final outcome of the program. However, lazy evaluation is in general not very efficient. It is much more efficient to compute function arguments in advance (strict evaluation) when it is known that the arguments will be used in the function body. By using strictness annotations in type defini​tions the evaluation order of data structures and functions can be changed from lazy to strict. This is explained in Section 5.1.

One can define constant graphs on the global level also known as Constant Applicative Forms (see Section 5.2). Unlike constant functions, these constant graphs are shared such that they are computed only one. This generally reduces execution time possibly at the cost of some heap space needed to re​member the shared graph constants.

Macro's (Section 5.3) are special functions which will already be substituted (evaluated) at compile-time. This generally reduces execution time (the work has already be done by the compiler) but it will lead to an increase of object code.

By using process annotations (See 5.4) one can express that a Clean expressionmay be evaluated in parallel. This can be used to speed-up Clean applications or be used to develop distributed applica​tions.

5.1
Annotations to Change Lazy Evaluation into Strict Evaluation

Clean uses by default a lazy evaluation XE "lazy evaluation" \b strategy: a redex is only evaluated when it is needed to com​pute the final result. Some functional languages (e.g. ML, Harper et al.) use a eager (strict) evaluation strat​egy and always evaluate all function arguments in advance.

5.1.1
Advantages and Disadvantages of Lazy versus Strict Evaluation

Lazy evaluation has the following advantages (+) / disadvantages (-) over eager (strict) eva​lu​a​tion:

+
only those computations which contribute to the final result are computed (for some algorithms this is a clear advantage while it generally gives a greater expressive freedom);

+
one can work with infinite data structures (e.g. [1..]);

-
it is unknown when a lazy expression will be computed (disadvantage for debugging, for con​t​rol​ling evaluation order);

-
strict evaluation is in general much more efficient, in particular for objects of basic types, non-re​cur​sive types and tuples and records which are composed of such types;

-/+
in general a strict expression (e.g. 2 + 3 + 4) takes less space than a lazy one, however, some​ti​mes the other way around (e.g. [1..1000]);

5.1.2
Strict and Lazy Context

Each expression in a function definition is considered to be either strict (appearing in a strict context XE "strict context" \b : it has to be evaluated to strong root normal form) or lazy (appearing in a lazy context XE "lazy context" \b : not yet to be evalu​ated to strong root normal form) XE "context:strict" \b

 XE "context:lazy" \b The following ru​les spec​ify whether or not a particu​lar expression is lazy or strict:

+
a non-variable pattern is strict;

+
an expression in a guard is strict;

+
the expressions specified in a strict let expression or strict let-before expression are strict;

+
the root expression is strict;

+
the arguments of a function or data constructor in a strict context are strict when these argu​ments are being an​notated as strict in the type definition of that function (manually or automatically) or in the type definition of the data constructor;

+
all the other expressions are lazy.

Evaluation of a function will happen in the following order: patterns, guard, expressions in a strict let (before) ex​pres​sion, root expression (see also 3.1 and 4.5.4).

5.1.3
Space Consumption in Strict and Lazy Context

The space occupied by Clean structures depend on the kind of structures one is using, but also de​pends on whether these data struc​tures appear in a strict or in a lazy context. To understand this one has to have some knowledge about the basic implementation of Clean (see Plasmeijer and Van Eekelen, 1993).

Graphs (see Chapter 1) are stored in a piece of memory called the heap. The amount of heap space needed highly depends on the kind of data structures which are in use. Graph structures which are created in a lazy context can occupy more space than graphs created in a strict context. Graphs which are not being used are automatically collected by the garbage collector in the run-time system of Clean. The arguments of functions being evaluated are stored on a stack. There are two stacks: the A-stack which contains references to graph nodes stored in the heap and the BC-stack which contains ar​guments of basic type and return addresses. Data structures in a lazy context are passed via references on the A-stack. Data structures of the basic types (Int, Real, Char or Bool) in a strict context are stored on the B-stack or in registers. This is also the case for these strict basic types when they are part of a re​cord or tuple in a strict context.

Data structures living on the B-stack are passed unboxed. They consume less space (because they are not part of a node) and can be treated much more effi​ciently. When a function is called in a lazy context its data structures are passed in a graph node (boxed) XE "boxing" \b

 XE "unboxing" \b The amount of space occupied is also depending on the arity of the function.

In the table below the amount of space consumed in the different situations is summarised (for the lazy as well as for the strict context). For the size of the elements one can take the size consumed in a strict context.

	Type
	Arity
	Lazy context (bytes)
	Strict context (bytes)
	Comment

	Int, Bool
	-
	8
	4
	

	Int (0≤n≤32), Char
	-
	-
	4
	node is shared

	Real
	-
	12
	8
	

	Small Record
	n
	4 + size elements
	size elements
	total length≤12

	Large Record
	n
	8 + size elements
	size elements
	

	Tuple
	2
	12
	size elements
	

	
	>2
	8 + 4*n
	size elements
	

	{a}
	n
	20 + 4*n
	12 + 4*n
	

	 !Int
	n
	20 + 4*n
	12 + 4*n
	

	 !Bool,!Char
	n
	20 + 4*ciel(n/4)
	12 + 4*ciel(n/4)
	

	 !Real
	n
	20 + 8*n
	12 + 8*n
	

	 !Tuple, !Record
	n
	20 + size rec/tup*n
	12 + size rec/tup*n
	

	Hnf
	0
	-
	size node
	node is shared

	
	1
	8
	size node
	

	
	2
	12
	size node
	also for [a]

	
	>2
	8 + 4*n
	size node
	

	Pointer to node
	-
	4
	4
	

	Function
	0,1,2
	12
	-
	

	
	>3
	4 + 4*n
	-
	

5.1.4
Time Consumption in Strict and Lazy Context

Strict arguments of functions can sometimes be handled much more efficiently than lazy arguments, in particular whenthe arguments are of basic type.

Example: functions with strict arguments of basic type are more efficient.

Ackerman:: !Int !Int -> Int

Ackerman 0 j = j+1

Ackerman i 0 = Ackerman (i-1) 1

Ackerman i j = Ackerman (i-1) (Ackerman i (j-1))

The computation of a lazy version of Ackerman 3 7 takes 14.8 sec​onds + 0.1 seconds for garbage collection on an old fashion Ma​cII (5Mb heap). When both arguments are annotated as strict (which in this case wll be done automati​cally by the compiler) the computation will only take 1.5 seconds + 0.0 sec​onds garbage collec​tion. The gain is one order of magnitude. Instead of rewriting graphs the calculation is per​formed using stacks and reg​isters where pos​sible. The speed is comparable with a recursive call in highly optimised C or with the speed ob​tai​n​able when the function was pro​grammed directly in as​sem​bly.

5.1.5
Changing Lazy into Strict Evaluation

So, lazy evaluation gives a notational freedom (no worrying about what is computed when) but it might cost space as well as time. In Clean the default lazy evaluation can therefore be turned into eager evaluation by adding strictness annotations to types.

Strict XE "Strict" \b
=
!
This can be done in several ways:

+
The Clean compiler has a built-in strictness analyser based on abstract reduction (Nöcker, 1993) (it can be optionally turned off). The analyser searches for strict arguments of a function and an​no​tate them internally as strict (see 5.1.1). In this way lazy arguments are automatically turned into strict ones. This optimisation does not influence the termination behaviour of the program. It ap​pears that the anal​yser can find much infor​mation. The anal​ysis itself is quite fast.

+
The strictness analyser cannot find all strict arguments. Therefore one can also manually an​no​tate a function as being strict in a certain argument or in its result (see 5.1.1).
+
By using strictness annotations, a programmer can define (partially) strict data structures (Nöcker and Smetsers, 1993; see 5.1.3). Whenever such a data structure oc​curs in a strict context (see 5.1.1), its strict components will be evaluated.

+
The order of evaluation of expressions in a function body can also be changed from lazy to strict by using a strict let expression or a strict let-before expression (see 3.4.11).

One has to be careful though. When a programmer manually changes lazy evaluation into strict evaluation, the termination behaviour of the pro​gram might change. It is only safe to put strictness annotations in the case that the func​tion or data con​structor is known to be strict in the cor​responding argument which means that the evaluation of that argu​ment in advance does not change the termination behaviour of the pro​gram. The compiler is not able to check this.
Functions with Strict Arguments

In the type definition of a function the arguments can optionally be annotated as being strict.

FunctionType XE "FunctionType"
=
[{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]

In rea​son​ing about functions it will always be true that the corresponding ar​guments will be in strong root normal form (see 2.1) before the rewriting of the function takes place.

Example of a function with strict annotated arguments.

Acker:: !Int !Int -> Int

Acker 0 j =
inc j

Acker i 0 =
Acker (dec i) 1

Acker i j =
Acker (dec i) (Acker i (dec j))

The Clean compiler includes a fast and clever strictness analyser which is based on abstract reduc​tion (Nöcker, 1993). The compiler can derive the strict​ness of the function arguments in many cases, such as for the example above. Therefore there is gen​erally no need to add strictness annotations to the type of a function by hand. When a function is exported from a module (see Chapter 2), its type has to be specified in the definition module. To obtain optimal efficiency, the programmer should also include the strictness information to the type definition in the definition module. One can ask the compiler to print out the types with the derived strictness information and paste this into the definition module.

Notice that strictness annotations are only allowed at the outermost level of the argument type. Strictness annotations inside type instances of arguments are not possible (with exceptionfor some pre​defined types). Any (part of) a data structure can be changed from lazy to strict, but this has to be specified in the type definition (see 5.1.3).

Strictness Annotations in Type Definitions

Functio​nal programs will generally run much more efficient when strict data structures are being used instead of lazy ones. If the inefficiency of your program becomes problematic one can think of chang​ing lazy data structures into strict ones. This has to be done by hand in the definitionof the type.

AlgebraicTypeDef XE "AlgebraicTypeDef" \b
=
::TypeLhs = [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ;
RecordTypeDef XE "RecordTypeDef"
=
::TypeLhs = [QuantifiedVariables :] {{FieldName :: [Strict] Type}-list};
ConstructorDef XE "ConstructorDef"
=
ConstructorName {[Strict] BrackType}

|
(ConstructorName) [Fix][Prec] {[Strict] BrackType}

In the type definition of a constructor (in an algebraic data type definition or in a the defini​tion of a re​cord type) the arguments of the data constructor can optionally be annotated as being strict. So, some arguments can be defined strict while others can be defined as being lazy. In rea​son​ing about objects of such a type it will always be true that the annotated argument will be in strong root normal form when the object is exam​ined. Whenever a new object is created in a strict context, the compiler will take care of the evaluation of the strict annotated arguments. When the new object is cre​ated in a lazy context, the compiler will insert code that will take care of the eval​ua​tion whenever the object is put into a strict context. If one makes a data structure strict in a certain argument, it is better not define infinite in​stances of such a data structure to avoid non-termination.

So, in a type definition one can define a data constructor to be strict in zero or more of its arguments. Strictness is a property of data structure which is specified in its type. In general (with the exceptions of tuples) one cannot arbitrary mix strict and non-strict data structures because they are considered to be of different type.

Example of a complex number as record type with strict components.

::Complex
=
{
re:: !Real,

im:: !Real }

(+) infixl 6:: !Complex !Complex -> Complex

(+) {re=r1,im=i1} {re=r2,im=i2} = {re=r1+r2,im=i1+i2}

When a strict annotated ar​gument is put in a strict context while the argument is defined in terms of another strict annotated data struc​ture the latter is put in a strict context as well and there​fore also eval​uated. So, one can change the default lazy semantics XE "lazy semantics" \b of Clean into a (hyper) strict se​man​tics XE "strict se​man​tics" \b as de​manded. The type system will check the consis​tency of types and ensure that the speci​fied strict​ness is maintai​ned XE "semantics:lazy" \b

 XE "semantics:strict" \b

Strictness Annotations on Instances of Predefined Type

Functions arguments can be annotated as being strict (by hand or automatically, see 5.1.2), new types can be defined as (partially) being strict (see 5.1.3). How about function arguments of predefined type (see 4.1)?

It is important to understand that in Clean a data structure with strict components is considered to be of different type than the same data structure with lazy components. For user defined data structures this does not cause any conflicts because the strictness of any instance obeys the strictness properties as specified in the corresponding type definition.

Function arguments of basic type or predefined abstract type do not contain any (known) substructure and can easily and can without problems be made strict just by annotating the corresponding function argument as being strict. Things are much more complicated for lists, tuples and arrays which do con​tain substructure. How can we change the strictness properties of these substructure since we do not have access to the definition of the predefined type? Well, strictness has to be specified in the type in​stances instead of the type definition. But, strict versions are of differentype than lazy ones. To be able to handle these similar data structures of different type in a uniform way, some conversion has to take place. In the current version of Clean strict/lazy version of lists, tuples and arrays are all treated differ​ently (we are working on it).

Strictness Annotations on Tuple Instances

Strictness annotation can be put on any tuple element of any tuple instance (see also 3.4.6).

TupleType XE "TupleType " \b
=
([Strict] Type,{[Strict] Type}-list)
One can turn a lazy tuple element into a strict one by putting strictness annotations in the correspond​ing type instance on the tuple ele​ments that one would like to make strict. When the cor​respond​ing tuple is put into a strict context the tuple and the strict annotated tuple elements will be evaluated. As usual one has to take care that these elements do not represent an infinite computation.

Strict and lazy tuples are regarded to be of different type. However, unlike is the case with any other data structure, the compiler will automatically convert strict tuples into lazy ones, and the other way around. This is done for programming convenience. Due to the complexity of this automatic transfor​mation, the conversion is done for tuples only! For the programmer it means that he can freely tuples with strict and lazy tuple elements. The type system will not complain when a strict tuple is offered while a lazy tuple is required. The compiler will automatically insert code to convert non-strict tuple elements into a strict version and backwards when​ever this is needed.

Example of a complex number as tuple type with strict components.

::Complex :== (!Real,!Real)

(+) infixl 6:: !Complex !Complex -> Complex

(+) (r1,i1) (r2,i2) =
(r1+r2,i1+i2)

which is equivalent to

(+) infixl 6:: !(!Real,!Real) !(!Real,!Real) -> (!Real,!Real)

(+) (r1,i1) (r2,i2) =
(r1+r2,i1+i2)

when for instance G is defined as

G:: Int -> (Real,Real)

than the following application is approved by the type system:

Start = G 1 + G 2

Strictness Annotations on Array Instances

For reasons of efficiency there are different types of arrays predefined.

ArrayType XE "ArrayType" \b
=
{[Strict] Type}

|
{#BasicType}
One can define a lazy array (default, of type {a}), a strict array (explicitly type the array as {!a}), and an unboxed one (explicitly type the array as {#a}, works only on elements of basic value). When put in a strict context, all the ele​ments of a strict array will be evaluated automatically. As usual one has to take care that the elements do not represent an infinite computation.

Lazy, strict and unboxed arrays are regarded to be of diffe​r​ent type even if the array elements are of the same type. So, in principle one cannot offer e.g. a strict ar​ray to a function demanding a lazy one, and the other way around. Both will give rise to a type error. However, by using the overloading mecha​nism one can define functions which work on any kind of ar​ray (see 3.4.8).

Example of strict and non-strict arrays. ArrayA is a strict one and ArrayB is a lazy one. The function Scale expects a lazy one and can therefore only be applied on a lazy array. ArrayA is accepted but ArrayB is not accepted as argument of Scale. If one wants to define a function which works on any kind of ar​ray of Reals, one has to define an overloaded function (see 4.4) like Scale2.

ArrayA:: {Real}

ArrayA = {1.0,2.0,3.0}

ArrayB:: {!Real}

ArrayB = {1.0,2.0,3.0}

Scale:: {Real} Real ->.{Real}

Scale lazy_array factor = {factor * e \\ e <-: lazy_array}

Scale2:: (a Real) Real ->.(a Real) | Array a

Scale2 any_array factor = {factor * e \\ e <-: any_array}

Strictness Annotations on List Instances

The current version of the Clean compiler does not allow to turn the standard lazy lists into strict ones by adding annotations in a type instance. In a future version this will change.

ListType XE "ListType" \b
=
[Type]
So, if one wants to use a list with strict elements or a spine strict list one has to de​fine a new list using an algebraic data type. This has as disadvantage that one cannot simply use the nice predefined nota​tion for standrad lists (list comprehensions and the like).

user defined list with a strict elements). The list element will be evaluated when the Cons node is put in a strict con​text.

::List a

=
Cons !a (List a)

|
Nil

user defined spine strict list.

::List2 a
=
Cons2 a !(List2 a)

|
Nil2

5.2
Defining Graphs on the Global Level

Constant graphs can also be defined on a global level (for local constant graphs see 3.5.4).

GraphDef XE "GraphDef" \b
=
Selector =[:] GraphExpr ;
A global graph definition XE "global graph definition" \b defines a global constant (closed) graph, i.e. a graph which has the same scope XE "scope" as a global function definition (see 2.1). The selector variables that occur in the selectors of a global graph defi​nition have a global scope just as globally defined functions.

Special about global graphs (in contrast with local graphs) is that they are not garbage col​lected dur​ing the evalua​tion of the pro​gram XE "garbage collection" A global graph can be compared with a CAF XE "CAF" \b (Constant Ap​plicative Form XE "Constant Ap​plicative Form" \b): its value is com​puted at most once and re​m​embered at run-time. A global graph can save execu​tion-time at the cost of permanent space con​sumption.

Syntactically the definition of a graph is distinguished from the definition of a function by the sym​bol which sepa​rates left-hand side from right-hand side: "=:" is used for graphs while "=>" is used for func​tions. However, in general the more common symbol "=" is used for both type of definitions. Gen​erally it is clear from the context what is meant (functions have parameters, selectors are also easy recognisi​ble). However, when a simple con​stant is defined the syntax is ambiguous (it can be a constant func​tion definition as well as a constant graph definition).

To allow the use of the "=" whenever possible, the following rule is followed. Locally constant defini​tions are by default taken to be graph definitions and therefore shared, globally they are by default taken to be function defini​tions (see 3.1) and therefore recomputed. If one wants to obtain a different be​haviour one has to explicit state the na​ture of the constant definition (has it to be shared or has it to be recomputed) by using "=:" (on the global level, meaning it is a constant graph which is shared) or "=>" (on the local level, meaning it is a constant function and has to be recomputed).

Global constant graph versus global constant function definition: biglist1 is a graph which is computed only once, biglist3 and biglist2 is a constant function which is computed every time it is ap​plied.

biglist1
=
[1..10000]

//
a constant function (if defined globally)
biglist2
=:
[1..10000]

//
a graph
biglist3
=>
[1..10000]

//
a constant function
A graph saves execution-time at the cost of space con​sumption. A constant function saves space at the cost of execution time. So, use graphs when the com​putation is time-consuming while the space con​sumption is small and constant func​tions in the other case.

5.3
Defining Macros

Macros are functions (rewrite rules) which are applied at compile-time instead of at run-time. Macro's can be used to define constants, create in-line substitutions, rename functions, do conditional compila​tion etc. With a macro definition one can, for instance, assign a name to a constant such that it can be used as pattern on the left-hand side of a function definition.

At compile-time the right-hand side of the macro definition XE "macro definition" \b will be substituted for every application of the macro in the scope of the macro definition. This saves a function call and makes basic blocks larger (see Plasmeijer and Van Eeke​len, 1993) such that better code can be generated. A dis​advantage is that also more code will be gen​er​a​ted. Inline substitution is also one of the regular optimisations performed by the Clean compiler. To avoid code explosion a compiler will generally not substitute big functions. Macros give the pro​grammer a possi​bility to control the substitution process manually to get an op​ti​mal trade-off between the effi​ciency of code and the size of the code.

MacroDef XE "MacroDef"
=
[MacroFixityDef] DefOfMacro

MacroFixityDef XE "MacroFixityDef"
=
(FunctionName) [Fix][Prec] ;
DefOfMacro XE "DefOfMacro"
=
Function {Variable} :== FunctionBody;

[LocalFunctionAltDefs]

The compile-time substitution process is guaranteed to terminate. To ensure this some restrictions are imposed on Macro's (compared to common functions). Only variables are allowed as for​mal argu​ment. A macro rule always consists of a single alternative. Furthermore,

•
Macro definitions are not allowed to be cyclic to ensure that the substitution process terminates.

Example of a macro definition.

Black
:== 1

//
Macro definition
White
:== 0

//
Macro definition
:: Color
:== Int

//
Type synonym definition
Invert:: Color -> Color

//
Function definition
Invert Black = White

Invert White = Black

Example: macro to write (a?b) for lists instead of [a:b] and its use in the function map.

(?) infixr 5

//
Fixity of Macro
(?) h t :== [h:t]

//
Macro definition of operator
map:: (a -> b) [a] -> [b]

map f (x?xs)
= f x ? map f xs

map f []

= []

Notice that macros can contain local function definitions. These local definitions (which can be recur​sive) will also be substituted inline. In this way complicated substitutions can be achieved resulting in efficient code.

Example: macros can be used to speed up frequently used functions. See for instance the definition of the function foldl in StdList.

foldl op r l :== foldl r l

//
Macro definition
where

foldl r []

= r

foldl r [a:x]
= foldl (op r a) x

sum list = foldl (+) 0 list

After substitution of the macro foldl a very efficient function sum will be generated by the compiler:

sum list = foldl 0 list

where

foldl r []

= r

foldl r [a:x]
= foldl ((+) r a) x

The expansion of the macros takes place before type checking. Type specifications of macro rules is not possible. When operators are defined as macros, fixity and associativity can be defined.

5.4
Process Annotations

There are two ways of creating processes in Clean.

One way is by creating interactive applicati​ons. These interactive "processes" actually consist of a col​lection of call-back functions which are applied automatically when certain events occur. The call-back functions are applied by the I/O system sequentially one after another. Hence, scheduling takes place by the I/O system on the level of call-back functions which perform a state transition in an indivisible action. Interactive processes are explained in Standard Libraries for Clean (Achten et al., 1997).

In Concurrent Clean one can also create "real" processes which are executed interleaved in an un​defi​ned order or which are executed in parallel on a multi-processor architecture or on a network of proces​sors. These Clean processes are gene​rally used to speed-up the program or to obtain a spe​cific dis​tribu​tion of parts of the program across a network of processors (e.g. of the interactive processes !). Inter​lea​ved or parallel executing pro​cesses can be created by adding process anno​tations (Plasmeijer and van Eeke​len, 1993) to func​tion applications. The annotations only influence the order of evaluation, the program remains a pure functional program, no non-deterministic effects are introduced. The ori​g​inal semantics of the process annotations as explained in the Clean book are modified to be able to deal with uniqueness typing (Kesseler, 1995).

The process annotations of Clean are designed to make parallel evaluation on loosely coupled par​allel machine ar​chitectures possible. A loosely coupled parallel architecture XE "loosely coupled parallel architecture" \b is de​fined as a multi-pro​cessor sys​tem which consists of a number of self-contained computers, i.e. sparsely con​nected pro​cessors each with pri​vate memory. An important property of such systems is that for each pro​ces​sor it is more effi​cient to access objects located in its own local memory than to use the com​mu​ni​ca​tion medium to ac​cess remote objects. In order to achieve an efficient imple​men​tation it is nec​essary to map the computa​tion graph to the physical processing elements in such a way that the communica​tion over​head due to the exchanging of information is relatively small. Therefore, the graph to be rewritten has to be divided into a number of sub-graphs (grains) indicating the parts of the program graph that can be reduced in par​allel. A real speed-up on parallel architectures can only be achieved if redexes that yield a suffi​cient large amount of computation, are evaluated in parallel while the inter​medi​ate links are sparsely used (coarse grain parallelism).

Clean processes are lightweight processes which run very effi​cient. Time-slicing, sche​duling and com​munication is con​t​rol​led by the Clean run-time system. Arbi​trary process topologies can be created (e.g. cyclic pro​cess topologies) beyond the divide (fork) and conquer parallelism generally offered.

The concurrency features of Clean (mail us for information) are currently only supported for a network of MacIntosh (Motorola 680x0). We are working on this. There is also a parallel version running on Transputers. See our internet pages.

5.4.1
Process Creation

If an application being evaluated contains an argument which is attributed with an process annota​tion ({*I*} or {*P*}) the corresponding argument will be evaluated by a new reduction pro​cess. This new re​ducer can run inter​leaved or in parallel with the original reduction process. The original process contin​ues with the evaluation in the ordinary reduction order independently. The new redu​cer will evaluate the expression following the functional strategy until a nor​mal form is reached.

The creation of a new process will in theory not influence the termination behaviour of the pro​gram. It will in​fluence the time and space consumption of the program which might cause run-time prob​lems when resources are exhausted.

Process XE "Process" \b
=
{* I *}

|
{* P [at ProcIdExpr] *}
ProcIdExpr XE "ProcIdExpr" \b
=
GraphExpr

With the {*I*} anno​tation a new interleaved reducer is created on the same pro​cessor that re​duces the anno​tated graph expression to normal form (following the functional strat​egy). Such an in​terleaved re​ducer dies when this normal form is reached. However, during the evaluation of this re​sult other re​du​c​ers may have been created.

With the {*P*} annotation a new parallel reducer is created. This reducer is preferably lo​cated on a diffe​r​ent processor working on a lazy copy of the corresponding sub-graph. Reducers that are lo​cated on different pro​cessors run in parallel with each other. The {*P*} annotations can be ex​tended with a loca​tion directive at lo​cation, where loca​tion is an ex​pression of pre​de​fined type ProcId indicating the pro​cessor on which the paral​lel process has to be created. In the library StdProcId functions are given that yield an object of this type.

When there are several local annotations specified in a contractum, the order in which they have to be ef​fec​tuated is in principle depth-first with respect to the sub-graph structure.

5.4.2
Process Communication

A reducer can demand the evalu​ation of a sub-graph located on another processor. Such a demand al​ways takes place via a com​munication channel (a lazy copy node, see Plasmei​jer and Van Eeke​len, 1993).

-
if the sub-graph the channel is re​ferring to is not in strong root normal form, there will be a re​du​cer pro​cess on the other processor (it will be already there or it will be created lazily) that will take care of the eval​uation to root normal form. The demanding process is locked (suspended) un​til the root-normal form is reached.

-
if the sub-graph the channel is re​ferring to is in strong root normal form, a lazy copy of this sub-graph is made on the processor such that it can be inspected by the de​manding re​ducer. Only that part of the graph expression which is in strong root normal form is copied (in one or more chunks) to the demanding processor. Such a copy is an ordinary graph which can contain shared parts, it can be cyclic and it can refer to other parts of the graph stored on another pro​cessor. Those parts of the graph which are not in root normal form will not be copied. They are lazy co​pied in the same way (this might induce the creation of new lazy reduction processes) whenever there is a new de​mand for them.

-
a reducer will be locked (suspended) if it wants to reduce a re​dex that is already being re​du​ced by some other reducer. A locked reducer can continue when the redex has been re​duced to strong root normal form.

So, process communication takes place automatically and there will always be a serving process that will reduce the demanding information to root normal form before it is shipped.

Example of hierarchical process topology creation.

fib:: Int -> Int

fib 0 = 1

fib 1 = 1

fib n

| n>threshold
= fib (n-1) + {*P*} fib (n-2)

| n>2

= fib (n-1) + fib (n-2)

where

threshold = 10

A pipeline of processes; the sieve of Eratosthenes is a classical example in which parallel sieving pro​cesses are created dynami​cally in a pipeline.

Start:: [Int]

Start = primes

where

primes:: [Int]

primes = sieve {*P*} [2..]

sieve:: [Int] -> [Int]

sieve []

= []

sieve [pr:str]
= [pr:{*P*} sieve (filter pr str)]

filter:: Int [Int] -> [Int]

filter pr str
= [n \\ n <- str | n mod pr <> 0]

5.5
Efficiency Tips

Here are some additional suggestions how to make your program more efficient:

+
Use the Clean profiler to find out which frequently called functions are consuming a lot of space and/or time. If you modify your program, these functions are the one to have a good look at.

+
Transform a recursive function to a tail-recursive function.

+
Accumulate results in parameters instead of in right-hand side results.

+
It is better to use records instead of tuples.

+
Arrays can be more efficient than lists since they allow constant access time on their elements and can be destructive updated.

+
When functions return multiple ad-hoc results in a tuple put these results in a strict tuple instead (can be indicated in the type).

+
Use strict data structures whenever possible (see 5.1.5).

+
Export the strictness information to other modules (the compiler will warn you if you don't).

+
Make function strict in its arguments whenever possible (see 5.1.5)

+
Use macros for simple constant expressions or frequently used functions.

+
Use CAF's and local graphs to avoid recalculation of expressions.

+
Selections in a lazy context can better be transformed to functions which do a pattern match.

+
Higher order functions are nice but inefficient (the compiler will try to convert higher order func​tion into first order functions).

+
Constructors of high arity are inefficient.

+
Increase the heap space in the case that the garbage collector takes place to often.

[image: image14.jpg]. Clean |

Appendix A

Context-Free Syntax Description

	A.1
Clean Program
A.2
Import Definition
A.3
Function Definition
A.4
Macro Definition
	A.5
Type Definition
A.6
Class Definition
A.7
Names
A.8
Denotations

In this appendix the context-free syntax of Clean is given. Notice that the lay-out rule (see 2.3.3) permits the omission of the semi-colon (';') which ends a defi​nition and of the braces ('{' and '}') which are used to group a list of definitions.

The following notational conventions are used in the context-free syntax descriptions:

[notion]

means that the presence of notion is optional

{notion}

means that notion can occur zero or more times

{notion}+

means that notion occurs at least once

{notion}-list

means one or more occurrences of notion separated by comma's

terminals

are printed in 9 pts courier

keywords

are printed in 9 pts courier
terminals

that can be left out in lay-out mode are printed in 9 pts courier
~

is used for concatenation of notions

{notion}/ EQ \D\ba5() ~str

means the longest expression not containing the string str

A.1
Clean Program

CleanProgram XE "CleanProgram"
=
{Module}+

Module XE "Module"
=
DefinitionModule

|
ImplementationModule

DefinitionModule XE "DefinitionModule " \b
=
definition XE "definition" \b module XE "module" \b ModuleName ;

{DefDefinition}

|
system XE "system" \b module ModuleName ;

{DefDefinition}

ImplementationModule XE "ImplementationModule" \b
=
[implementation XE "implementation" \b] module Modu​le​Name ;

{ImplDefinition}

ImplDefinition XE "ImplDefinition"
=
ImportDef

//
see A.2

|
FunctionDef

//
see A.3

|
GraphDef

//
see A.3

|
MacroDef

//
see A.4

|
TypeDef

//
see A.5

|
ClassDef

//
see A.6
DefDefinition XE "DefDefinition"
=
ImportDef

//
see A.2

|
FunctionTypeDef

//
see A.3

|
MacroDef

//
see A.4

|
TypeDef

//
see A.5

|
ClassDef

//
see A.6

|
TypeClassInstanceExportDef

//
see A.6
A.2
Import Definition

ImportDef XE "ImportDef"
=
ImplicitImportDef

|
ExplicitImportDef

ImplicitImportDef XE "ImplicitImportDef"
=
import XE "import" {ModuleName}-list ;

ExplicitImportDef XE "ExplicitImportDef"
=
from XE "from" ModuleName import {Imports}-list ;

//
see A.7
Imports XE "Imports"
=
FunctionName

//
see A.7

|
ConstructorName

//
see A.7

|
SelectorVariable

//
see A.7

|
FieldName

//
see A.7

|
MacroName

//
see A.7

|
TypeName

//
see A.7

|
ClassName

//
see A.7
A.3
Function Definition

FunctionDef XE "FunctionDef"
=
[FunctionTypeDef] DefOfFunction

FunctionTypeDef XE "FunctionTypeDef"
=
FunctionName :: FunctionType ;

|
(FunctionName) [Fix][Prec] [:: FunctionType] ;
FunctionType XE "FunctionType"
=
[{[Strict] BrackType}+ ->] Type [ClassContext] [UnqTypeUnEqualities]

ClassContext XE "ClassContext"
=
| ClassName-list TypeVariable {& ClassName-list TypeVariable }

UnqTypeUnEqualities XE "UnqTypeUnEqualities"
=
,[{{UniqueTypeVariable}+ <= UniqueTypeVariable}-list]

DefOfFunction XE "DefOfFunction"
=
{FunctionAltDef}+

FunctionAltDef XE "FunctionAltDef"
=
Function {Pattern}

{LetBeforeExpression}

{{| Guard} =[>] FunctionBody}+

[LocalFunctionAltDefs]

Function XE "Function"
=
FunctionName

|
(FunctionName)
Pattern XE "Pattern" \b
=
[Variable =:] BrackPattern

BrackPattern XE "BrackPattern"
=
(GraphPattern)

|
Constructor

|
PatternVariable

|
BasicValuePattern

|
ListPattern

|
TuplePattern

|
RecordPattern

|
ArrayPattern

GraphPattern XE "GraphPattern"
=
Constructor {Pattern}

|
GraphPattern ConstructorName GraphPattern

|
Pattern

Constructor XE "Constructor"
=
ConstructorName

//
see A.7

|
(ConstructorName)
PatternVariable XE "PatternVariable"
=
Variable

|
_
BasicValuePattern XE "BasicValuePattern"
=
BasicValue

BasicValue XE "BasicValue"

=
IntDenotation

//
see A.8

|
RealDenotation

//
see A.8

|
BoolDenotation

//
see A.8

|
CharDenotation

//
see A.8
ListPattern XE "ListPattern" \b
=
[[{LGraphPattern}-list [: GraphPattern]]]
LGraphPattern XE "LGraphPattern"
=
GraphPattern

|
CharsDenotation

//
see A.8
TuplePattern XE "TuplePattern"
=
(GraphPattern,{GraphPattern}-list)

RecordPattern XE "RecordPattern"
=
{[TypeName |] {FieldName [= GraphPattern]}-list}
ArrayPattern XE "ArrayPattern"
=
{{GraphPattern}-list}

|
{{ArrayIndex = Variable}-list}

|
StringDenotation

//
see A.8
LetBeforeExpression XE "LetBeforeExpression"
=
Lets {GraphDef}+

Lets XE "Lets"
=
let XE "let " | # XE "" \t "" | let! XE "let!" | #! XE " " \t "!"
GraphDef XE "GraphDef"
=
Selector =[:] GraphExpr ;
Selector XE "Selector"
=
BrackPattern

Guard XE "Guard"
=
BooleanExpr

BooleanExpr XE "BooleanExpr"
=
GraphExpr

FunctionBody XE "FunctionBody"
=
[StrictLet]

RootExpression ;

[LocalFunctionDefs]

StrictLet XE "StrictLet" \b
=
let! XE "let!" \b { {GraphDef}+ } in XE "in" \b
RootExpression XE "RootExpression"
=
GraphExpr

GraphExpr XE "GraphExpr"
=
[Process] Application

Process XE "Process" \b
=
{* I *}

|
{* P [at ProcIdExpr] *}
ProcIdExpr XE "ProcIdExpr" \b
=
GraphExpr

Application XE "Application"
=
{BrackGraph}+

|
GraphExpr Operator GraphExpr

Operator XE "Operator"
=
FunctionName

//
see A.7

|
ConstructorName

//
see A.7
BrackGraph XE "BrackGraph"
=
(GraphExpr)

|
ConstructorOrFunction

|
GraphVariable

|
BasicValue

|
List

|
Tuple

|
Record

|
RecordSelection

|
Array

|
ArraySelection

|
LambdaAbstr

|
CaseExpr

|
LetExpr

ConstructorOrFunction XE "ConstructorOrFunction"
=
Constructor

|
Function

GraphVariable XE "GraphVariable"
=
Variable

//
see A.7

|
SelectorVariable

//
see A.7
List XE "List"
=
ListDenotation

|
DotDotexpression

|
ZF-expression

ListDenotation XE "ListDenotation" \b
=
[[{LGraphExpr}-list [: GraphExpr]]]
LGraphExpr XE "LGraphExpr"
=
GraphExpr

|
CharsDenotation

//
see A.8
DotDotexpression XE "DotDotexpression" \b
=
[GraphExpr [,GraphExpr]..[GraphExpr]]
ZF-expression XE "ZF-expression" \b
=
[GraphExpr \\ {Qualifier}-list]
Qualifier XE "Qualifier" \b
=
Generators {|Guard}

Generators XE "Generators" \b
=
{Generator}-list

|
Generator {& Generator}

Generator XE "Generator" \b
=
Selector <- ListExpr

|
Selector <-: ArrayExpr

ListExpr XE "ListExpr"
=
GraphExpr

ArrayExpr XE "ArrayExpr"
=
GraphExpr

Tuple XE "Tuple" \b
=
(GraphExpr,{GraphExpr}-list)
Record XE "Record"
=
RecordDenotation

|
RecordUpdate

RecordDenotation XE "RecordDenotation" \b
=
{[TypeName|] {FieldName = GraphExpr}-list]}
RecordUpdate XE "RecordUpdate" \b
=
{[TypeName|][RecordExpr &][{FieldName {Selection} = GraphExpr}-list]}
Selection XE "Selection" \b
=
. FieldName

|
. ArrayIndex

RecordExpr XE "RecordExpr"
=
GraphExpr

RecordSelection XE "RecordSelection" \b
=
RecordExpr [. TypeName] . FieldName {Selection}

|
RecordExpr [. TypeName] ! FieldName {Selection}

ArrayExpr XE "ArrayExpr"
=
GraphExpr

Array XE "Array"
=
ArrayDenotation

|
ArrayUpdate

ArrayDenotation XE "ArrayDenotation" \b
=
{{GraphExpr}-list}

|
StringDenotation

//
see A.8
ArrayUpdate XE "ArrayUpdate" \b
=
{ ArrayExpr & [{ArrayIndex {Selection} = GraphExpr}-list] [\\ {Qualifier}-list]}

|
{[ArrayExpr &] GraphExpr \\ {Qualifier}-list}
ArraySelection XE "ArraySelection" \b
=
ArrayExpr. ArrayIndex {Selection}

|
ArrayExpr! ArrayIndex {Selection}

ArrayIndex XE "ArrayIndex" \b
=
[{IntegerExpr}-list]
IntegerExpr XE "IntegerExpr"
=
GraphExpr

LambdaAbstr XE "LambdaAbstr" \b
=
\ XE "\\" \b {Pattern} -> GraphExpr

CaseExpr XE "CaseExpr" \b
=
case XE "case" \b GraphExpr of XE "of" \b

{ {CaseAltDef}+ }

|
if XE "if " \b BrackGraph BrackGraph BrackGraph

CaseAltDef XE "CaseAltDef" \b
=
{Pattern}

{LetBeforeExpression}

{{| Guard} -> FunctionBody}+

[LocalFunctionAltDefs]

LetExpresssion XE "LetExpresssion" \b
=
let XE "let " \b { {LocalDef}+ } in XE "in " \b GraphExpr

LocalFunctionDefs XE "LocalFunctionDefs"
=
[with XE "with"] { {LocalDef}+ }
LocalDef XE "LocalDef"
=
GraphDef

|
FunctionDef

LocalFunctionAltDefs XE "LocalFunctionAltDefs"
=
[where XE "where"] { {LocalDef}+ }
A.4
Macro Definition

MacroDef XE "MacroDef"
=
[MacroFixityDef] DefOfMacro

MacroFixityDef XE "MacroFixityDef"
=
(FunctionName) [Fix][Prec] ;
DefOfMacro XE "DefOfMacro"
=
Function {Variable} :== FunctionBody;

[LocalFunctionAltDefs]

A.5
Type Definition

TypeDef XE "TypeDef"
=
AlgebraicTypeDef

|
RecordTypeDef

|
SynonymTypeDef

|
AbstractTypeDef

AlgebraicTypeDef XE "AlgebraicTypeDef" \b
=
::TypeLhs = [QuantifiedVariables :] ConstructorDef {|ConstructorDef} ;
RecordTypeDef XE "RecordTypeDef"
=
::TypeLhs = [QuantifiedVariables :] {{FieldName :: [Strict] Type}-list};
SynonymTypeDef XE "SynonymTypeDef"
=
::TypeLhs :== [QuantifiedVariables :]Type ;
AbstractTypeDef XE "AbstractTypeDef"
=
::TypeLhs ;
TypeLhs XE "TypeLhs"
=
[*]TypeConstructor {[*] TypeVariable}

TypeConstructor XE "TypeConstructor"
=
TypeName

//
see A.7
QuantifiedVariables XE "QuantifiedVariables"
=
{E. TypeVariable}+

ConstructorDef XE "ConstructorDef"
=
ConstructorName {[Strict] BrackType}

|
(ConstructorName) [Fix][Prec] {[Strict] BrackType}

Fix XE "Fix"
=
infixl XE "infixl"

|
infixr XE "infixr"

|
infix XE "infix"
Prec XE "Prec"
=
Digit

//
see A.8
Strict XE "Strict"
=
!

Type XE "Type"
=
{BrackType}+

BrackType XE "BrackType"
=
[UnqTypeAttrib] SimpleType

UnqTypeAttrib XE "UnqTypeAttrib"
=
*

|
UniqueTypeVariable:

//
see A.7

|
.
SimpleType XE "SimpleType"
=
TypeConstructor

|
TypeVariable

//
see A.7

|
BasicType

|
PredefAbstrType

|
ListType

|
TupleType

|
ArrayType

|
ArrowType

|
(Type)
TypeConstructor XE "TypeConstructor"
=
TypeName

|
[]

|
({,}+)

|
{}

|
{!}

|
{#}

|
(->)
BasicType XE "BasicType"
=
Int XE "Int"

|
Real XE "Real"

|
Char XE "Char"

|
Bool XE "Bool"
PredefAbstrType XE "PredefAbstrType"
=
World XE "World"

|
File XE "File"

|
ProcId XE "ProcId"
ListType XE "ListType" \b
=
[Type]
TupleType XE "TupleType " \b
=
([Strict] Type,{[Strict] Type}-list)
ArrayType XE "ArrayType" \b
=
{[Strict] Type}

|
{#BasicType}
ArrowType XE "ArrowType" \b
=
({BrackType}+ -> Type)
A.6
Class Definition

ClassDef XE "ClassDef"
=
TypeClassDef

|
TypeClassInstanceDef

|
TypeClassInstanceExportDef

TypeClassDef XE "TypeClassDef" \b
=
class XE "class" \b ClassName TypeVariable [ClassContext]

[[where] { {ClassMemberDef}+ }]

|
class FunctionName TypeVariable :: FunctionType;

|
class (FunctionName) [Fix][Prec] TypeVariable :: Function​Type;
ClassMemberDef XE "ClassMemberDef"
=
FunctionTypeDef

[MacroDef]

TypeClassInstanceDef XE "TypeClassInstanceDef" \b
=
instance XE "instance" \b ClassName [BrackType [default XE "default" \b] [ClassContext]]

[[where XE "where" \b] {{DefOfFunction}+ }]

TypeClassInstanceExportDef XE "TypeClassInstanceExportDef"
=
export XE "export " ClassName BasicType-list;
A.7
Names

ModuleName XE "ModuleName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

FunctionName XE "FunctionName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

ConstructorName XE "ConstructorName" \b
=

UpperCaseId

|
FunnyId

SelectorVariable XE "SelectorVariable" \b
=
LowerCaseId

Variable XE "Variable" \b
=
LowerCaseId

MacroName XE "MacroName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

FieldName XE "FieldName" \b
=
LowerCaseId

TypeName XE "TypeName" \b
=

UpperCaseId

|
FunnyId

TypeVariable XE "TypeVariable" \b
=
LowerCaseId

UniqueTypeVariable XE "UniqueTypeVariable" \b
=
LowerCaseId

ClassName XE "ClassName" \b
=
LowerCaseId

|
UpperCaseId

|
FunnyId

LowerCaseId XE "LowerCaseId" ;
=
LowerCaseChar~{IdChar}

UpperCaseId XE "UpperCaseId"
=
UpperCaseChar~{IdChar}

FunnyId XE "FunnyId"
=
{SpecialChar}+

LowerCaseChar XE "LowerCaseChar" \b
=
a
|
b
|
c
|
d
|
e
|
f
|
g
|
h
|
i
|
j

|
k
|
l
|
m
|
n
|
o
|
p
|
q
|
r
|
s
|
t

|
u
|
v
|
w
|
x
|
y
|
z
UpperCaseChar XE "UpperCaseChar" \b
=
a
|
b
|
c
|
d
|
e
|
f
|
g
|
h
|
i
|
j

|
k
|
l
|
m
|
n
|
o
|
p
|
q
|
r
|
s
|
t

|
u
|
v
|
w
|
x
|
y
|
z
SpecialChar XE "SpecialChar" \b
=
~
|
@
|
#
|
$
|
%
|
^
|
?
|
!

|
+
|
-
|
*
|
<
|
>
|
\
|
/
|
|
|
&
|
=

|
:

IdChar XE "IdChar"
=
LowerCaseChar

|
UpperCaseChar

|
Digit

//
see A.8

|
_
|
`
A.8
Denotations

IntDenotation XE "IntDenotation" \b ;
=
[Sign]~{Digit}+

// decimal number XE "decimal number"

|
[Sign]~ 0~{OctDigit}+

// octal number XE "octal number"

|
[Sign]~ 0x~{HexDigit}+

// hexadecimal number XE "hexadecimal number"
Sign XE "Sign" \b
=
+ | - | ~
RealDenotation XE "RealDenotation" \b
=
[Sign~]{Digit~}+.{~Digit}+[~E[~Sign]{~Digit}+]

BoolDenotation XE "BoolDenotation" \b
=
True XE "True" \b | False XE "False" \b
CharDenotation XE "CharDenotation" \b
=
CharDel~AnyChar/ EQ \D\ba5() ~CharDel~CharDel

CharsDenotation XE "CharsDenotation" \b
=
CharDel~{AnyChar/ EQ \D\ba5() ~CharDel}+~CharDel

StringDenotation XE "StringDenotation" \b
=
StringDel~{AnyChar/ EQ \D\ba5() ~StringDel}~StringDel

AnyChar XE "AnyChar" \b
=
IdChar | ReservedChar | Special

ReservedChar XE "ReservedChar" \b
=
(
|
)
|
{
|
}
|
[
|
]
|
;
|
,
|
.
Special XE "Special" \b
=
\n
|
\r
|
\f
|
\b

// new​line,return,formf,backspace

|
\t
|
\\
|
\CharDel

// tab,backslash,character delete

|
\StringDel

// string delete

|
\{OctDigit}+

// octal number

|
\x{HexDigit}+

// hexadecimal number

OctDigit XE "OctDigit" \b
=
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
HexDigit XE "HexDigit" \b
=
0
|
1
|
2
|
3
|
4
|
5
|
6
|
7
|
8
|
9

|
A
|
B
|
C
|
D
|
E
|
F

|
a
|
b
|
c
|
d
|
e
|
f
CharDel XE "CharDel" \b
=
'
StringDel XE "StringDel" \b
=
"

[image: image15.jpg]. Clean |

Appendix B

Lexical Structure

	B.1
Lexical Program Structure
B.2
Comments
	B.3
Reserved Keywords and Symbols

In this appendix the lexical structure of Clean is given. It describes the kind of tokens recognised by the scan​ner/parser. In particular it summarizes the keywords, symbols and characters which have a spe​cial meaning in the language.

B.1
Lexical Program Structure

In this Section the lexical structure of Clean is given. It describes the kind of tokens recognised by the scan​ner/parser. In particular it summarizes the keywords, symbols and characters which have a special meaning in the language.

LexProgram XE "LexProgram" \b
=
{ Lexeme | {Whitespace}+ }

Lexeme XE "Lexeme" \b
=
ReservedKeywordOrSymbol

//
see Section B.3

|
ReservedChar

//
see Section A.8

|
Literal

|
Identifier

Identifier XE "Identifier" \b
=
LowerCaseId

//
see A.7

|
UpperCaseId

//
see A.7

|
FunnyId

//
see A.7
Literal XE "Literal" \b
=
IntDenotation

//
see A.8

|
RealDenotation

//
see A.8

|
BoolDenotation

//
see A.8

|
CharDenotation

//
see A.8

|
CharsDenotation

//
see A.8

|
StringDenotation

//
see A.8
Whitespace XE "Whitespace" \b
=
space

//
a space character

|
tab

//
a horizontal tab

|
newline

//
a newline char

|
formfeed

//
a formfeed

|
verttab

//
a vertical tab

|
Comment

//
see Section B.2
B.2
Comments

Comment XE "Comment" \b
=
// AnythingTillNL newline

|
/* AnythingTill/* Comment AnythingTill*/ */
//
comments may be nested

|
/* AnythingTill*/ */
AnythingTillNL
=
{AnyChar/ EQ \D\ba5() ~newline}

//
no newline

AnythingTill/*
=
{AnyChar/ EQ \D\ba5() ~/*}

//
no "/*"

AnythingTill*/
=
{AnyChar/ EQ \D\ba5() ~*/}

//
no "*/"

AnyChar XE "AnyChar" \b
=
IdChar | ReservedChar | Special

//
see A.7
B.3
Reserved Keywords and Symbols

Below the keywords and symbols are listed which have a special meaning in the language. Some sym​bols only have a special meaning in a certain context. Outside this context they can be freely used if they are not a reerved character (see A.8). In the com​ment it is indicated for which context (name space XE "name space") the symbol is predefined. XE "symbol"

 XE "keyword"
ReservedKeywordOrSymbol = XE "ReservedKeywordOrSymbol =" \b
// in all contexts:

/*
//
begin of comment block

|
*/
//
end of comment block

|
//
//
rest of line is comment

|
::
//
begin of a type definition

|
:==
//
in a type synonym or macro definition

|
=
//
in a function, graph, alg. type, rec. field

|
=:
//
labeling a graph definition

;
|
=>
//
in a function definition

|
;
//
end of a definition (if no lay-out rule)

// in global definitions:

|
from XE "from"
//
begin of symbol list for imports

|
definition XE "definition"
//
begin of definition module

|
implementation XE "implementation "
//
begin of implementation module

|
import XE "import"
//
begin of import list

|
module XE "module"
//
in module header

|
system XE "system"
//
begin of system module

// in function definitions:

|
->
//
in a case expression, lambda ab​straction

|
[
//
begin of a list

|
:
//
cons node

|
]
//
end of a list

|
\\
//
begin of list or array comprehension

|
<-
//
list gen. in list or array comprehen​sion

|
<-:
//
array gen. in list or array compre​hension

|
{
//
begin of a record or array, begin of a scope

|
}
//
end of a record or array, end of a scope

|
.
//
a record or array selector

|
!
//
a record or array selector (for unique objects)

|
&
//
an update of a record or array, zipping gener.

|
{*
//
begin of process annotations

|
*}
//
end of process annotations

|
case XE "case"
//
begin of case expression

|
code XE "code"
//
begin code block in a syst impl. mo​dule

|
if XE "if"
//
begin of a conditional expression

|
in XE "in"
//
end of (strict) let expression

|
let
//
begin of let expression XE "let
//
begin of let expression"

|
#
//
begin of let expression (for a guard) XE "" \t "
//
begin of let expression (for a guard)"

|
let! XE "let!"
//
begin of strict let expression

|
#!
//
begin of strict let expression (for a guard) XE "" \t "!
//
begin of strict let expression (for a guard)"

|
of XE "of"
//
in case expression

|
where XE "where"
//
begin of local def of a function alter​native

|
with XE "with"
//
begin of local def in a rule alternative

.i

// in process annotation XE "process annotation" s:

|
at XE "at"
//
followed by processor id

|
P XE "P"
//
a parallel process to normal form

|
I XE "I"
//
an interleaved process to normal form

// in type specification XE "type specification" s:

|
!
//
strict type

|
.
//
uniqueness type variable

|
#
//
unboxed type

|
*
//
unique type

|
:
//
in a uniqueness type variable definition

|
->
//
function type constructor

|
[]
//
list type constructor

|
(,),(,,),(,,,),…
//
tuple type constructors

|
{},{!},{#}
//
lazy, strict, unboxed array type constr.

|
infix XE "infix"
//
infix indication in operator definition

|
infixl XE "infixl"
//
infix left indication in operator defini​tion

|
infixr XE "infixr"
//
infix right indication in operator defini​tion

|
Bool XE "Bool"
//
type Boolean

|
Char XE "Char"
//
type character

|
File XE "File"
//
type file

|
Int XE "Int"
//
type integer

|
ProcId XE "ProcId"
//
type process id

|
Real XE "Real"
//
type real

|
World XE "World"
//
type world

// in class definitions:

|
export XE "export"
//
to reveal which class instances there are

|
class XE "class"
//
begin of type class definition

|
default XE "default"
//
to indicate default class instance

|
instance XE "instance"
//
def of instance of a type class

[image: image16.jpg]. Clean |

Appendix C

Bibliography

Peter Achten, John van Groningen and Rinus Plasmeijer (1992). ‘High-level specification of I/O in functional languages’. In: Proc. of the Glasgow workshop on Functional programming, ed. J. Lau​nchbury and P. Sansom, Ayr, Scotland, Springer-Verlag, Workshops in Comput​ing, pp. 1-17.

Peter Achten and Rinus Plasmeijer (1995). ‘The Ins and Outs of Concurrent Clean I/O’. Jour​nal of Functional Programming, 5, 1, pp. 81-110.

Peter Achten and Rinus Plasmeijer (1997). "Interactive Functional Objects in Clean". In: Proc. of the 1997 Workshop on the Implementation of Functional Languages (IFL'97), ed. K. Hammond Davie, T., and Clack, C., St.Andrews, Scotland, ???-???.

Tom Brus, Marko van Eekelen, Maarten van Leer, Rinus Plasmeijer (1987). ‘Clean - A Lan​guage for Functional Graph Rewriting’. Proc. of the Third International Conference on Func​tio​nal Pro​gramming Languages and Computer Architecture (FPCA '87), Portland, Oregon, USA, LNCS 274, Springer Verlag, 364-384.

Barendregt, H.P. (1984). The Lambda-Calculus, its Syntax and Semantics. North–Holland.

Henk Barendregt, Marko van Eekelen, John Glauert, Richard Kennaway, Rinus Plasmeijer, Ro​nan Sleep (1987). ‘Term Graph Rewriting’. Proceedings of Parallel Architectures and Lan​guages Eu​rope (PARLE), part II, Eindhoven, The Netherlands. LNCS 259, Springer Verlag, 141-158.

Erik Barendsen and Sjaak Smetsers (1993a). ‘Extending Graph Rewriting with Copying’. In: Proc. of the Seminar on Graph Transformations in Computer Science, ed. B. Courcelle, H. Ehrig, G. Ro​zenberg and H.J. Schneider, Dagstuhl, Wadern, Springer-Verlag, Berlin, LNCS 776, Springer Verlag, pp 51-70.

Erik Barendsen and Sjaak Smetsers (1993b). ‘Conventional and Uniqueness Typing in Graph Rewrite Systems (extended abstract)’. In: Proc. of the 13th Conference on the Foundations of Soft​ware Technology & Theoretical Computer Science, ed. R.K. Shyamasundar, Bombay, India, LNCS 761, Springer Verlag, pp. 41-51.

Bird, R.S. and P. Wadler (1988). Introduction to Functional Programming. Prentice Hall.

Marko van Eekelen, Rinus Plasmeijer, Sjaak Smetsers (1991). ‘Parallel Graph Rewriting on Loo​sely Coupled Machine Architectures’. In Kaplan, S. and M. Okada (Eds.) Proc. of the 2nd Int. Worksh. on Conditional and Typed Rewriting Systems (CTRS’90), 1990. Montreal, Ca​nada, LNCS 516, Springer Verlag, 354-370.

Eekelen, M.C.J.D. van, J.W.M. Smetsers, M.J. Plasmeijer (1997). "Graph Rewriting Semantics for Functional Programming Languages". In: Proc. of the CSL '96, Fifth Annual conference of the European Association for Computer Science Logic (EACSL), ed. Marc Bezem Dirk van Dalen, Utrecht, Springer-Verlag, LNCS, 1258, pp. 106-128.

Harper, R., D. MacQueen and R. Milner (1986). ‘Standard ML’. Edinburgh University, Internal re​port ECS-LFCS-86-2.

Hindley R. (1969). The principle type scheme of an object in combinatory logic. Trans. of the Ameri​can Math. Soc., 146, 29-60.

Hudak, P. , S. Peyton Jones, Ph. Wadler, B. Boutel, J. Fairbairn, J. Fasel, K. Hammond, J. Hug​hes, Th. Johnsson, D. Kieburtz, R. Nikhil, W. Partain and J. Peterson (1992). ‘Report on the pro​gram​ming language Haskell’. ACM SigPlan notices, 27, 5, pp. 1-164.

Jones, M.P. (1993). Gofer - Gofer 2.21 release notes. Yale University.

Marko Kesseler (1991). ‘Implementing the ABC machine on transputers’. In: Proc. of the 3rd In​ter​national Workshop on Implementation of Functional Languages on Parallel Architectures, ed. H. Glaser and P. Hartel, Southampton, University of Southampton, Technical Report 91-07, pp. 147-192.

Kesseler, M.H.G. (1996). The Implementation of Functional Languages on Parallel Machines with Distributed Memory. Ph.D., University of Nijmegen.

Milner, R.A. (1978). ‘Theory of type polymorphism in programming’. Journal of Computer and Sys​tem Sciences, 17, 3, 348-375.

Mycroft A. (1984). Polymorphic type schemes and recursive defini​tions. In Proc. International Con​fe​r​ence on Programming, Toulouse (Paul M. and Robinet B., eds.), LNCS 167, Springer Ver​lag, 217–239.

Eric Nöcker, Sjaak Smetsers, Marko van Eekelen, Rinus Plasmeijer (1991). ‘Concurrent Clean’. In Aarts, E.H.L., J. van Leeuwen, M. Rem (Eds.), Proceedings of the Conference on Paral​lel Archi​tectures and Languages Europe (PARLE’91), Vol II, Eindhoven, The Nether​lands, LNCS 505, Springer Verlag, June 1991, 202-219.

Eric Nöcker (1993). ‘Strictness analysis using abstract reduction’. In: Proc. of the 6th Confe​r​ence on Functional Programming Languages and Computer Architectures, ed. Arvind, Copen​hagen, ACM Press, pp. 255-265.

Eric Nöcker and Sjaak Smetsers (1993). ‘Partially strict non-recursive data types’. Journal of Functional Programming, 3, 2, pp. 191-215.

Rinus Plasmeijer and Marko van Eekelen (1993). Functional Programming and Parallel Graph Rewriting. Addison Wesley, ISBN 0-201-41663-8.

Sjaak Smetsers, Eric Nöcker, John van Groningen, Rinus Plasmeijer (1991). ‘Generating Ef​fi​cient Code for Lazy Functional Languages’. In Hughes, J. (Ed.), Proc. of the Fifth Interna​tional Confer​ence on Functional Programming Languages and Computer Architecture (FPCA '91), USA, LNCS 523, Springer Verlag, 592-618.

Ronan Sleep, Rinus Plasmeijer and Marko van Eekelen (1993). Term Graph Rewriting - The​ory and Practice. John Wiley & Sons.

Yoshihito Toyama, Sjaak Smetsers, Marko van Eekelen and Rinus Plasmeijer (1993). ‘The func​tional strat​egy and transitive term rewriting systems’. In: Term Graph Rewriting, ed. Sleep, Plas​meijer and van Eekelen, John Wiley.

Turner, D.A. (1985). ‘Miranda: a non-strict functional language with polymorphic types’. In: Proc. of the Conference on Functional Programming Languages and Computer Architecture, ed. J.P. Jouan​naud, Nancy, France. LNCS 201, Springer Verlag, 1-16.

[image: image17.jpg]. Clean |

Appendix E

Index

Emboldened terms indicate where a term has been defined in the text. A term starting with an upper​case character generally refers to an identifier in the syntactic description or to a predefined function or operator in the library.

\
\ · 29, 84
A
abort · 48
abstract data type · 12, 46
predefined · 40
AbstractTypeDef · 46, 84

actual node-id · 3
algebraic data type · 41
algebraic data type definition · 17

AlgebraicTypeDef · 42, 59, 72, 84
anonymous node variable · 17

AnyChar · 22, 86, 87
application · 21
Application · 20, 83

argument

formal · 16
arity of a function · 47

array · 19, 21, 26, 41
comprehension · 27
generator · 23
index · 27

index · 41
pattern · 19
selection · 29
Array · 26, 84

ArrayDenotation · 26, 84
ArrayExpr · 23, 27, 83, 84

ArrayIndex · 29, 84
ArrayPattern · 19, 82

ArraySelection · 29, 84
ArrayType · 41, 74, 85
ArrayUpdate · 27, 84
arrow type · 41
ArrowType · 41, 85
ASCII · 39

at · 88

B
basic type · 18, 39
BasicType · 40, 85

BasicValue · 17, 21, 82

BasicValuePattern · 17, 82

block structure · 30

Bool · 18, 21, 39, 40, 85, 89

BoolDenotation · 22, 86
BooleanExpr · 23, 83

boxing · 70
BrackGraph · 20, 83

BrackPattern · 16, 82

BrackType · 39, 43, 56, 59, 84

C
CAF · 75
cartesian product · 41, 47
case · 30, 84, 88

case expression · 30
CaseAltDef · 30, 84
CaseExpr · 30, 84
Char · 21, 39, 40, 85, 89

Char · 18

CharDel · 22, 86
CharDenotation · 22, 86
CharsDenotation · 22, 86
class · 49, 53, 85, 89

enumeration type · 23

ClassContext · 50, 82

ClassDef · 41, 85

ClassMemberDef · 49, 85

ClassName · 8, 85
CleanProgram · 9, 81

code · 14, 88

Comment · 87
conditional expression · 30
console mode · 9
constant

global · 11

local · 11

Constant Applicative Form · 75
constant function · 16
constant value · 18, 41
constructor

of zero arity · 17

Constructor · 17, 21, 82

constructor operator · 17
constructor pattern · 16
constructor symbol · 1
ConstructorDef · 42, 59, 72, 84

ConstructorName · 7, 85
ConstructorOrFunction · 21, 83

context

lazy · 70
strict · 70
contractum · 1
corresponding module · 9, 12

curried application · 47
curried constructor application · 17

curried type · 41

currying · 21

cyclic graph · 33
D
data constructor · 16, 17, 41
data structure · 41

DataRoot · 4
decimal number · 21, 86

default · 49, 85, 89

DefDefinition · 12, 81

definition · 9, 81, 88

global · 11

local · 11

definition module · 9, 12, 46

DefinitionModule · 9, 81
DefOfFunction · 15, 82

DefOfMacro · 76, 84

depending module · 13
dictionary · 48
Digit · 8

directed arc · 1
DotDotexpression · 23, 83
E
E. · 43
enumeration type · 23

evaluation

interleaved · 20

parallel · 20

existentially quantified variable · 43
explicit import · 13
ExplicitImportDef · 13, 82

export · 54, 89

export · 85

expression · 21
initial · 1

F
False · 22, 86
field name · 18, 24, 25, 44
FieldName · 7, 85
File · 40, 85, 89

Fix · 42, 84

Fix · 47

fixity · 16, 21, 48
flat type · 55
foreign function · 14
formal argument · 16, 17, 21

formal node-id · 3
from · 13, 82, 88

function · 1
alternative · 15
arity of a · 47
constant · 16, 33

curried application of a · 47
definition · 15
global · 11

local · 11

partial · 1, 16, 48
total · 48
Function · 21, 82

Function · 15
function definition · 1
function object · 41
function symbol · 1
function type · 46
functional array update · 27
functional record update · 25
functional reduction strategy · 2
FunctionAltDef · 15, 82

FunctionBody · 15, 83

FunctionDef · 15, 41, 82

FunctionDef · 47

FunctionName · 7, 85
FunctionType · 47, 50, 72, 82

FunctionTypeDef · 47, 82

FunnyId · 8, 85

G
garbage collection · 75

garbage collector · 34

generator

array · 22
list · 23
Generator · 23, 83
Generators · 23, 83
global definition · 11

Global definition · 12

global graph · 4
global graph definition · 75
global scope · 13

Gofer · i

graph · 1
Graph · 4

graph definition · 33
graph rewrite rule · 1, 15

GraphDef · 33, 75, 83

GraphExpr · 20, 83

GraphPattern · 16, 82

GraphVariable · 21, 83

guard · 19, 23

nested · 20

guard · 15

Guard · 19, 23, 83

guarded function body · 15
H
head normal form · 10

hexadecimal number · 22, 86

HexDigit · 22, 86
Hilt B.V. · iv

Hindley · 39

Hugs · i

I
I · 88

I/O library · i, 10

IdChar · 8, 86

identifier · 8

Identifier · 87
identifiers

renaming · 13

if · 88

if · 30, 84
ImplDefinition · 10, 81

implementation · 9, 81
implementation · 88

ImplementationModule · 9, 81
implicit import.;ib.import

implicit · 14
ImplicitImportDef · 14, 82

import · 14, 82, 88

explicit · 13
import statement · 13

ImportDef · 13, 81

Imports · 13, 82

in · 35, 83, 88

in · 31, 84
infix · 42, 47, 84, 88

infix constructor · 17
infix position · 16, 17

infixl · 16, 42, 47, 84, 88

infixr · 16, 42, 47, 84, 89

Initial · 3, 4

initial expression · 9, 10
instance · 49, 85, 89

Int · 18, 21, 39, 40, 85, 89

IntDenotation · 21, 86
IntegerExpr · 29, 84

K
keyword · 87

L
LambdaAbstr · 29, 84
Läufer · 43

lay-out rule · 11
lazy context · 70
lazy evaluation · 69
lazy semantics · 73
left hand-side of a graph · 1
let · 31, 36, 82, 84
let // begin of let expression · 88

let! · 36
let! · 35, 82, 83, 88

LetBeforeExpression · 36, 82

LetExpresssion · 31, 84
Lets · 36, 82

Lexeme · 87
LexProgram · 87
LGraphExpr · 22, 83

LGraphPattern · 18, 82

list · 18, 40
List · 22, 83

list list generator · 23
list pattern · 18
ListDenotation · 22, 83
ListExpr · 23, 83

ListPattern · 18, 82
ListType · 40, 74, 85
Literal · 87
local definition · 11

LocalDef · 31, 32, 84

LocalFunctionAltDefs · 31, 84

LocalFunctionDefs · 32, 84

loosely coupled parallel architecture · 77
LowerCaseChar · 8, 86
LowerCaseId · 8, 85

M
macro

global · 11

local · 11

macro definition · 75
MacroDef · 76, 84

MacroFixityDef · 76, 84

MacroName · 7, 85
main module · 9

message passing · ii

Milner · 39

Miranda · i

mode

console · 9
lay-out · 11
world · 10
module · 9, 81, 88

corresponding · 9, 12

definition · 9, 12
depending · 13
implementation · 9
pass-through · 14
Module · 9, 81

ModuleName · 7, 85
N
name space · 87

name spaces · 8
nested guards · 20

nested scope · 8
node · 1
node variable · 17
anonymous · 17

node-id · 1
actual · 3
applied · 1

formal · 3
node-id variable · 16
node-identifier · 1
normal form · 2
O
object oriented programming · 45

octal number · 22, 86

OctDigit · 22, 86
of · 30, 84, 88

operator · 16, 21, 48
constructor · 17

Operator · 21, 83

otherwise · 19
overloaded · 49
overloading · 8

P
P · 88

partial function · 1, 16, 19, 48
partial match · 2
pass-through module · 14
pattern · 1, 16
array · 19
bracket · 16
constructor · 16
list · 18
of basic type · 18

record · 18, 34
tuple · 18
Pattern · 16, 82
pattern match · 19

pattern variable · 17
PatternVariable · 17, 82

polymorphic algebraic data type · 42
Prec · 42, 84

Prec · 47

precedence · 16, 48
precedence · 21

PredefAbstrType · 40, 85

process · ii

Process · 77, 83
process annotation · 88

ProcId · 40, 85, 89

ProcIdExpr · 77, 83
program · 1
program graph · 1
projection function · 34
Q
Qualifier · 23, 83
QuantifiedVariables · 42, 59, 84

R
Real · 18, 21, 39, 40, 85, 89

RealDenotation · 22, 86
recompilation · 12

record · 18, 24

Record · 24, 83

record pattern · 18, 34
record selection · 25
record type · 44
RecordDenotation · 24, 83
RecordExpr · 25, 83

RecordPattern · 18, 82

RecordSelection · 25, 83
RecordTypeDef · 45, 72, 84

RecordUpdate · 25, 83
redex · 1
redirection · 1
redirection of a node · 2
reducer · 2
reducible expression · 1
reduct · 1
reduction strategy · 2
reference · 1
ReservedChar · 22, 86
ReservedKeywordOrSymbol = · 88
rewrite of a redex · 1
rewrite rules

comparing · 1

right hand-side of a graph · 1
root normal form · 2, 10

root stable form · 10

RootExpression · 20, 83

rule
alternative · 15
rule alternative · 19

S
scope · 8, 11, 30, 75

nested · 8
surrounding · 8
selection

by field name · 44
by index · 26
by position · 44
Selection · 25, 27, 29, 83
Selection of a Record Field · 25
Selection of an Array Element · 29
selector · 34
Selector · 23, 34, 83

selector variable · 21, 34
SelectorVariable · 7, 85
semantics

lazy · 73
strict · 73
sharing · 33
sharing analysis · 61
Sign · 22, 86
SimpleType · 39, 43, 85

SML · i

Special · 22, 86
SpecialChar · 8, 86
Start · 3, 4, 9
start rule · 3
StartNode · 4
Strict · 71, 84

strict context · 70
strict let expression · 35
strict semantics · 73
StrictLet · 35, 83
StringDel · 22, 86
StringDenotation · 22, 86
strong root normal form · 2
strong type system · 39

strongly typed language · 39
sub-graph · 2
sub-pattern · 16
surrounding scope · 8
symbol · 1, 87

arguments of a · 1
synonym type · 45
SynonymTypeDef · 45, 84

system · 9, 81, 88

system definition module · 14
system implementation module · 14
T
Term Graph Rewriting · 1

total function · 48
tree · 1

True · 22, 86
tuple · 18, 24, 40
Tuple · 24, 83
tuple pattern · 18
TuplePattern · 18, 82

TupleType · 40, 73, 85
type

abstract data · 46
algebraic data · 41
array · 41
arrow · 41
basic · 39

constructor

arrow · 43
lazy array · 43
list · 43
strict array · 43
unboxed array · 43
context · 50
curried · 41

existential · 44
explicitly specified · 39
flat · 55
global · 11

inferred · 39, 46
list · 22, 40
of a function · 46
of partial function · 48
record · 44
synonym · 45
tuple · 40
variable · 42
Type · 39, 43, 56, 84

type class · 49
definition of · 49
member of · 49
type instance · 39
type specification · 88

type variable · 42
TypeClassDef · 49, 53, 85
TypeClassInstanceDef · 49, 85
TypeClassInstanceExportDef · 54, 85

TypeConstructor · 43, 84, 85

TypeConstructor · 42, 59

TypeDef · 84

TypeDef · 41
TypeLhs · 42, 59, 84

TypeName · 7, 85
TypeVariable · 7, 85
U
unboxing · 70
uniqueness type attribute · 39, 56
UniqueTypeVariable · 7, 85
UnqTypeAttrib · 56, 59, 84

UnqTypeUnEqualities · 82

update of a record

destructive · 25
update of an array

destructive · 27
UpperCaseChar · 8, 86
UpperCaseId · 8, 85

V
variable · 21
existentially quantified · 43
node-id · 16
pattern · 17
selector · 21, 34
type · 42
Variable · 7, 85
W
where · 31, 49, 84, 85, 88

where block · 31
Whitespace · 87
wildcard · 17, 34
with · 32, 84, 88

with block · 32
world

abstract · 10
concrete physical · 10
World · 9, 40, 85, 89

world mode · 10
Z
zero arity symbol · 21

ZF-expression · 22, 23, 83

1 Note that it is very natural in Clean to speak about references due to the underlying graph rewrit�ing semantics of the language: it is al�ways clear when objects are being shared or when cyclic structures are being created.

