
Getting a Grip on Tasks that Coordinate Tasks

Rinus Plasmeijer
Radboud University Nijmegen

Nijmegen, the Netherlands
rinus@cs.ru.nl

Bas Lijnse
Radboud University Nijmegen

Nijmegen, the Netherlands
b.lijnse@cs.ru.nl

Peter Achten
Radboud University Nijmegen

Nijmegen, the Netherlands
P.Achten@cs.ru.nl

Steffen Michels
Radboud University Nijmegen

Nijmegen, the Netherlands
s.michels@science.ru.nl

ABSTRACT
Workflow management systems (WFMS) are software sys-
tems that coordinate the tasks human workers and comput-
ers have to perform to achieve a certain goal. The tasks
to do and their interdependencies are described in a Work-
flow Description Language (WDL). Work can be organized
in many, many ways and in the literature already more than
hundred of useful workflow patterns for WDL’s have been
identified. The iTask system is not a WFMS, but a combi-
nator library for the functional language Clean to support
the construction of WFMS applications. Workflows can be
described in a compositional style, using pure functions and
combinators as self-contained building blocks. Thanks to
the expressive power of the underlying functional language,
complex workflows can be defined on top of just a handful of
core task combinators. However, it is not sufficient to define
the tasks that need to be done. We also need to express the
way these tasks are being supervised, managed and visual-
ized. In this paper we report on our current research effort to
extend the iTask system such that the coordination of work
can be defined as special tasks in the system as well. We
take the opportunity to redesign editors which share infor-
mation and the combinators for defining GUI interfaces for
tasks, such as buttons, menu’s and windows. Even though
the expressiveness of the resulting system increases signifi-
cantly, we are certain that the number of core combinators
can be reduced. In this paper we argue that only two gen-
eral Swiss-Army-Knife higher order functions are needed to
obtain the desired functionality. This simplifies the imple-
mentation significantly and increases the maintainability of
the system. In this paper we discuss the design space and
decisions that lead to these two general functions for con-
structing tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LDTA 2011 Saarbrücken, Germany
Copyright 2011 ACM 978-1-4503-0665-2 ...$10.00.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features

General Terms
Languages

Keywords
embedded domain specific language, functional combinator
library, workflow system

1. INTRODUCTION
Workflow management systems (WFMS) are software sys-

tems that coordinate, generate, and monitor tasks performed
by human workers and computers. A concrete workflow en-
sures that essential actions are performed in the right order.
The purpose of the iTask system [5] is to support the con-
struction of WFMS applications. It distinguishes itself from
traditional WFMSs. First, the iTask system is actually a
monadic combinator library in the pure and lazy functional
programming language Clean. The constructed WFMS ap-
plication is embedded in Clean where the combinators are
used to define how tasks can be composed. Tasks are defined
by higher-order functions which are pure and self contained.
Second, most WFMSs take a workflow description specified
in a workflow description language (WDL) and generate a
partial workflow application that still requires substantial
coding effort. An iTask specification on the other hand de-
notes a full-fledged, web-based, multi-user workflow appli-
cation. It strongly supports the view that a WDL should
be considered as a complete specification language rather
than a partial description language. Third, despite the fact
that an iTask specification denotes a complete workflow ap-
plication, the workflow engineer is not confronted with boil-
erplate programming (data storage and retrieval, GUI ren-
dering, form interaction, and so on) because this is all dealt
with using generic programming techniques. Fourth, the
structure of an iTask workflow evolves dynamically, depend-
ing on user-input and results of subtasks. Fifth, in addition
to the host language features, the iTask system adds higher-
order tasks (workflow units that create and accept other
workflow units) and recursion to the modelling repertoire of
workflow engineers. Sixth, in contrast with the large cata-
logue of common workflow patterns [1], iTask workflows are

captured by means of a small number of core combinator
functions.

In this paper we reflect on these core combinators and
the functionality they offer. Although complex workflows
can be defined in a declarative style, one would like to have
more flexibility in controlling the tasks one is working on.
For instance, when a task is delegated, someone might want
to monitor its progress. In the current system the delega-
tor gets this information and she also obtains the power to
change the properties of the delegated task, such as its pri-
ority, or, she can move the task to the desk of someone else.
This is often useful, but is not always what is wanted. Per-
haps one would like to inform other people involved as well.
One also would like to define what kind of information is
shown to a particular person and define what a manager
can do with the tasks she is viewing. Controlling tasks can
be seen as tasks as well and one would like to have combina-
tors to programme their behaviour. In particular one would
like to define control interfaces that show what goes on and
which can be used to manage the tasks involved. The ex-
tended iTask system described in [4] appears to be a good
starting point for defining such interfaces. In that paper we
extended the system with new combinators given the ability
to define GUIs for tasks. Furthermore we showed that it is
possible to share information between tasks. Tasks can com-
municate with each other by modifying shared information.

Adding all these extensions to the iTask system can easily
lead to a system with an excessive number of core combi-
nators. This leads to high maintenance costs and hampers
formal reasoning. Fortunately, the desired functionality can
be obtained with only a very few powerful combinators with
which the simplicity of the system can be retained and the
maintainability can be improved. It is the thesis of this
paper that we can do with only two new general purpose
elements.

The remainder of this paper is organized as follows. First,
we describe the current core iTask system (Section 2) and
explain its usage and shortcomings by means of small, yet
illustrative examples (Section 3). Based on this analysis we
identify the requirements that should be satisfied by the new
iTask system and argue that they can be realized with only
two new general constructs with which all current constructs
can be defined (Section 4). In the conclusions we briefly
discuss the current situation (Section 5).

2. THE ITASK CORE SYSTEM
In this section we give a brief overview of the iTask system.

The kernel of the iTask system consists of basic tasks and
combinator functions for combining tasks. On top of them,
an API is defined. This API offers some notational conve-
nience and allows to define workflows in a more verbose style
to enhance the communication with domain experts, which
are not likely to be functional programmers. In this paper
we abstract from this API and focus on the iTask kernel.

2.1 Basic Tasks
Basic tasks are units of work of the opaque, parameterized

type Task a: the type parameter a is the type of the result
value that is committed to the workflow when the task has
finished. In principle, any unit of work in daily life can be
modeled as a basic task. It can be a call to a service on
a web server, a system call, or a form to be filled in by a
worker in a browser. The latter is the most interesting one

in this context, since human interaction is a key feature of
any workflow system. In this paper we restrict ourselves to
this basic task only, for which we provide the function edit.

edit :: String a → Task a | iTask a

Note that in Clean the arity of functions is shown explicitly
by separating argument types by spaces instead of →. An
editor is created with edit prompt va. The prompt argument
provides the worker with information about the purpose of
this task. When applied to an initial va of some type a, it
creates a GUI in which the worker can inspect and alter the
given value arbitrarily many times. An editor can create
and handle such a GUI for any first-order type a. It uses
a set of type indexed generic functions (hence the context
restriction | iTask a) which are derived by the compiler au-
tomatically. The iTask system guarantees that only values
of type a can be created. This continues until the worker de-
cides to commit the value to the workflow, which terminates
the task edit prompt va.

2.1.1 Example
What follows is a very small iTask example: a task enter-

Int using the edit function to create a form for filling in an
Integer number. The generic function initialValue yields an
initial value for any first order type.

module example

import iTask

Start world
= startEngine [workflow "Integer form" enterInt] world

enterInt :: Task Int
enterInt = edit "Please, fill in form" initialValue

To turn this task description into an executable WFMS one
has to import the iTask library. The main function in Clean
is called Start which obtains a (unique) world as argument
which is used for the pure communication with the impure
outside world. The library function startEngine takes a list
of workflow specifications and creates a web-based workflow
system for it (see Figure 1). Any task can be promoted to
become a workflow with the function workflow. Such a work-
flow is added to the list of workflows in the left workflow
start-pane. A workflow can be started by the worker arbi-
trary many times just by clicking on its icon. The tasks a
worker has to do appear in the task-list pane, similar to a
list of incoming emails. By clicking on an item in the list, a
task-pane is opened allowing a worker to work on her tasks
in arbitrary order.

The edit function can be used on any first-order type. In
the example below we show the form it creates for a list
of Persons, where Person is some user-defined record type.
One only has to change the type of the application of edit.
Furthermore one has to ask the compiler to derive the generic
functions for the types involved. The resulting form is shown
in Figure 2.

module example2

import iTask

:: Person = { firstName :: String
, surName :: String
, dateOfBirth :: Date
, gender :: Gender

Figure 1: A screen-shot of the iTask browser interface

Figure 2: The form generated for editing a list of
Persons

}
:: Gender = Male | Female

derive class iTask Person, Gender

Start world
= startEngine [workflow "Person form" enterPersons] world

enterPersons :: Task [Person]
enterPersons = edit "Please, fill in the form" initialValue

2.2 Core Combinators
In this paper we focus on the iTask core combinators. The

semantics is formally defined in [6].

// assigning properties to a task:
(@:) infixr 5 :: p (Task a) → Task a | property p & iTask a

// sequencing of tasks with a monad:
(>>=) infixl 1 :: (Task a) (a → Task b) → Task b | iTask b
return :: a → Task a | iTask a

// defining parallel tasks: parallel-or and parallel-and:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a
(-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b) | iTask a

& iTask b

Properties can be assigned to a task by using the @: combina-
tor. In general, the properties that can be set are captured
by the type class property. Examples of predefined proper-
ties are: an identification of a worker or group of workers
to which the task is assigned, the priority of a task, and
it’s deadline. One can assign user-defined properties (type
String) as well. The properties are inherited by all subtasks
of a task, unless other properties are assigned to them via a
@: operator. We call @:-annotated tasks main tasks.

To compose tasks sequentially, the monadic combinators
return and >>= [7] are provided. The task return va succeeds
immediately and commits its value va. In ta >>= λva → tb,
the task ta is evaluated first. When this task commits its
value, say va, it is passed to tb to compute the next task to
be executed.

To compose tasks in parallel, the combinators -||- and
-&&- are provided. A task constructed using -||- is finished
as soon as either one of its subtasks is finished, returning
the result of that task. The combinator -&&- is finished as
soon as both subtasks are finished, and pairs their results.

The iTask system actually offers a couple of additional
core combinators: namely for managing workflow processes
and for exception handling. However, their functionality is
not important for this paper.

In the next section we give some examples of iTask work-
flow specification using the core combinators described above,
and use these examples to explain how the combinators can
be further improved.

3. THE EXPRESSIVE POWER AND LIMI-
TATIONS OF THE COMBINATORS

With the iTask core combinators, complex workflows can
be defined which cannot be expressed in traditional WFMS.
However, there is still room for improvement. We present
some examples, explain what their effect is, and discuss what
is missing.

3.1 Coordination of Tasks

Our first example is a higher order task: we define a task
which delegates a given task to someone else. Notice that
in most classical WFMSs, such higher order tasks cannot be
defined.

delegate :: (Task a) → Task a | iTask a
delegate task
= selectUsers

>>= λworker → worker @: task
>>= λresult → edit "Check result:" result

Start world
= startEngine [workflow "Delegate" (delegate enterPersons)]

world

In the delegate task there are initially two people involved:
a delegator delegating work, and a worker, to whom the
work is delegated. There are three sub-task steps in this
delegate task, sequentialized by the bind combinator (>>=).
When the task delegate is performed by the delegator, she
first has to select a worker. The library function selectUsers

displays a list of administrated users the delegator can select
from. In the next step the task to delegate is assigned (@:) to
the chosen worker. When the worker has finished the task,
its result is shown to the delegator again. She can correct
the returned result with the editor, and when she is happy
and finishes, the whole delegation task is completed as well.
The delegate workflow is a clear and concise specification
which can be applied to any task. In this particular example,
enterPersons is the task being delegated to the worker.

Yet there is something missing in this specification as well.
It is clear what the worker has to do (see Figure 2), but what
do we show to the delegator in the meantime? When the
work is being delegated, the delegator might be interested
in how the work is proceeding. Perhaps she also wants to
do something with the information she sees.

In the first version of the iTask system, we just informed
the delegator in the task-pane that her delegation task is
waiting for the worker to finish. In the current version, we
have used the capability to change tasks under execution
[6] to turn this passive role of the delegator into an active
one. The delegator is offered a predefined control screen as
displayed in Figure 3.

Figure 3: Default task pane of waiting task

It gives the delegator information about the properties of
the delegated task, such as its priority, who is working on
it and the last time the task has been worked on. More-
over it gives the delegator the capability to coordinate the
delegated task: she can change its priority and she can re-
place the worker by another one, including herself. When
a change is made, the worker sees this change immediately
when an event is committed to the server. When the task
is transformed to some other worker, he can continue with
the work of the previous worker, since all the work done so
far is retained.

In this example we observe that there are actually two
tasks involved when a main task is created. The task being
assigned is explicitly defined by the workflow engineer, but
the coordinating task is predefined and fixed in the iTask
library. Since the iTask system is intended as a system for
constructing WFMS’s, it would be better if the coordinating
meta-task is not fixed by the underlying system but can be
defined as a task by the workflow engineer as well. This
implies that such a task must continuously be provided with
the actual status information of the main tasks involved.

With this status information one can display a view to
whom it concerns. For instance, in the current system, the
delegator is by default turned into a manager, but perhaps
this is not desirable at all. It might also possible that several
people are interested in the progress of the delegated task.
Consider the following example:

Start world
= startEngine [workflow "Delegate 2"

(delegate (delegate enterPersons))]
world

Here we delegate the delegation-task thus introducing poten-
tially two workers who might be interested in the progress
of the actual work.

Hence we need to provide the programmer with a combi-
nator with which she can define arbitrary coordination tasks
which have a view on the ongoing work and enable to change
their properties as wanted.

3.2 Sharing of Information
In the previous section we have identified the need to al-

low coordination tasks to continuously monitor and alter
task (properties). This need extends in a natural way to
arbitrary tasks and arbitrary information. Michels et al. [4]
show that some tasks do need to constantly exchange infor-
mation while one is working on it. This extends the data
flow that is dictated by the current workflow combinators
in which information is only propagated to tasks once the
information-producing task has been terminated and thus
committed its value to the workflow. An appealing example
is chat.

:: Note = Note String

:: View m v = { viewFrom :: m → v, viewTo :: v → m → m }

chat :: User User → Task Void
chat user1 user2
= createDB (Note "" , Note "")
>>= λref → (user1 @: editShare ("Chat with "+++user2) a ref)

-&&-
(user2 @: editShare ("Chat with "+++user1) b ref)

>>= λ_ → return Void
where

a = { viewFrom = λ(note1, note2) → (Display note2,note1)
, viewTo = λ(_,note1) (_, note2) → (note1, note2)
}

b = { viewFrom = λ(note1, note2) → (Display note1,note2)
, viewTo = λ(_,note2) (note1, _) → (note1, note2)
}

In this example, two workers chat with each other contin-
uously. To make this possible, the text produced by both
(of type (Note, Note)) is stored in a database. It serves as
a shared model, and both workers may change the model
at the same time. Each worker, however, has its own view
on the shared model. For this purpose one has to describe

Figure 4: Workers Rinus and Bas chatting with each other

the mapping between model and view (viewFrom) and back-
wards (viewTo) also known as a lens [2]. This implements the
well known model-view-controller paradigm [3]. In the chat

example, the predefined type Display is used to prevent one
worker to change the information typed in by the other. For
a screen shot see Figure 4. Hence, an editing conflict caused
when more than one worker changes the same information
at the same time cannot arrise in this particular example
due to the well chosen view. In general such editing con-
flicts are possible. The system can prevent the database for
becoming inconsistent by producing an error message when
somebody is trying to change data which is not up-to-date.

To make this all possible, we need a new kind of editor,
like editShare, which reads in the current model stored in the
database, and converts this information to a view to show
in the client. Every time a worker makes a change, the view
is converted back to the model and stored in the database.
The view others have on this information has to be updated
accordingly.

The editShare editor has the following type:

editShare :: String (View m v) (Ref m) → Task (Maybe m)
| iTask m & iTask v

It requires a String for prompting, a view of type v on a
model of type m and a reference to the database where the
shared model of type m is stored. Only if the editShare editor
finished in a valid state, the final value mv is returned as
Just mv, otherwise Nothing is returned.

The ability to share information and provide a specific
view on this information is required to define tasks that co-
ordinate other tasks. In this case the state information of the
tasks to coordinate has to be provided to the coordinating
tasks.

3.3 Adding GUI Elements
With the standard core editor a form can be generated

for any first order type. One can change the values in the
form as often as desired. The system ensures that the form
can only be filled with values of the demanded type. The
standard “OK” button can therefore only be pressed when
all required parts of the form have been filled in properly.

Clearly one would like to have the possibility to attach an
arbitrary number of buttons to an editor instead of just one.
Michels et al [4] extend the iTask system and enrich editors
with GUI elements such as buttons and menus. Further-
more, several editors can be active at the same time each
running in their own window. An example using such an
enriched editor, editA (for edit action), is (see also Figure 5):

editA :: String [(Action, (Maybe a) → Bool)] a
→ Task (Action, Maybe a) | iTask a

enterPerson :: Task (Maybe Person)

enterPerson
editA "Please, fill in form" myActions initialValue

>>= λ(event,mbr) → return mbr
where
myActions = [(ActionOk,ifValid) , (ActionCancel,always)]

ifValid (Just _) = True
ifValid _ = False

always _ = True

The idea is to attach a list of action-predicate pairs to an
editor, as shown in the type of editA. The predicate defines
when the corresponding action can be chosen. An action
such as“OK”can only be chosen if a complete form has been
filled in, but one can also specify that the entered value has
to satisfy additional requirements. Other actions, such as

Figure 5: Editor for type Person with Ok and Cancel
buttons.

Cancel, should always be possible, regardless what has been
entered. It can therefore no longer be guaranteed that such
an editor will always return a proper value. Hence, editA re-
turns the chosen action and Maybe a value. In enterPerson two
actions are attached to the editor: ActionOK which can only
be chosen if the form has been filled in completely (guarded
with ifValid), and ActionCancel which can always be chosen
(guarded with always).

It is better to structure actions using menus when there
are many of them. This can be done via task annotations
using the operator <<@. Here one can define a mapping be-
tween actions and menu items. For the actions not men-
tioned in this mapping buttons are generated. Here we
adapt enterPerson to use a menu.

enterPerson :: Task (Maybe Person)
enterPerson
= editA "Please, fill in form" myActions initialValue

<<@ myMenu
>>= λ(event,mbr) → return mbr

where
myActions = [(ActionOk,ifValid) , (ActionCancel,always)]
myMenu = [Menu "Edit"

[MenuItem ActionCancel (Just cancelHotkey)
]]

cancelHotkey = {key=C, ctrl=True, alt=False, shift=False}

In [4] Michels et al propose a special combinator for cre-
ating multiple editors in parallel each running in their own
window. As we will see in Section 4, we conjecture that all
the different types of editors presented so far can be com-
bined into one. Similarly, we can also combine the different
ways of creating parallel tasks in one combinator.

3.4 Swiss-Army-Knife Parallel Combinator
The need for more functionality does not necessarily im-

ply that more combinators are required. By using higher
order functions, Swiss-Army-Knife combinators can be de-
fined, that strongly reduce the number of needed core combi-
nators. In the current iTask system, the parallel combinator
is one such example:

parallel :: ([a]→Bool) ([a]→b) ([a]→b) [Task a] → Task b
| iTask a & iTask b

For instance, the core combinators -||- and -&&- (Section
2.2) can be replaced by suitable parametrization of parallel.
The function parallel predOK someDone allDone taskList takes a
list of tasks (taskList) to be executed in parallel, a predicate
(predOK), and two conversion functions (someDone and allDone).
Whenever a member of taskList is finished, its result is col-
lected in a list results of type [a], maintaining the order of
tasks. Now predOK results is computed to determine whether
parallel should complete, in which case the result is com-
puted by someDone results. When all parallel tasks have run
to completion, and predOK is still not satisfied, then parallel

also completes, but now with result allDone results. We can
define -||- and -&&- as follows:

(-||-) infixr 3 :: (Task a) (Task a) → Task a | iTask a
(-||-) ta1 ta2 = parallel (not o isEmpty) first undef [ta1, ta2]
where

first [a] = a

(-&&-) infixr 4 :: (Task a) (Task b) → Task (a, b)
| iTask a & iTask b

(-&&-) ta tb = parallel (const False) undef all
[ta >>= Left, tb >>= Right]

where
all [Left a,Right b] = (a,b)

Although a Swiss-Army-Knife combinator such as parallel

can be used to define many different kinds of parallel be-
haviours, there is room for improvement here as well. With
predOK one can freely define when the parallel tasks can be
stopped, but perhaps one also needs to be able to start new
tasks dynamically, because more work is required.

Also there seem to be different categories of work to be
done in parallel. One category is formed by tasks different
people work on in parallel, such as in the chat example. But
one can also think of parallel tasks one person works on,
each task running in its own window being part of one and
the same GUI-application.

4. REDESIGNING THE ITASK CORE SYS-
TEM

In the previous section we have identified some shortcom-
ings of the current iTask core system as presented in Section
2. One would like to have a more general basic task editor
that can be used for ordinary tasks as well as for the coordi-
nation of tasks. Furthermore, one would like to have a more
general applicable combinator for defining parallel tasks. In

this section we argue that it is possible to identify two such
general purpose new elements.

4.1 Basic Editor Task Revisited
The basic edit task, as defined in Section 2.1, lacks some

functionality needed to define coordination tasks. In Sec-
tions 3.2 and 3.3, we gave examples of extended basic tasks
with additional functionality.

As for task combinators the different variants of editor
tasks can be seen as special cases of one Swiss-Army-Knife
editor task. For instance, a task not using actions is actu-
ally a special case only using the Ok action which can only
be chosen if the editor is in a valid state. Working on local
data can be seen as a special case of working on a shared
database, which is only used by a single task and deleted
afterwards. A last example is that tasks not using a cus-
tom defined view, actually use the identity view (defined as
{viewFrom = id, viewTo = const}).

Summarized a Swiss-Army-Knife editor task has to meet
the following criteria:

1. Edited data can be shared by an arbitrary number of
editor tasks, which are possibly carried out by different
workers. The system ensures that the data is kept
in a consistent state by detecting and reporting edit
conflicts.

2. It is possible to edit only a part of the data given to
the task. Also the representation shown to the worker
might be different than the original data model. This
can be achieved by using functionally defined views.

3. An arbitrary number of actions can be attached to
each editor task. They are triggered either by buttons
or menus which structure is given by annotating the
task. A predicate is used to define when an action
can be triggered. The task only returns a value if the
editor stopped in a valid state.

We are currently implementing all tasks for user interaction
in the iTask library (which also includes special tasks not
discussed in this paper, for example for making choices),
using the same underlying general editor implementation.
In the actual implementation some optimizations might be
considered. For example, not storing a separate database if
it is only used by a single task.

4.2 Core Combinators Revisited
In Section 3.4, we have shown how one single combinator,

parallel, can be used to create the derived combinators -||-

and -&&-. We have argued in Section 3.1 that delegating work
is also a form of parallel task creation. The current short-
coming of delegation is that the iTask system has predefined
behaviour to control and coordinate these tasks. The work-
flow engineer should be able to specify the means of control
as (arbitrarily many) additional tasks that coordinate these
tasks. We hypothesize that these forms of parallel behaviour
can be captured with a single, more general combinator. The
combinator needs to meet the following criteria:

1. The number of tasks in the current parallel combi-
nator remains constant, and parallel can only enforce
early termination, not the extension of new tasks. The
number of tasks in a parallel setting should not be fixed
once and for all, but should adapt to the needs of the
current situation.

2. The tasks within the current parallel combinator sim-
ply perform their duty and as such do not interfere
with each other (except ofcourse when using shared
communication). Next to these regular tasks we in-
troduce control tasks. These are also tasks, but, be-
ing control tasks, they ‘edit’ the collection of parallel
tasks. In this way, we can replace the predefined be-
haviour of task delegation and instead leave it to the
workflow engineer whether or not to use a predefined
control delegation-task or introduce a (number of) cus-
tom control task(s).

3. Because the number of both regular and control tasks
varies during the evaluation of a parallel group, we
need to share information about the state of the par-
allel group. Access to this state is restricted to control
tasks only, which is easily achieved using the strong
type system.

4. In the current parallel combinator, control is limited to
either early completion (computed by predOK) in which
case the final task result was computed by someDone or
full completion in which case the final result was com-
puted by allDone. In the more general case, we need
to decide how to continue whenever a regular or con-
trol task runs to completion. Again, this should not
be computed by the regular tasks. Instead, we need
a function that knows which task has completed, and
hence has a result value that needs to be accumulated
in the shared state. In addition, this function can de-
cide what should happen with the group of parallel
(control and regular) tasks: tasks can be suspended
and resumed, they can be removed, replaced, and new
(control and regular) tasks can be added to the group
of parallel tasks. It is clear that this functionality sub-
sumes the current behaviour of parallel, and adds be-
haviour that was inexpressible before.

5. The final part that should be abstracted from is the
arrangement, or layout, of the generated GUIs of the
(control and regular) tasks. In the current iTask sys-
tem a distinction is made between a parallel form for
tasks that can, in principle, each be delegated to other
workers and a parallel form for tasks which GUI should
be merged into one single presentation. In order to ab-
stract from this, it is better to parameterize the new
parallel combinator with a function that describes how
the component GUIs of (control and regular) tasks
should merged.

We are currently experimenting with a single parallel com-
binator that meets the above criteria. With this combinator
we hope to express all other task combinators as special
cases. This should aid the development of a formal frame-
work of the new iTask system. Note that, for efficiency rea-
sons, an actual implementation may need to resort to spe-
cialized implementations.

5. CONCLUSIONS
The original iTask system offers a lot of functionality on

a high level of abstraction liberating the programmer from
worrying about many implementation details. The concept
of an iTask task was a unit of work performed somewhere
which, when finished, yielded a value of a certain type which

is used to dynamically determine which other tasks to do
next. With a fixed but small and powerful set of combinators
complex work patterns can be captured.

In this paper we have argued that nevertheless more ex-
pressive power is needed. The purpose of the iTask library
is not only to provide a concise formalism for defining tasks,
but also to support the construction of WFMS’s. From an
iTask specification, an executable distributed web enabled
WFMS is generated. The library should therefore have as
little as possible predefined behaviour. In addition to the
tasks that need to be done one also wants to be able to de-
fine the view and control managers have on the work that is
going on. Furthermore, web browsers nowadays offer much
more functionality than a couple of years ago. Instead of
offering a simple form to be filled in, complete full-fledged
GUI applications can be run in a web browser.

Currently we are redefining and re-implementing the iTask
library. We had to change the tasks concept enabling a task
to share information with others while the work is going on.
In addition to regular tasks, special control tasks are added.
Tasks can become a complete GUI application, offering but-
tons, menus, dialogues and multiple windows. Clearly, the
iTask system is getting big.

At this stage we have not yet tested the new system with
non-toy examples, but we hypothesize that we can cap-
ture all current iTask combinators and the above mentioned
shortcomings with only two constructs: one very general
editor and one Swiss-Army-Knife combinator for creating
parallel tasks. These two should suffice to construct all other
combinators.

Acknowledgements
This research is supported by the Dutch Technology Foun-
dation STW, applied science division of NWO, and the Tech-
nology Program of the Ministry of Economic Affairs.

6. REFERENCES
[1] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski,

and A. Barros. Workflow patterns. Technical Report
FIT-TR-2002-02, Queensland University of Technology,
2002.

[2] A. Bohannon, B. C. Pierce, and J. A. Vaughan.
Relational lenses: a language for updatable views. In
PODS ’06: Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 338–347, New York, NY,
USA, 2006. ACM.

[3] G. Krasner and S. Pope. A cookbook for using the
model-view-controller user interface paradigm in
Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, Aug. 1988.

[4] S. Michels, R. Plasmeijer, and P. Achten. iTask as a
new paradigm for building GUI applications. In
J. Hage, editor, Proceedings of the 22th’10, Selected
Papers, 2011. Accepted for publication.

[5] R. Plasmeijer, P. Achten, and P. Koopman. iTasks:
executable specifications of interactive work flow
systems for the web. In R. Hinze and N. Ramsey,
editors, Proceedings of the International Conference on
Functional Programming, ICFP ’07, pages 141–152,
Freiburg, Germany, 2007. ACM Press.

[6] R. Plasmeijer, P. Achten, P. Koopman, B. Lijnse,
T. van Noort, and J. van Groningen. iTasks for a

change - Type-safe run-time change in dynamically
evolving workflows. In S.-C. Khoo and J. Siek, editors,
Proceedings of the Workshop on Partial Evaluation and
Program Manipulation, PEPM ’11, Austin, TX, USA.
ACM Press, 2011.

[7] P. Wadler. Comprehending monads. In Proceedings of
the Conference on Lisp and Functional Programming,
LFP ’90, Nice, France, pages 61–77, 1990.

