
Lambda Calculi with Types 7also Pavlovi�c (1990). For the semantics of the Curry systems see Hindley(1982), (1983) and Coppo (1985). A later volume of this handbook willcontain a chapter on the semantics of typed lambda calculi.Barendregt and Hemerik (1990) and Barendregt (1991) are introductoryversions of this chapter. Books including material on typed lambda calculusare Girard et al. (1989) (treats among other things semantics of the Churchversion of �2), Hindley and Seldin (1986) (Curry and Church versions of�!), Krivine (1990) (Curry versions of �2 and �\), Lambek and Scott(1986) (categorical semantics of �!) and the forthcoming Barendregt andDekkers (199-) and Nerode and Odifreddi (199-).Section 2 of this chapter is an introduction to type-free lambda-calculusand may be skipped if the reader is familiar with this subject. Section 3explains in more detail the Curry and Church approach to lambda calculiwith types. Section 4 is about the Curry systems and Section 5 is aboutthe Church systems. These two sections can be read independently of eachother.2 Type-free lambda calculusThe introduction of the type-free lambda calculus is necessary in order tode�ne the system of Curry type assignment on top of it. Moreover, al-though the Church style typed lambda calculi can be introduced directly,it is nevertheless useful to have some knowledge of the type-free lambdacalculus. Therefore this section is devoted to this theory. For more infor-mation see Hindley and Seldin [1986] or Barendregt [1984].2.1 The systemIn this chapter the type-free lambda calculus will be called `�-calculus' orsimply �. We start with an informal description.Application and abstractionThe �-calculus has two basic operations. The �rst one is application. Theexpression F:A(usually written as FA) denotes the data F considered as algorithm appliedto A considered as input. The theory � is type-free: it is allowed to considerexpressions like FF , that is, F applied to itself. This will be useful tosimulate recursion.The other basic operation is abstraction. If M �M [x] is an expressioncontaining (`depending on') x, then �x:M [x] denotes the intuitive map

8 H.P. Barendregtx 7!M [x];i.e. to x one assigns M [x]. The variable x does not need to occur actuallyin M . In that case �x:M [x] is a constant function with value M .Application and abstraction work together in the following intuitiveformula: (�x:x2 + 1)3 = 32 + 1 (= 10):That is, (�x:x2 + 1)3 denotes the function x 7! x2 + 1 applied to theargument 3 giving 32 + 1 (which is 10). In general we have(�x:M [x])N =M [N]:This last equation is preferably written as(�x:M)N =M [x := N]; (�)where [x := N] denotes substitution of N for x. This equation is called�-conversion. It is remarkable that although it is the only essential axiomof the �-calculus, the resulting theory is rather involved.Free and bound variablesAbstraction is said to bind the free variable x in M . For example, we saythat �x:yx has x as bound and y as free variable. Substitution [x := N] isonly performed in the free occurrences of x:yx(�x:x)[x := N] = yN (�x:x):In integral calculus there is a similar variable binding. In R ba f(x; y)dx thevariable x is bound and y is free. It does not make sense to substitute 7 forx, obtaining R ab f(7; y)d7; but substitution for y does make sense, obtainingR ab f(x; 7)dx.For reasons of hygiene it will always be assumed that the bound vari-ables that occur in a certain expression are di�erent from the free ones.This can be ful�lled by renaming bound variables. For example, �x:x be-comes �y:y. Indeed, these expressions act the same way:(�x:x)a = a = (�y:y)aand in fact they denote the same intended algorithm. Therefore expressionsthat di�er only in the names of bound variables are identi�ed. Equationslike �x:x � �y:y are usually called �-conversion.

Lambda Calculi with Types 9Functions of several argumentsFunctions of several arguments can be obtained by iteration of application.The idea is due to Sch�on�nkel (1924) but is often called `currying', afterH.B. Curry who introduced it independently. Intuitively, if f(x; y) dependson two arguments, one can de�neFx = �y:f(x; y)F = �x:Fx:Then (Fx)y = Fxy = f(x; y): (1)This last equation shows that it is convenient to use association to the leftfor iterated application:FM1 : : :Mn denotes (::((FM1)M2) : : :Mn):The equation (1) then becomesFxy = f(x; y):Dually, iterated abstraction uses association to the right:�x1 � � �xn:f(x1; : : : ; xn) denotes �x1:(�x2:(: : : (�xn:f(x1; : : : ; xn))::)):Then we have for F de�ned aboveF = �xy:f(x; y)and (1) becomes (�xy:f(x; y))xy = f(x; y):For n arguments we have(�x1 : : :xn:f(x1; : : : ; xn))x1 : : :xn = f(x1; : : : ; xn);by using (�) n times. This last equation becomes in convenient vectornotation (�~x:f(~x))~x = f(~x);more generally one has (�~x:f(~x)) ~N = f(~N):Now we give the formal description of the �-calculus.

10 H.P. BarendregtDe�nition 2.1.1. The set of �-terms, notation �, is built up from anin�nite set of variables V = fv; v0; v00; : : :g using application and (function)abstraction: x 2 V) x 2 �;M;N 2 �) (MN) 2 �;M 2 �; x2 V) (�xM) 2 �:Using abstract syntax one may write the following.V ::= v j V 0� ::= V j (��) j (�V �)Example 2.1.2. The following are �-terms:v;(vv00);(�v(vv00));((�v(vv00))v0);((�v0((�v(vv00))v0))v000):Convention 2.1.3.1. x; y; z; : : : denote arbitrary variables;M;N;L; : : : denote arbitrary �-terms.2. As already mentioned informally, the followingabbreviations are used:FM1 : : :Mn stands for (::((FM1)M2) : : :Mn)and �x1 � � �xn:M stands for (�x1(�x2(: : : (�xn(M))::))):3. Outermost parentheses are not written.Using this convention, the examples in 2.1.2 now may be written as follows:x;xz;�x:xz;(�x:xz)y;(�y:(�x:xz)y)w:Note that �x:yx is (�x(yx)) and not ((�xy)x).

Lambda Calculi with Types 11Notation 2.1.4. M � N denotes thatM and N are the same term or canbe obtained from each other by renaming bound variables. For example,(�x:x)z � (�x:x)z;(�x:x)z � (�y:y)z;(�x:x)z 6� (�x:y)z:De�nition 2.1.5.1. The set of free variables of M , (notation FV (M)), is de�ned induc-tively as follows: FV (x) = fxg;FV (MN) = FV (M) [FV (N);FV (�x:M) = FV (M)� fxg:2. M is a closed �-term (or combinator) if FV (M) = ;. The set ofclosed �-terms is denoted by �0.3. The result of substitution of N for (the free occurrences of) x in M ,notation M [x := N], is de�ned as follows: Below x 6� y.x[x := N] � N ;y[x := N] � y;(PQ)[x := N] � (P [x := N])(Q[x := N]);(�y:P)[x := N] � �y:(P [x := N]); provided y 6� x;(�x:P)[x := N] � (�x:P):In the �-term y(�xy:xyz)y and z occur as free variables; x and y occur as bound variables. Theterm �xy:xxy is closed.Names of bound variables will be always chosen such that they di�erfrom the free ones in a term. So one writes y(�xy0 :xy0z) for y(�xy:xyz).This so-called `variable convention' makes it possible to use substitutionfor the �-calculus without a proviso on free and bound variables.Proposition 2.1.6 (Substitution lemma). Let M;N;L 2 �. Supposex 6� y and x =2 FV (L). ThenM [x := N][y := L] �M [y := L][x := N [y := L]]:Proof. By induction on the structure of M .Now we introduce the �-calculus as a formal theory of equations between�-terms.

12 H.P. BarendregtDe�nition 2.1.7.1. The principal axiom scheme of the �-calculus is(�x:M)N =M [x := N] (�)for allM;N 2 �. This is called �-conversion.2. There are also the `logical' axioms and rules:M =M ;M = N) N =M ;M = N;N = L) M = L;M =M 0) MZ =M 0Z;M =M 0) ZM = ZM 0;M =M 0) �x:M = �x:M 0: (�)3. If M = N is provable in the �-calculus, then we write � `M = N orsometimes just M = N .Remarks 2.1.8.1. We have identi�ed terms that di�er only in the names of bound vari-ables. An alternative is to add to the �-calculus the following axiomscheme of �-conversion.�x:M = �y:M [x := y]; (�)provided that y does not occur in M . The axiom (�) above wasoriginally the second axiom; hence its name. We prefer our version ofthe theory in which the identi�cations are made on a syntactic level.These identi�cations are done in our mind and not on paper.2. Even if initially terms are written according to the variable conven-tion, �-conversion (or its alternative) is necessary when rewritingterms. Consider e.g. ! � �x:xx and 1 � �yz:yz. Then!1 � (�x:xx)(�yz:yz)= (�yz:yz)(�yz:yz)= �z:(�yz:yz)z� �z:(�yz0:yz0)z

Lambda Calculi with Types 13= �zz0:zz0� �yz:yz� 1:3. For implementations of the �-calculus the machine has to deal withthis so called �-conversion. A good way of doing this is provided bythe `name-free notation' of N.G. de Bruijn, see Barendregt (1984),Appendix C. In this notation �x(�y:xy) is denoted by �(�21), the 2denoting a variable bound `two lambdas above'.The following result provides one way to represent recursion in the �-calculus.Theorem 2.1.9 (Fixed point theorem).1. 8F9XFX = X:(This means that for allF2� there is anX2� such that � ` FX = X:)2. There is a �xed point combinatorY � �f:(�x:f(xx))(�x:f(xx))such that 8F F (YF) = YF:Proof. 1. De�ne W � �x:F (xx) and X � WW . ThenX � WW � (�x:F (xx))W = F (WW) � FX:2. By the proof of (1). Note thatYF = (�x:F (xx))(�x:F (xx))� X:Corollary 2.1.10. Given a term C � C[f; x] possibly containing the dis-played free variables, then9F8X FX = C[F;X]:Here C[F;X] is of course the substitution result C[f := F][x := X]:Proof. Indeed, we can construct F by supposing it has the required prop-erty and calculating back:8X FX = C[F;X](Fx = C[F; x](F = �x:C[F; x](F = (�fx:C[f; x])F(F � Y(�fx:C[f; x]):This also holds for more arguments: 9F8~x F~x = C[F;~x]:

14 H.P. BarendregtAs an application, terms F and G can be constructed such that for allterms X and Y FX = XF;GXY = Y G(Y XG):2.2 Lambda de�nabilityIn the lambda calculus one can de�ne numerals and represent numericfunctions on them.De�nition 2.2.1.1. Fn(M) with n 2 N (the set of natural numbers) and F;M 2 �, isde�ned inductively as follows:F 0(M) � M ;Fn+1(M) � F (Fn(M)):2. The Church numerals c0; c1; c2; : : : are de�ned bycn � �fx:fn(x):Proposition 2.2.2 (J. B. Rosser). De�neA+ � �xypq:xp(ypq);A� � �xyz:x(yz);Aexp � �xy:yx:Then one has for all n;m 2N1. A+cncm = cn+m:2. A�cncm = cn:m:3. Aexpcncm = c(nm); except for m = 0 (Rosser starts at 1).Proof. We need the following lemma.

14 H.P. BarendregtAs an application, terms F and G can be constructed such that for allterms X and Y FX = XF;GXY = Y G(Y XG):2.2 Lambda de�nabilityIn the lambda calculus one can de�ne numerals and represent numericfunctions on them.De�nition 2.2.1.1. Fn(M) with n 2 N (the set of natural numbers) and F;M 2 �, isde�ned inductively as follows:F 0(M) � M ;Fn+1(M) � F (Fn(M)):2. The Church numerals c0; c1; c2; : : : are de�ned bycn � �fx:fn(x):Proposition 2.2.2 (J. B. Rosser). De�neA+ � �xypq:xp(ypq);A� � �xyz:x(yz);Aexp � �xy:yx:Then one has for all n;m 2N1. A+cncm = cn+m:2. A�cncm = cn:m:3. Aexpcncm = c(nm); except for m = 0 (Rosser starts at 1).Proof. We need the following lemma.

Lambda Calculi with Types 15Lemma 2.2.3.1. (cnx)m(y) = xn�m(y);2. (cn)m(x) = c(nm)(x); for m > 0.Proof. 1. By induction on m. If m = 0, then LHS = y = RHS. Assume(1) is correct for m (Induction Hypothesis: IH). Then(cnx)m+1(y) = cnx((cnx)m(y))=IH cnx(xn�m(y))= xn(xn�m(y))� xn+n�m(y)� xn�(m+1)(y):2. By induction on m > 0. If m = 1, then LHS � cnx � RHS. If (2) iscorrect for m, thencm+1n (x) = cn(cmn (x))=IH cn(c(nm)(x))= �y:(c(nm)(x))n(y)=(1) �y:xnm�n(y)= c(nm+1)x:Now the proof of the proposition.1. By induction on m.2. Use the lemma (1).3. By the lemma (2) we have for m > 0Aexpcncm = cmcn = �x:cnm(x) = �x:c(nm)x = c(nm);since �x:Mx =M if M = �y:M 0[y] and x =2 FV (M). Indeed,�x:Mx = �x:(�y:M 0[y])x= �x:M 0[x]� �y:M 0[y]= M:We have seen that the functions plus, times and exponentiation on Ncan be represented in the �-calculus using Church's numerals. We will showthat all computable (recursive) functions can be represented.

16 H.P. BarendregtBoolean truth values and a conditional can be represented in the �-calculus.De�nition 2.2.4 (Booleans, conditional).1. true � �xy:x; false � �xy:y:2. If B is a Boolean, i.e. a term that is either true, or false, thenif B then P else Qcan be represented by BPQ. Indeed, truePQ = P and falsePQ =Q.De�nition 2.2.5 (Pairing). For M;N 2 � write[M;N] � �z:zMN:Then [M;N] true=M[M;N] false= Nand hence [M;N] can serve as an ordered pair.De�nition 2.2.6.1. A numeric function is a map f : Np!N for some p.2. A numeric function f with p arguments is called �-de�nable if onehas for some combinator FFcn1 : : :cnp = cf(n1;:::;np) (1)for all n1; : : : ; np 2 N. If (1) holds, then f is said to be �-de�ned byF .De�nition 2.2.7.1. The initial functions are the numeric functions U ir ; S+; Z de�ned by:U ir(x1; : : : ; xr) = xi; 1 � i � r;S+(n) = n + 1;Z(n) = 0:2. Let P (n) be a numeric relation. As usual�m:P (m)denotes the least number m such that P (m) holds if there is such anumber; otherwise it is unde�ned.As we know from Chapter 2 in this handbook, the class R of recur-sive functions is the smallest class of numeric functions that contains all

Lambda Calculi with Types 17initial functions and is closed under composition, primitive recursion andminimalization. So R is an inductively de�ned class. The proof that all re-cursive functions are �-de�nable is by a corresponding induction argument.The result is originally due to Kleene (1936).Lemma 2.2.8. The initial functions are �-de�nable.Proof. Take as de�ning termsUip � �x1 � � �xp:xi;S+ � �xyz:y(xyz) (= A+c1);Z � �x:c0:Lemma 2.2.9. The �-de�nable functions are closed under composition.Proof. Let g; h1; : : : ; hm be �-de�ned byG;H1; : : : ;Hm respectively. Thenf(~n) = g(h1(~n); : : : ; hm(~n))is �-de�ned by F � �~x:G(H1~x) : : : (Hm~x):Lemma 2.2.10. The �-de�nable functions are closed under primitive re-cursion.Proof. Let f be de�ned byf(0; ~n) = g(~n)f(k + 1; ~n) = h(f(k; ~n); k; ~n)where g; h are �-de�ned by G;H respectively. We have to show that f is �-de�nable. For notational simplicity we assume that there are no parameters~n (hence G = cf(0).) The proof for general ~n is similar.If k is not an argument of h, then we have the scheme of iteration.Iteration can be represented easily in the �-calculus, because the Churchnumerals are iterators. The construction of the representation of f is done

18 H.P. Barendregtin two steps. First primitive recursion is reduced to iteration using orderedpairs; then iteration is represented. Here are the details. ConsiderT � �p:[S+(ptrue);H(pfalse)(ptrue)]:Then for all k one hasT ([ck; cf(k)]) = [fS+ck;Hcf(k)ck]= [ck+1; cf(k+1)]:By induction on k it follows that[ck; cf(k)] = T k[c0; cf(0)]:Therefore cf(k) = ckT [c0; cf(0)] false;and f can be �-de�ned byF � �k:kT [c0; G] false:Lemma 2.2.11. The �-de�nable functions are closed under minimaliza-tion.Proof. Let f be de�ned by f(~n) = �m[g(~n;m) = 0], where ~n = n1; : : : ; nkand g is �-de�ned by G. We have to show that f is �-de�nable. De�nezero � �n:n(true false)true:Then zero c0 = true,zero cn+1 = false.By Corollary 2.1.10 there is a term H such thatH~ny = if (zero(G~ny)) then y else H~n(S+y):Set F = �~n:H~xc0. Then F �-de�nes f :Fc~x = Hc~nc0= c0; if Gc~nc0 = c0;= Hc~nc1 else;= c1; if Gc~nc1 = c0;= Hc~nc2 else;= c2; if : : := : : :Here c~n stands for cn1 : : :cnk:Theorem 2.2.12. All recursive functions are �-de�nable.

Lambda Calculi with Types 19Proof. By 2.2.8-2.2.11.The converse also holds. The idea is that if a function is �-de�nable,then its graph is recursively enumerable because equations derivable in the�-calculus can be enumerated. It then follows that the function is recur-sive. So for numeric functions we have f is recursive i� f is �-de�nable.Moreover also for partial functions a notion of �-de�nability exists and onehas is partial recursive i� is �-de�nable. The notions �-de�nable andrecursive both are intended to be formalizations of the intuitive concept ofcomputability. Another formalization was proposed by Turing in the formof Turing computable. The equivalence of the notions recursive, �-de�nableand Turing computable (for the latter see besides the original Turing, 1937,e.g., Davis 1958) Davis provides some evidence for the Church{Turing the-sis that states that `recursive' is the proper formalization of the intuitivenotion `computable'.We end this subsection with some undecidability results. First weneed the coding of �-terms. Remember that the collection of variablesis fv; v0; v00; : : :g.De�nition 2.2.13.1. Notation. v(0) = v; v(n+1) = v(n)0.2. Let h ; i be a recursive coding of pairs of natural numbers as a naturalnumber. De�ne](v(n)) = h0; ni;](MN) = h2; h](M);](N)ii;](�x:M) = h3; h](x);](M)ii:3. Notation pMq = c]M :De�nition 2.2.14. Let A � �.1. A is closed under = ifM 2A; � `M = N) N 2A:2. A is non-trivial if A 6= ; and A 6= �:3. A is recursive if]A = f]M jM 2Ag is recursive.The following result due to Scott is quite useful for proving undecidabilityresults.

20 H.P. BarendregtTheorem 2.2.15. Let A � � be non-trivial and closed under =. Then Ais not recursive.Proof. (J. Terlouw) De�neB = fM jMpMq 2Ag:Suppose A is recursive; then by the e�ectiveness of the coding also B isrecursive (indeed, n 2]B , h2; hn;]cnii 2]A). It follows that there is anF 2 �0 with M 2 B , FpMq = c0;M =2 B , FpMq = c1:Let M0 2A;M1 =2A. We can �nd a G 2� such thatM 2 B , GpMq =M1 =2A;M =2 B , GpMq =M0 2A:[Take Gx = if zero(Fx) thenM1 elseM0, with zero de�ned in the proofof 2.2.11.] In particularG 2 B , GpGq =2A ,Def G =2 B;G =2 B , GpGq2A ,Def G 2 B;a contradiction.The following application shows that the lambda calculus is not a de-cidable theory.Corollary 2.2.16 (Church). The setfM jM = truegis not recursive.Proof. Note that the set is closed under = and is nontrivial.2.3 ReductionThere is a certain asymmetry in the basic scheme (�). The statement(�x:x2 + 1)3 = 10can be interpreted as `10 is the result of computing (�x:x2 + 1)3', but notvice versa. This computational aspect will be expressed by writing(�x:x2 + 1)3 !! 10which reads `(�x:x2 + 1)3 reduces to 10'.

5. Self-reflection

We present the following fact with a proof depending on another fact.

5.1. Fact. Let x, y be to distinct variables (e.g. x, x′ or x′′, x′′′). Then

x 6=λ y.

Proof. Use Fact 4.17. If x =l y, then x has two normal forms: itself and y.

5.2. Application. K 6=λ I.

Proof. Suppose K = I. Then

x = Kxy

= I Kxy

= K Ixy

= Iy

= y,

a contradiction.

5.3. Application. There is no term P1 such that P1(xy) =λ x.

Proof. If P1 would exist, then as Kxy = x = Ix one has

Kx = P1((Kx)y) = P1(Ix) = I.

Therefore we obtain the contradiction

x = Kxy = Iy = y.

In a sense this is a pity. The agents, that lambda terms are, cannot separate
two of them that are together. When we go over to codes of lambda terms the
situation changes. The situation is similar for proteins that cannot always cut
into parts another protein, but are able to have this effect on the code of the
proteins, the DNA.

Data types

Before we enter the topic of coding of lambda terms, it is good to have a look
at some datatypes.

Context-free languages can be considered as algebraic data types. Consider
for example

S → 0
S → S+

This generates the language

Nat = {0, 0+, 0++, 0+++, . . .}

37

that is a good way to represent the natural numbers

0, 1, 2, 3, . . .

Another example generates binary trees.

S → ♠
S → •SS

generating the language that we call Tree. It is not necessary to use parentheses.
For example the words

•♠ • ♠♠
• • ♠♠♠
• • ♠♠ • ♠♠

are in Tree. With parentrheses and commas these expressions become more
readable for humans, but these auxiliary signs are not necessary:

•(♠, •(♠,♠))
•(•(♠,♠),♠)
•(•(♠,♠), •(♠,♠))

These expressions have as ‘parse trees’ respectively the following:

•

||
||
||
||

AA
AA

AA
AA

♠ •

~~
~~
~~
~~

AA
AA

AA
AA

♠ ♠

•

}}
}}
}}
}}

DD
DD

DD
DD

•

~~
~~
~~
~~

@@
@@

@@
@@

♠

♠ ♠

•

ww
ww
ww
ww
ww
ww

FF
FF

FF
FF

FF
FF

•

®®
®®
®®
®®

44
44

44
44

•

®®
®®
®®
®®

44
44

44
44

♠ ♠ ♠ ♠
One way to represent as lambda terms such data types is as follows.

5.4. Definition. (Böhm and Berarducci)
(i) An element of Nat, like 0++ will be represented first like

s(sz)

and then like
λsz.s(sz).

If n is in Nat we write n for this lambda term. So 2 ≡ λsz.s(sz),
3 ≡ λsz.s(s(sz)). Note that n ≡ λsz.snz ≡ Cn.

38

(ii) An element of Tree, like •♠ • ♠♠ will be represented first by

bs(bss)

and then by
λbs.bs(bss).

This lambda term is denoted by •♠ • ♠♠ , in this case. In general a tree t in
Tree will be represented as lambda term t .

Now it becomes possible to compute with trees. For example making the
mirror image is performed by the term

Fmirror ≡ λtbs.t(λpq.bqp)s.

The operation of enting one tree at the endpoints of another tree is performed
by

Fenting ≡ λt1t2bs.t1b(t2bs).

The attentive reader is advised to make exercises 5.4 and 5.5.

Tuples and projections

For the efficient coding of lambda terms as lambda terms a different represen-
tation of datatypes is needed. First we find a way to connect terms together in
such a way, that the components can be retrieved easily.

5.5. Definition. Let ~M ≡ M1, . . . , Mn be a sequence of lambda terms. Define

〈M1, . . . , Mn〉 ≡ λz.zM1, . . . , Mn.

Here the variable z should not be in any of the M ’s. Define

Un
i ≡ λx1, . . . , xn.xi.

5.6. Proposition. For all natural numbers i, n with 1 ≤ i ≤ n, one has

〈M1, . . . , Mn〉Un
i = Mi.

5.7. Corollary. Define P n
i ≡ λz.zUn

i . Then P n
i 〈M1, . . . , Mn〉 = Mi.

Now we introduce a new kind of binary trees. At the endpoints there is not a
symbol ♠ but a variable x made into a leaf Lx. Moreover, any such tree may
get ornamented with a !. Such binary trees we call labelled trees or simply
ltrees.

5.8. Definition. The data type of ltrees is defined by the following context-free
grammar. The start symbol is ltree.

ltree → L var

ltree → P ltree ltree

ltree → ! ltree
var → x
var → var′

39

A typical ltree is !P !Lx!!P !LxLy or more readably !P (!Lx, !!P (!Lx, Ly)). It can
be representated as a tree as follows.

!P

yy
yy
yy
yy

EE
EE

EE
EE

!Lx !!P

zz
zz
zz
zz

CC
CC

CC
CC

!Lx Ly

We say that for ltree there are three constructors. A binary constructor P that
puts two trees together, and two unary constructors L and !. L makes from a
variable an ltree and ! makes from an ltree another one.

Now we are going to represent these expressions as lambda terms.

5.9. Definition. (Böhm, Piperno and Guerrini)
(i) We define three lambda terms FL, FP , F! to be used for the representation
of ltree.

FL ≡ λxe.eU3
1 xe;

FP ≡ λxye.eU3
2 xye;

F! ≡ λxe.eU3
3 xe.

These definitions are a bit more easy to understand if written according to their
intended use (do exercise 5.7).

FLx = λe.eU3
1 xe;

FP xy = λe.eU3
2 xye;

F!x = λe.eU3
3 xe.

(ii) For an element t of ltree we define the representing lambda term t .

Lx = FLx;

Pt1t2 = FP t1 t2 ;

!t = F! t .

Actually this is just a mnemonic. We want that the representations are normal
forms, do not compute any longer.

Lx ≡ λe.eU3
1 xe;

Pt1t2 ≡ λe.eU3
2 t1 t2 e;

!t ≡ λe.eU3
3 t e.

The representation of the data was chosen in such a way that computable
function on them can be easily represented. The following result states that
there exist functions on the represented labelled trees such that their action on
a composed tree depend on the components and that function in a given way.

40

5.10. Proposition. Let A1, A2, A3 be given lambda terms. Then there exists a
lambda term H such that11.

H(FLx) = A1xH

H(FP xy) = A2xyH

H(F!x) = A3xH

Proof. We try H ≡ 〈〈B1, B2, B3〉〉 where the ~B are to be determined.

H(FLx) = 〈〈B1, B2, B3〉〉(FLx)

= FLx〈B1, B2, B3〉
= 〈B1, B2, B3〉U3

1 x〈B1, B2, B3〉
= U3

1 B1, B2, B3x〈B1, B2, B3〉
= B1x〈B1, B2, B3〉
= A1xH,

provided that B1 ≡ λxb.A1x〈b〉. Similarly

H(FP xy) = B2xy〈B1, B2, B3〉
= A2xyH,

provided that B2 ≡ λxyb.A2xy〈b〉. Finally,

H(F!x) = B3x〈B1, B2, B3〉
= A3xH,

provided that B3 ≡ λxb.A3x〈b〉.

Stil we have as goal to represent lambda terms as lambda terms in nf, such
that decoding is possible by a fixed lambda term. Moreover, finding the code of
the components of a term M should be possible from the code of M , again using
a lambda term. To this end the (represented) constructors of ltree, FL, FP , F!,
will be used.

5.11. Definition. (Mogensen) Define for a lambda term M its code M as
follows.

x ≡ λe.eU3
1 xe = FLx;

MN ≡ λe.eU3
2 M N e = FP M N ;

λx.M ≡ λe.eU3
3 (λx. M)e = F!(λx. M).

11A weaker requirement is the following, where H of a composed ltree depends on H of the
components in a given way:

H(FLx) = A1x(Hx)

H(FP xy) = A2xy(Hx)(Hy)

H(F!x) = A3x(Hx)

This is called primitive recursion, whereas the proposition provides (general) recursion.

41

The trick here is to code the lambda with lambda itself, one may speak of
an inner model of the lambda calculus in itself. Putting the ideas of Mogensen
[1992] and Böhm et al. [1994] together, as done by Berarducci and Böhm [1993],
one obtains a very smooth way to create the mechanism of reflection the lambda
calculus. The result was already proved in Kleene [1936]12.

5.12. Theorem. There is a lambda term E (evaluator or self-interpreter) such
that

E x = x;

E MN = E M (E N);

E λx.M = λx.(E M).

It follows that for all lambda terms M one has

E M = M.

Proof. By Proposition 5.10 for arbitary A1, . . . , A3 there exists an E such that

E(FLx) = A1xE;

E(FP mn) = A2mnE;

E(F!p) = A3pE.

If we take A1 ≡ K, A2 ≡ λabc.ca(cb) and A3 ≡ λabc.b(ac), then this becomes

E(FLx) = x;

E(FP mn) = Em(En);

E(F!p) = λx.(E(px)).

But then (do exercise 5.9)

E(x) = x;

E(MN) = E M (E N);

E(λx.M) = λx.(E(M)).

That E is a self-interpreter, i.e. E M = M , now follows by induction on M .

5.13. Corollary. The term 〈〈K, S, C〉〉 is a self-interpreter for the lambda cal-
culus with the coding defined in Definition 5.11.

Proof. E ≡ 〈〈B1, B2, B3〉〉 with the ~B coming from the A1 ≡ K, A2 ≡
λabc.ca(cb) and A3 ≡ λabc.b(ac). Looking at the proof of 5.10 one sees

B1 = λxz.A1x〈z〉
= λxz.x

= K;

12But only valid for lambda terms M without free variables.

42

B2 = λxyz.A2xy〈z〉
= λxyz.〈z〉x(〈z〉y)

= λxyz.xz(yz)

= S;

B3 = λxz.A3x〈z〉
= λxz.(λabc.b(ac))x〈z〉
= λxz.(λc.xcz)

≡ λxzc.xcz

≡ λxyz.xzy

≡ C, see exercise 4.6.

Hence E = 〈〈K, S, C〉〉.

This term
E = 〈〈K, S, C〉〉

is truly a tribute to

Kleene, Stephen Cole

(1909-1994)

(using the family-name-first convention familiar from scholastic institutions)
who invented in 1936 the first self-interpreter for the lambda calculus13.

The idea of a language that can talk about itself has been heavily used with
higher programming languages. The way to translate (‘compile’) these into ma-
chine languages is optimized by writing the compiler in the language itself (and
run it the first time by an older ad hoc compiler). This possibility of efficiently
executed higher programming languages was first put into doubt, but was re-
alized by mentioned reflection since the early 1950-s and other optimalizations.
The box of Pandora of the world of IT was opened.

The fact that such extremely simple (compared to a protein like titin with
slightly less than 27000 aminoacids) self interpreter is possible gives hope to
understand the full mechanism of cell biology and evolution. In Buss and
Fontana [1994] evolution is modelled using lambda terms.

Exercises

5.1. Show that

K 6=λ S;

I 6=λ S.
.

13Kleene’s construction was much more involved. In order to deal with the ‘binding effect’
of λx lambda terms where first translated into CLbefore the final code was obtained. This
causes some technicalities that make the original E more complex.

43

5.2. Show that there is no term P2 such that P2(xy) =λ y.

5.3. Construct all elements of Tree with exactly four ♠s in them.

5.4. Show that

Fmirror •♠ • ♠♠ = • • ♠♠♠ ;

Fmirror • • ♠♠♠ = •♠ • ♠♠ ;

Fmirror • • ♠♠ • ♠♠ = • • ♠♠ • ♠♠ .

5.5. Compute Fenting •♠ • ♠♠ • • ♠♠♠ .

5.6. Define terms P n
i such that for 1 ≤ i ≤ n one has

Pn
i 〈M1, . . . , Mn〉 = Mi.

5.7. Show that the second set of three equations in definition 5.9 follows from
the first set.

5.8. Show that given terms A1, A2, A3 there exists a term H such that the
scheme of primitive recurion, see footnote 5.10 is valid.

5.9. Show the last three equations in the proof of Theorem 5.12.

5.10. Construct lambda terms P1 and P2 such that for all terms M, N

P1 MN = M & P2 MN = N.

44

References

Alberts, B. et al. [1997]. The Cell, Garland.

Barendregt, H. P. [1984]. The Lambda Calculus, its Syntax and Semantics,
Studies in Logic and the Foundations of Mathematics 103, revised edition,
North-Holland Publishing Co., Amsterdam.

Barendregt, H. P. [1997]. The impact of the lambda calculus in logic and
computer science, Bull. Symbolic Logic 3(2), pp. 181–215.

Berarducci, Alessandro and Corrado Böhm [1993]. A self-interpreter of lambda
calculus having a normal form, Computer science logic (San Miniato,
1992), Lecture Notes in Comput. Sci. 702, Springer, Berlin, pp. 85–99.

Blackmore, S. [2004]. Consciousness, an Introduction, Oxford University Press,
Oxford.

Böhm, Corrado, Adolfo Piperno and Stefano Guerrini [1994]. λ-definition
of function(al)s by normal forms, Programming languages and systems—
ESOP ’94 (Edinburgh, 1994), Lecture Notes in Comput. Sci. 788, Springer,
Berlin, pp. 135–149.

Buss, L.W. and W. Fontana [1994]. ‘the arrival of the fittest’: Toward a theory
of biological organization, Bulletin of Mathematical Biology 56(1), pp. 1–
64.

Chalmers, D. [1996]. The Conscious Mind, Towards a Fundamental Theory,
Oxford University Press, Oxford.

Chomsky, N. [1956]. Three models of the description of language, IRE Trans-
actions on Information Theory 2(3), pp. 113–124.

Church, A. [1932]. A set of postulates for the foundation of logic, Annals of
Mathematics, second series 33, pp. 346–366.

Church, A. [1936]. An unsolvable problem of elementary number theory, Amer-
ican Journal of Mathematics 58, pp. 345–363.

Curry, H. B. [1930]. Grundlagen der kombinatorischen Logic,, American Jour-
nal of Mathematics 52, pp. 509–536, 789–834.

Dennet, D. [1993]. Consciousness Explained, Penguin Books.

Goldstein, J. [1983]. The Experience of Insight, Shambhala.

Hofstadter, D. [1979]. Gödel Escher Bach, An Eternal Golden Braid, Harvester
Press.

Howe, D. [1992]. Reflecting the semantics of reflected proof, Proof Theory, ed.
P. Aczel, Cambridge University Press, pp. 229–250.

45

Kleene, S. C. [1936]. Lambda-definability and recursiveness, Duke Mathematical
Journal 2, pp. 340–353.

Kozen, Dexter C. [1997]. Automata and computability, Undergraduate Texts in
Computer Science, Springer-Verlag, New York.

Menninger, K., M. Mayman and P. Pruyser [1963]. The Vital Balance. The
Life Process in Mental Health and Illness, Viking.

Mogensen, Torben Æ. [1992]. Efficient self-interpretation in lambda calculus,
J. Funct. Programming 2(3), pp. 345–363.

Peitsch, M.C., D.R. Stampf, T.N.C. Wells and J.L. Sussman [1995]. The swiss-
3dimage collection and pdb-browser on the world-wide web, Trends in
Biochemical Sciences 20, pp. 82–84. URL: <www.expasy.org>.

Schönfinkel, M. [1924]. Über die Bausteine der mathematischen Logik, Mathe-
matische Annalen 92, pp. 305–316.

Smullyan, R. [1992]. Gödel’s Incompleteness Theorems, Oxford University
Press.

Stapp, H. [1996]. The hard problem: A quantum approach, Journal of Con-
sciousness Studies 3(3), pp. 194–210.

Tarski, A. [1933/1995]. Introduction to Logic, Dover.

Turing, A.M. [1936]. On Computable Numbers, with an Application to the
Entscheidungsproblem, Proceedings of the London Mathematical Society,
Series 2 42, pp. 230–265.

Yates, M. [1998]. What computers can’t do, Plus 5.
URL: <plus.maths.org/issue5/index.html>.

46

<plus.maths.org/issue5/index.html>

Chapter 4

Reduction

There is a certain asymmetry in the basic scheme (β). The statement

(λx.x2 + 1)3 = 10

can be interpreted as ‘10 is the result of computing (λx.x2 + 1)3’, but not vice
versa. This computational aspect will be expressed by writing

(λx.x2 + 1)3 →→ 10

which reads ‘(λx.x2 + 1)3 reduces to 10’.

Apart from this conceptual aspect, reduction is also useful for an analysis
of convertibility. The Church-Rosser theorem says that if two terms are con-
vertible, then there is a term to which they both reduce. In many cases the
inconvertibility of two terms can be proved by showing that they do not reduce
to a common term.

4.1. Definition. (i) A binary relation R on Λ is called compatible (with the
operations) if

M R N ⇒ (ZM) R (ZN),

(MZ) R (NZ) and

(λx.M) R (λx.N).

(ii) A congruence relation on Λ is a compatible equivalence relation.

(iii) A reduction relation on Λ is a compatible, reflexive and transitive rela-
tion.

4.2. Definition. The binary relations →β, →→β and =β on Λ are defined in-
ductively as follows.

(i) 1. (λx.M)N →β M [x := N];
2. M →β N ⇒ ZM →β ZN , MZ →β NZ and λx.M →β λx.N .

(ii) 1. M →→β M ;
2. M →β N ⇒ M →→β N ;
3. M →→β N,N →→β L ⇒ M →→β L.

23

24 Introduction to Lambda Calculus

(iii) 1. M →→β N ⇒ M =β N ;
2. M =β N ⇒ N =β M ;
3. M =β N,N =β L ⇒ M =βL.

These relations are pronounced as follows.

M →→β N : Mβ-reduces to N ;

M →β N : Mβ-reduces to N in one step;

M =β N : M is β-convertible to N.

By definition →β is compatible, →→β is a reduction relation and =β is a con-
gruence relation.

4.3. Example. (i) Define

ω ≡ λx.xx,

Ω ≡ ωω.

Then Ω →β Ω.
(ii) KIΩ →→β I.

Intuitively, M =β N if M is connected to N via →β-arrows (disregarding
the directions of these). In a picture this looks as follows.

M
•

@
@R 	�

� @
@R

• • • •
N

@
@R 	�

� @
@R 	�

� @
@R 	�

�
• • • •

@
@R 	�

�
•

4.4. Example. KIΩ =β II. This is demonstrated by the following reductions.

KIΩ

@
@R
(λy.I)Ω II

@
@R 	�

�

I

4.5. Proposition. M =β N ⇔ λ `M = N .

Proof. By an easy induction. �

4.6. Definition. (i) A β-redex is a term of the form (λx.M)N . In this case
M [x := N] is its contractum.

(ii) A λ-term M is a β-normal form (β-nf) if it does not have a β-redex as
subexpression.

(iii) A term M has a β-normal form if M =β N and N is a β-nf, for some
N .

Reduction 25

4.7. Example. (λx.xx)y is not a β-nf, but has as β-nf the term yy.

An immediate property of nf’s is the following.

4.8. Lemma. Let M be a β-nf. Then

M →→β N ⇒ N ≡M.

Proof. This is true if →→β is replaced by →β. Then the result follows by
transitivity. �

4.9. Church-Rosser Theorem. If M →→β N1, M →→β N2, then for some N3

one has N1 →→β N3 and N2 →→β N3; in diagram

M

		���
��

� @@@
@@@RR

N1 N2..............RR 		..
..
..
..
..
..
..

N3

The proof is postponed until 4.19.

4.10. Corollary. If M =β N , then there is an L such that M →→β L and
N →→β L.

An intuitive proof of this fact proceeds by a tiling procedure: given an arrow
path showing M =β N , apply the Church-Rosser property repeatedly in order
to find a common reduct. For the example given above this looks as follows.

M
•

@
@R 	�

� @
@R

• • • •
N

@
@R 	�

� @
@R 	�

� @
@R 	�

�

• • • •..............RR

@
@R 	�

�

		..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

•

		...
...

•

..............RR
•

This is made precise below.

26 Introduction to Lambda Calculus

Proof. Induction on the generation of =β.
Case 1. M =β N because M →→β N . Take L ≡ N .
Case 2. M =β N because N =β M . By the IH there is a common β-reduct

L1 of N , M . Take L ≡ L1.
Case 3. M =β N because M =β N

′, N ′ =β N . Then

M
(IH)

N ′

(IH)
N

@@
@@RR 		��

�� @@
@@RR 		��

��

L1 (CR) L2..........RR 		..
..
..
..
..

L �

4.11. Corollary. (i) If M has N as β-nf, then M →→β N .
(ii) A λ-term has at most one β-nf.

Proof. (i) Suppose M =β N with N in β-nf. By Corollary 4.10 M →→β L
and N →→β L for some L. But then N ≡ L, by Lemma 4.8, so M →→β N .

(ii) Suppose M has β-nf’s N1, N2. Then N1 =β N2 (=β M). By Corollary
4.10 N1 →→β L, N2 →→β L for some L. But then N1 ≡ L ≡ N2 by Lemma
4.8. �

4.12. Some consequences. (i) The λ-calculus is consistent, i.e. λ 6` true =
false. Otherwise true =β false by Proposition 4.5, which is impossible by
Corollary 4.11 since true and false are distinct β-nf’s. This is a syntactic
consistency proof.

(ii) Ω has no β-nf. Otherwise Ω →→β N with N in β-nf. But Ω only reduces
to itself and is not in β-nf.

(iii) In order to find the β-nf of a term M (if it exists), the various subex-
pressions of M may be reduced in different orders. By Corollary 4.11 (ii) the
β-nf is unique.

The proof of the Church-Rosser theorem occupies 4.13–4.19. The idea of
the proof is as follows. In order to prove Theorem 4.9, it is sufficient to show
the Strip Lemma:

M

	��
β �� @

@
@

@ β
@

@
@

@RR

N1
β

............RR

N2

		..
... β

..
...

N3

In order to prove this lemma, let M →β N1 be a one step reduction resulting
from changing a redex R in M in its contractum R′ in N1. If one makes a

Reduction 27

bookkeeping of what happens with R during the reduction M →→β N2, then by
reducing all ‘residuals’ of R in N2 the term N3 can be found. In order to do the
necessary bookkeeping an extended set Λ ⊇ Λ and reduction β is introduced.
The underlining serves as a ‘tracing isotope’.

4.13. Definition (Underlining). (i) Λ is the set of terms defined inductively
as follows.

x ∈ V ⇒ x ∈ Λ,

M,N ∈ Λ ⇒ (MN) ∈ Λ,

M ∈ Λ, x ∈ V ⇒ (λx.M) ∈ Λ,

M,N ∈ Λ, x ∈ V ⇒ ((λx.M)N) ∈ Λ.

(ii) The underlined reduction relations →β (one step) and →→β are defined
starting with the contraction rules

(λx.M)N →β M [x := N],

(λx.M)N →β M [x := N].

Then →β is extended in order to become a compatible relation (also with respect
to λ-abstraction). Moreover, →→β is the transitive reflexive closure of →β.

(iii) If M ∈ Λ, then |M | ∈ Λ is obtained from M by leaving out all underlin-
ings. E.g. |(λx.x)((λx.x)(λx.x))| ≡ I(II).

4.14. Definition. The map ϕ : Λ → Λ is defined inductively as follows.

ϕ(x) ≡ x,

ϕ(MN) ≡ ϕ(M)ϕ(N),

ϕ(λx.M) ≡ λx.ϕ(M),

ϕ((λx.M)N) ≡ ϕ(M)[x := ϕ(N)].

In other words, ϕ contracts all redexes that are underlined, from the inside to
the outside.

Notation. If |M | ≡ N or ϕ(M) ≡ N , then this will be denoted by

M
| |

- N or M
ϕ

- N.

4.15. Lemma.

M ′ ·············· ·
β
···············-- N ′

| |

? ?

| |

M
β

-- N

M ′, N ′ ∈ Λ,
M,N ∈ Λ.

28 Introduction to Lambda Calculus

Proof. First suppose M →β N . Then N is obtained by contracting a redex
in M and N ′ can be obtained by contracting the corresponding redex in M ′.
The general statement follows by transitivity. �

4.16. Lemma. (i) Let M,N ∈ Λ. Then

ϕ(M [x := N]) ≡ ϕ(M)[x := ϕ(N)].

(ii)
M

β

-- N

ϕ

? ?

ϕ

ϕ(M) ············ ·
β
·············-- ϕ(N)

M,N ∈ Λ.

Proof. (i) By induction on the structure of M , using the Substitution Lemma
(see Exercise 2.2) in case M ≡ (λy.P)Q. The condition of that lemma may be
assumed to hold by our convention about free variables.

(ii) By induction on the generation of →→β , using (i). �

4.17. Lemma.

M

	�
�

�
| | �

�
� @

@
@ ϕ

@
@

@R
N ··············· ·

β
················-- L

M ∈ Λ,
N, L ∈ Λ.

Proof. By induction on the structure of M. �

4.18. Strip lemma.

M

	��
β �� @

@
@

@ β
@

@
@

@RR

N1
β

.............RR

N2

		..
..
.
β
..
..
.

N3

M,N1, N2, N3 ∈ Λ.

Proof. Let N1 be the result of contracting the redex occurrence R ≡ (λx.P)Q
in M . Let M ′ ∈ Λ be obtained from M by replacing R by R′ ≡ (λx.P)Q. Then

Reduction 29

|M ′| ≡ M and ϕ(M ′) ≡ N1. By the lemmas 4.15, 4.16 and 4.17 we can erect
the diagram

M

	��
β ��

HHHHHHHH β
HHHHHHHHjj

I@@ | |
@@

N1
�

ϕ
M ′

........................
β

........................jj

..jj

β N2

		..
...
β ..

... I@@ | |

@@
N3

�
ϕ

N ′

2

which proves the Strip Lemma. �

4.19. Proof of the Church-Rosser Theorem. If M →→β N1, then M ≡
M1 →β M2 →β · · · →β Mn ≡ N1. Hence the CR property follows from the
Strip Lemma and a simple diagram chase:

M

	�
� @

@
@

@
@

@
@

@
@

@
@

@RR

M1

	�
�

..RR

•

. .
. ..RR

•

	�
�

N1 N2..RR

		..
..
..

•

		..
..
..

•

. .
.

•

		..
..
..

• �

4.20. Definition. For M ∈ Λ the reduction graph of M , notation Gβ(M), is
the directed multigraph with vertices {N |M →→β N} and directed by →β.

30 Introduction to Lambda Calculus

4.21. Example. Gβ(I(Ix)) is

x

I x()I

xI

sometimes simply drawn as

It can happen that a term M has a nf, but at the same time an infinite
reduction path. Let Ω ≡ (λx.xx)(λx.xx). Then Ω → Ω → · · · so KIΩ →
KIΩ → · · ·, and KIΩ →→ I. Therefore a so called strategy is necessary in
order to find the normal form. We state the following theorem; for a proof see
Barendregt (1984), Theorem 13.2.2.

4.22. Normalization Theorem. If M has a normal form, then iterated con-
traction of the leftmost redex leads to that normal form.

In other words: the leftmost reduction strategy is normalizing . This fact
can be used to find the normal form of a term, or to prove that a certain term
has no normal form.

4.23. Example. KΩI has an infinite leftmost reduction path, viz.

KΩI →β (λy.Ω)I →β Ω →β Ω →β · · · ,

and hence does not have a normal form.

The functional language (pure) Lisp uses an eager or applicative evaluation
strategy, i.e. whenever an expression of the form FA has to be evaluated, A is
reduced to normal form first, before ‘calling’ F . In the λ-calculus this strat-
egy is not normalizing as is shown by the two reduction paths for KIΩ above.
There is, however, a variant of the lambda calculus, called the λI-calculus, in
which the eager evaluation strategy is normalizing. In this λI-calculus terms
like K, ‘throwing away’ Ω in the reduction KIΩ →→ I do not exist. The ‘ordi-
nary’ λ-calculus is sometimes referred to as λK-calculus; see Barendregt (1984),
Chapter 9.

Remember the fixedpoint combinator Y. For each F ∈ Λ one has YF =β

F (YF), but neither YF →→β F (YF) nor F (YF) →→β YF . In order to solve

Reduction 31

reduction equations one can work with A.M. Turing’s fixedpoint combinator,
which has a different reduction behaviour.

4.24. Definition. Turing’s fixedpoint combinator Θ is defined by setting

A ≡ λxy.y(xxy),

Θ ≡ AA.

4.25. Proposition. For all F ∈ Λ one has

ΘF →→β F (ΘF).

Proof.

ΘF ≡ AAF

→β (λy.y(AAy))F

→β F (AAF)

≡ F (ΘF). �

4.26. Example. ∃G ∀X GX →→ X(XG). Indeed,

∀X GX →→ X(XG) ⇐ G→→ λx.x(xG)

⇐ G→→ (λgx.x(xg))G

⇐ G ≡ Θ(λgx.x(xg)).

Also the Multiple Fixedpoint Theorem has a ‘reducing’ variant.

4.27. Theorem. Let F1, . . . , Fn be λ-terms. Then we can find X1, . . . , Xn such
that

X1 →→ F1X1 · · ·Xn,
...

Xn →→ FnX1 · · ·Xn.

Proof. As for the equational Multiple Fixedpoint Theorem 3.17, but now
using Θ. �

Exercises

4.1. Show ∀M ∃N [N in β-nf and N I →→β M].

4.2. Construct four terms M with Gβ(M) respectively as follows.

32 Introduction to Lambda Calculus

4.3. Show that there is no F ∈ Λ such that for all M,N ∈ Λ

F (MN) = M.

4.4.* Let M ≡ AAx with A ≡ λaxz.z(aax). Show that Gβ(M) contains as subgraphs
an n-dimensional cube for every n ∈ N.

4.5. (A. Visser)
(i) Show that there is only one redex R such that Gβ(R) is as follows.

(ii) Show that there is no M ∈ Λ with Gβ(M) is

[Hint. Consider the relative positions of redexes.]

4.6.* (C. Böhm) Examine Gβ(M) with M equal to
(i) HIH , H ≡ λxy.x(λz.yzy)x.
(ii) LLI, L ≡ λxy.x(yy)x.
(iii) QIQ, Q ≡ λxy.xyIxy.

4.7.* (J.W. Klop) Extend the λ-calculus with two constants δ, ε. The reduction
rules are extended to include δMM → ε. Show that the resulting system is
not Church-Rosser.
[Hint. Define terms C,D such that

Cx →→ δx(Cx)

D →→ CD

Then D →→ ε and D →→ Cε in the extended reduction system, but there is no
common reduct.]

4.8. Show that the term M ≡ AAx with A ≡ λaxz.z(aax) does not have a normal
form.

4.9. (i) Show λ 6`WWW = ω3ω3, with W ≡ λxy.xyy and ω3 ≡ λx.xxx.
(ii) Show λ 6` Bx = By with Bz ≡ AzAz and Az ≡ λp.ppz.

4.10. Draw Gβ(M) for M equal to:
(i) WWW , W ≡ λxy.xyy.
(ii) ωω, ω ≡ λx.xx.
(iii) ω3ω3, ω3 ≡ λx.xxx.
(iv) (λx.Ixx)(λx.Ixx).
(v) (λx.I(xx))(λx.I(xx)).
(vi) II(III).

4.11. The length of a term is its number of symbols times 0.5 cm. Write down a
λ-term of length < 30 cm with normal form > 1010

10

light year.
[Hint. Use Proposition 2.15 (ii). The speed of light is c = 3× 1010 cm/s.]

