Reflection and its use

from science to meditation

Mathematics

A mathematical phenomenon

Consider

 $1 \quad 4 \quad 9 \quad 16 \quad 25 \quad 36 \quad \cdots$

What next?

We have the sequence of squares.

Differences

1 4 9 16 25 36 ···· 3 5 7 9 11 ····

Differences

A theorem

Proposition. Define

$$a_n = n^2$$

$$b_n = a_{n+1} - a_n$$

$$c_n = b_{n+1} - b_n$$

Then for all n one has $c_n = 2$.

Visualization:

Cubes

Given a sequence $a:a_0,a_1,a_2,\ldots$ Define Da by

$$(Da)_n = a_{n+1} - a_n.$$

Proposition. Let a^3 be the sequence defined by $a_n^3 = n^3$.

Then $DDDa^3 = 6$ for all n.

In general one has

THEOREM. $D^k a^k = k!$.

The axiomatic-deductive method

Aristotle (384-322 BC)

The axiomatic method

properties
axioms
derived

• The quest for logic: try to chart reasoning

Aristotle & Phyllis
Aristotle & Phyllis undressed
Aristotle & Phyllis on carpet

Mathematics after Aristotle

Aristotle submissive to Phyllis: a medieval phantasy.

Peano Axioms for Arithmetic

- 1. $0 \in \mathbb{N}$
- 2. $n \in \mathbb{N} \to Sn \in \mathbb{N}$
- 3. $Sn = Sm \rightarrow n = m$
- 4. $\forall n.Sn \neq 0$
- 5. Let P be a property of natural numbers. Suppose that

$$P(0)$$

 $P(n) \rightarrow P(S(n))$ for all natural numbers n .

Then P(n) for all natural numbers n.

Addition

DEFINITION. Addition can be specified as follows.

$$a + 0 = a$$
$$a + S(b) = S(a + b).$$

PROPOSITION. $\forall a, b, c \ (a+b) + c = a + (b+c)$.

PROOF. Given a, b we have to show $\forall c \ P(c)$, where P(c) := (a+b) + c = a + (b+c). We do this by mathematical induction.

Case c=0. Then P(c) states (a+b)+0=a+(b+0). This holds:

$$(a+b)+0 = a+b$$
$$= a+(b+0)$$

Induction step. Suppose P(c) holds, i.e. (a+b)+c=a+(b+c). We call this the induction hypothesis. We must show P(S(c)) i.e. (a+b)+S(c)=a+(b+S(c)). Indeed,

$$(a+b)+S(c) = S((a+b)+c)$$

= $S(a+(b+c))$, by the induction hypothesis,
= $a+S(b+c)$
= $a+(b+S(c))$.

The language of Peano arithmetic

Define the context-free abstract grammar.

We need the syntactical categories of variables, terms and formulas.

```
var := x \mid var'
term := var \mid 0 \mid S term \mid term + term \mid term \cdot term
form := term = term \mid \neg form \mid from \lor form \mid form \& from \mid
form \rightarrow form \mid \forall var form \mid \exists var form
```

EXAMPLES.

Variables: x, x', x''

Terms: x.x + (S0), x.x' + x''

Formulas: $\forall x \exists x' (x = x' + x'), \ \forall x \forall x' (x.x = x'.x' \rightarrow x = x')$

Predicate Logic

	Introduction Rules	Elimination Rules
\rightarrow	$\Gamma, A \vdash B$	$\Gamma \vdash (A \rightarrow B) \Gamma \vdash A$
	$\Gamma \vdash (A \rightarrow B)$	$\Gamma \vdash B$
&	$\Gamma \vdash A \Gamma \vdash B$	$\Gamma \vdash (A \& B) \Gamma \vdash (A \& B)$
	$\Gamma \vdash (A \& B)$	$\Gamma \vdash A$ $\Gamma \vdash B$
V	$\begin{array}{ccc} \Gamma \vdash A & \Gamma \vdash B \\ \hline \end{array}$	$\Gamma \vdash (A \lor B) \Gamma, A \vdash C \Gamma, B \vdash C$
	$\Gamma \vdash (A \lor B) \Gamma \vdash (A \lor B)$	C
\forall	$\Gamma \vdash A$	$\Gamma \vdash \forall x. A$
	${\Gamma \vdash \forall x.A} x \notin \Gamma$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
\exists	$\Gamma \vdash A[x := t]$	$\Gamma \vdash \exists x.A \Gamma, A \vdash B$
	${\Gamma \vdash \exists x.A}$	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
	Start Rule Absurdum Rule	Classical Negation
	$A \in \Gamma$ $\Gamma \vdash \bot$	$\Gamma, eg A \vdash \bot$
	$egin{array}{cccc} & & & & & & \\ \hline \Gamma dash A & & & & & \Gamma dash A \end{array}$	

Mathematics after Frege

Gödel's theorem

- 1. Arithmetical statements speak about numbers.
- 2. (Pythagoras) Everything is a number (after coding).
- 3. Arithmetical statements speak about everything you want (via coding).
- 4. Arithmetical statements speak about (other) arithmetical statements.
- 5. Some arithmetical statements speak about themselves (!).
- 6. L: This statement is false.
- 7. G: This statement is unprovable from the Peano axioms.
- 8. If PA is consistent (free from contradictions), then G is not provable and hence true!

Conclusion: Arithmetic Provability \neq Arithmetic Truth

Coding

Coding
$$\Sigma_{\text{Peano}} = \{0, S, =, x,', \neg, \ldots\}: \#(0) = 0, \#(S) = 1, \#(=) = 2, \ldots$$

$$\neg 0 = S0 \longmapsto \langle \#(\neg), \#(0), \#(=), \#(S), \#(0) \rangle$$

$$\longmapsto \langle 5, 0, 2, 1, 0 \rangle$$

$$\longmapsto 2^5 3^0 5^2 7^1 11^0 = 32.1.25.7.1 = 5600$$

$$= \#(\neg 0 = S0).$$

From numbers to terms (numerals) $n \longmapsto \underline{n}$.

Coding formulas: $A = \underline{\#(A)}$.

Examples

One may construct a formula $P_0(x)$ such that

 $P_0(\lceil A \rceil)$ states that A starts with an S.

$$P_0(x) = (\exists y \ (y+y=x)) \& \neg(\exists y \ ((y+y)+(y+y))=x)$$

Similarly one may construct a formula Prov(x) such that

 $Prov(\lceil A \rceil)$ states that A is provable in PA.

For this it is important that logic can be captured in finitely many rules.

Self-reflection

One can construct a function s_x such that inside PA

$$s_x(\lceil A^{\rceil}, \underline{n}) = \lceil A[x := \underline{n}]^{\rceil}.$$

Here A[x:=t] denotes substitution of t for x in A.

Define $d_x(n) = s_x(n, n)$. Then

$$d_x(\lceil A \rceil) = s_x(\lceil A \rceil, \underline{\#(A)}) = \lceil A[x := \underline{\#A}] \rceil = \lceil A[x := \lceil A \rceil] \rceil.$$

Wanted: a formula "Self" stating that it, i.e. "Self", is provable.

Take

$$A(x) = Prov(d_x(x))$$

Indeed,

$$\texttt{Self} = A[x := \lceil A \rceil].$$

Self \leftrightarrow $A[x:=\lceil A \rceil],$ by definition of Self, \leftrightarrow $\text{Prov}(d_x(\lceil A \rceil)),$ by definition of A(x), \leftrightarrow $\text{Prov}(\lceil A[x:=\lceil A \rceil] \rceil),$ by the property of d, \leftrightarrow $\text{Prov}(\lceil \text{Self} \rceil),$ by definition of Self.

Gödel sentence

Similarly we can construct ${\cal G}$ such that

$$G: \lnot \mathtt{Prov}(\ulcorner G \urcorner)$$

Picture Gallery

Frege

Hilbert

Peano

Gödel