

21. (i) Definition

- $CL(\mathbf{I}, \mathbf{K}, \mathbf{S}) = x|\mathbf{I}|\mathbf{K}|\mathbf{S}|PQ.$
- For $P \in CL(\mathbf{I}, \mathbf{K}, \mathbf{S})$ we define $\lambda^*x.P \in CL(\mathbf{I}, \mathbf{K}, \mathbf{S})$ by induction on the structure of P as follows

$$\begin{aligned}\lambda^*x.x &\equiv \mathbf{I}. \\ \lambda^*x.P &\equiv \mathbf{K}P \text{ if } x \notin FV(P). \\ \lambda^*x.PQ &\equiv \mathbf{S}(\lambda^*x.P)(\lambda^*x.Q) \text{ otherwise.}\end{aligned}$$

- We define the map $(-)^* : \Lambda \rightarrow CL(\mathbf{I}, \mathbf{K}, \mathbf{S})$ by

$$\begin{aligned}x^* &\equiv x. \\ (MN)^* &\equiv M^*N^*. \\ (\lambda x.M)^* &\equiv \lambda^*x.M^*.\end{aligned}$$

(ii) Determine \mathbf{I}^* , \mathbf{K}^* and \mathbf{S}^* .

Prove

- (iii) $\lambda^*x.P$ is indeed defined for each $P \in CL(\mathbf{I}, \mathbf{K}, \mathbf{S})$.
- (iv) $FV(\lambda^*x.P) = FV(P) - \{x\}$ for $P \in CL(\mathbf{I}, \mathbf{K}, \mathbf{S})$.
- (v) $FV(M^*) = FV(M)$ for $M \in \Lambda$.
- (vi) M closed $\Rightarrow M^*$ is a pure product of \mathbf{I} , \mathbf{K} and \mathbf{S} .
- (vii) $\lambda^*x.P \rightarrow_{\beta} \lambda x.P$ for $P \in CL(\mathbf{I}, \mathbf{K}, \mathbf{S})$.
- (viii) $M^* \rightarrow_{\beta} M$ for $M \in \Lambda$.

22. Verify that $\mathbf{SK} \rightarrow_{\beta} \lambda xy.y$ and find types A and B such that $\vdash \mathbf{SK} : A$ and $\vdash \lambda xy.y : B$ but $\not\vdash \mathbf{SK} : B$.

23. Prove that the rules (Cut) and $(\leq -L)$ are admissible in λ_{\cap}^{BCD} i.e. prove

$$\begin{aligned}\Gamma, x : B \vdash M : A \& \Gamma \vdash N : B \Rightarrow \Gamma \vdash (M[x := N]) : A. \\ \Gamma, x : B \vdash M : A \& C \leq B \Rightarrow \Gamma, x : C \vdash M : A.\end{aligned}$$

24. Prove for system λ_{\cap}^{BCD} .
Let $M \in \Lambda^{\emptyset}$.

$$M \text{ has a normal form} \Rightarrow \exists A[\top \notin A \& \vdash M : A]$$

You may use that $(\beta\text{-red})$ and $(\beta\text{-exp})$ are admissible.