
Towards an Interactive Mathematical Proof

Language

Henk Barendregt

Abstract

Formalizing mathematical proofs has as aim to represent arbitrary
mathematical notions and proofs on a computer in order to construct
a database of certified results useful to learn and develop the sub-
ject. At present it is mathematically not appealing to construct for-
mal proofs. To make formalzing more mathematician-friendly one
should have a good interface for proofs, definitions and computations.
The proof-assistant Mizar does have a good interface for proofs, but
not for making computations. Other assistants, like Coq based on
type theory, does have a good interface for computations, but not for
proofs. This paper sketches ways in which proofs are represented in
a mathematical way. Although the underlying formalized statements
come from the system Coq, this is not essential. Mainly the paper has
as aim to convince implementers of mathematical assistants to make
systems in such a way that formalizing proofs becomes natural. Much
further developed is the work on Isar providing a mathematical proof
language for the assistant Isabelle. The approach in this paper is to
approximate a proof language by writing proof-sketches, a notion by
Wiedijk, with the aim that they should eventually be verifiable by a
proof-checker. Nederpelt [2002] has a different approach: there the
emphasis is on the ease of providing formalizations of mathematical
definitions.

Acknowledgments. The author wishes to thank Freek Weedijk, for advocating the math-

ematical style of representing formal proofs in Mizar, and Michael Beeson for suggesting

not to work towards constructing a new proof-assistant, but to specify one by providing a

benchmark of candidate proof-scripts that should be accepted by the checker. Bas Spitters

gave useful feedback and implemented part of the language.

1

1. Interactive proof-assistants

Mathematical assistants are workstations running a program that verifies the
correctness of mathematical theorems, when provided with enough evidence.
Systems for automated deduction require less evidence or even none at all;
proof-checkers on the other hand require a fully formalized proof. We will
focus on the problem of creating such proof-objects for mathematical state-
ments for proof-checking.

In the pioneering Automath1 system of Dick de Bruijn (see Nederpelt et
al. [1994]), based on dependent type theory, proofs had to be given ready and
well. The same applies to the system Mizar2 (see Muzalewski [1993], Wiedijk
[1999]), based on set-theory. On the other hand for systems like NuPrl3 (see
Constable et al. [1986]), Isabelle4 (see Paulson [1994], Paulson [2002], Nipkow
et al. [2002]), HOL5 (see Gordon and Melham [1993], Harrison [2000]) and
Coq6 (see The Coq Development Team [2002]), the proofs are obtained in an
interactive fashion between user and the proof-checker. Therefore one speaks
about an interactive mathematical assistant. The list of statements that have
to be given to such a checker, the proof-script, is usually not mathematical
in nature, see e.g. section 3. The problem is that the script consists of fine-
grained steps what should be done, devoid of any mathematical meaning.

Mizar is the only system having a substantial library of certified results
in which the proof-script is mathematical in nature. Wiedijk speaks of the
declarative style of Mizar. This paper is an attempt to provide an interactive
script language for an interactive proof assistant like Coq, that is declara-
tive and hence mathematical in flavor. A similar approach is found in the
project Isar7 (see Wenzel [1999], Wenzel [2002a], Wenzel [2002b]), with an
implemented system.

In de Bruijn [1994] a plea was given to use a mathematical vernacular
for formalizing proofs. This paper sketches a language MPL (Mathematical
Proof Language) between informal mathematics and formalized mathematics
with the claim that it can be translated automatically into the formalized

1<www.cs.kun.nl/~freek/aut>
2<www.mizar.org>
3<www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html>
4<www.cl.cam.ac.uk/Research/HVG/Isabelle>
5<archive.comlab.ox.ac.uk/formal-methods/hol.html>
6<pauillac.inria.fr/coq>
7<isabelle.in.tum.de/Isar>

2

language of interactive proof-assistants.
Two case studies are presented: Euclidean division with remainder and

Newman’s lemma. We present for these a mathematical proof “best style”,
a proof-sketch in the sense of Wiedijk (semi-formal proof that can be made
formal easily) and a formal proof in Coq with mathematical mode.

2. Euclidean division with remainder

This small case study is about Euclidean division with remainder for the
natural numbers. The result states that for every n and d > 0 there are q, r

such that n = dq + r and r < d. The proof uses cut-off subtraction a −̇ b,
which is a − b if b ≤ a and is 0 otherwise, and course of value induction.

2.1. Best mathematical style

2.1. Lemma. The following results hold.

(i) subtr sml ∀a, b∈N[0 < a, b ⇒ a −̇b < a].
(ii) subtr plus ∀a, b∈N[a ≥ b ⇒ (a −̇b) + b = a].
(iii) less suc ∀n, m∈N[n < (m + 1) ⇔ (n < m ∨ n = m)].

2.2. Proposition (Course of value induction). Suppose that for all n∈N

(∀k<n.P (k)) ⇒ P (n).

Then ∀n∈N.P (n).

Proof. Write
before(n, P) ⇔ ∀k<n.P (k).

Now assume
∀n[before(n, P) ⇒ P (n)] (+)

in order to show ∀nP (n). We will do this by showing by (ordinary) induction

∀n.before(n, P),

because then for all n∈N one also has before(n+1, P), in particular P (n).
Basis n = 0. Indeed, before(0, P) holds vacuously.
Induction step. Suppose before(n, P). Then by (+) one has P (n), hence

[∀k<n.P (k)] & P (n), therefore ∀k<n+1.P (k), i.e. before(n+1, P).

3

2.3. Proposition (Division with remainder). Let d∈N with 0 < d. Then

∀n∈N∃q, r[r < d & n = qd + r].

Proof. Let d∈N with 0 < d be given. Write

P (n) := ∃q, r.[r < d & n = qd + r].

We will show ∀n∈N.P (n) by course of value induction. So assume

∀k < n.P (k), (ih)

in order to prove P (n). If n < d, then we can take q = 0, r = n. If on the
other hand n ≥ d, define n′ = n −̇d. Then n′ < n by subtr sml. Therefore
P (n′) by (ih). Hence for some q′, r′

r′ < d & n′ = dq′ + r′. (1)

Take q = q′ + 1, r = r′. Then r < d and

n = (n −̇d) + d, by subtr plus,

= n′ + d

= (dq′ + r′) + d, by (1),

= d(q′ + 1) + r′, by computation,

= dq + r.

2.2. Proof sketch

Proposition (Division with remainder).

Let d:nat with 0<d. Then for all n:nat

there exists q,r:nat such that

r<d & n=d*q+r.

Proof. Let d:N. Assume 0<d, towards

(n:N)(EX q:N)(EX r:N)[r<d & n=d*q+r].

Write P(n):=(EX q:N)(EX r:N)[r<d & n=d*q+r].

Apply course of value induction to P:

let n:N, assume

(before n P) (ih)

4

in order to show P(n). Remember before in ih.

We have [n<d ∨ n>=d]. Remember P.

Case n<d. Take q=0, r=n.

Then r<d and we have n=d*0+n, by computing. Done.

Case n>=d. Write nn:= n--d. Then nn<n, by subtr sml.

Therefore by ih

P(nn) (H1)

Remember P in H1. Hence for some qq and rr

rr<d &nn=d*qq+rr. (H2)

Take

q=qq+1, r=rr. (H3)

We have r<d and

n = (n--d)+d, by subtr plus,

= (d*qq+rr)+d, by H2,

= d*(qq+1)+rr, by computation,

= d*q+r, by (H3). QED

3. Newman’s Lemma

As a second case study we specify for Newman’s Lemma a feasible interactive
mathematical proof development.

3.1. Best mathematical style

Again we start with the informal statement and proof.
Let A be a set and let R be a binary relation on A. R+ is the transitive

closure of R and R∗ is the transitive reflexive closure of R.
The following properties of R are introduced: CR(R) the Church-Rosser

property, cr(R, a) the local CR property and WCR(R) the weak CR property.

1. crR(a) ⇔ ∀b1, b2∈A.[aR∗b1 & aR∗b2 ⇒ ∃c.b1R
∗c & b2R

∗c].

2. CR(R) ⇔ ∀a∈A.crR(a).

3. WCR(R) ⇔ ∀a, b1, b2∈A.[aRb1 & aRb2 ⇒ ∃c.b1R
∗c & b2R

∗c].

Newman’s lemma states that for well-founded relations weak confluence
implies strong confluence. The notion of well-foundedness is formulated as
the possibility to prove statements by transfinite induction. Let P∈P(A).

5

4. INDR(P) ⇔ ∀a∈A.(∀y∈A.aRy ⇒ P (y)) ⇒ P (a).

5. WF(R) ⇔ ∀P∈P(A).[INDR(P) ⇒ ∀a∈A.P (a)].

3.1. Lemma. (i) ∀x, y:A.[xR∗y ⇒ (x = y ∨ xR+y)].
(ii) ∀x, y:A.[xR+y ⇒ ∃z:A.(xRz & zR∗y)].

3.2. Lemma (Main Lemma.). WCR(R) ⇒ INDR(crR).

Proof. Assume WCR(R). Remember INDR(crR) ⇔

(∀a:A.(∀y:A.a R y→cr(R, y))→(crR(a)).

Let a:A and assume

∀y:A.a R y→crR(y), (IH)

in order to show crR(a), i.e.

∀b1, b2:A.a R∗ b1 & a R∗ b2→(∃c:A.b1 R∗ c & b2 R∗ c).

So let b1, b2:A with a R∗ bi, in order to show ∃c.bi R∗ c.

If a = b1 or a = b2, then the result is trivial (take c = b2 or c = b1

respectively). So by lemma 3.1(ii) we may assume a R+ bi, which by lemma
3.1(i) means a R xi R∗ bi, for some x1, x2.

a // //

��
��

b2

��
��

b1
// // c

a //

��

x2

��
��

// // b2

��
��

x1
// //

��
��

x

��
��

b1
// // b // // c

By WCR(R) there is an x such that xi R∗ x.
By (IH) one has crR(x1). So x R∗ b & b1 R∗ b, for some b.
Again crR(x2). As x2 R∗ x R∗ b one has b R∗ c & b2 R∗ c, for some c.
Then b1 R∗ b R∗ c and we are done.

3.3. Proposition (Newman’s Lemma). WCR(R) & WF(R) ⇒ CR(R).

Proof. By WCR(R) and the main lemma we have INDR(crR). Hence by
WF(R) it follows that for P (a) = crR(a), one has ∀a∈A.crR(a). This is
CR(R).

6

3.2. Proof sketch for Newman’s lemma

Now we will start a proof development for Newman’s lemma.

Variable A:Set.

Definition Bin:=[B:Set](B->B->Prop).

Inductive TC [R:(Bin A)]: (Bin A) :=

TCb: (x,y:A)(R x y)->(TC R x y)|

TCf: (x,y,z:A)((R x z)->(TC R z y)->(TC R x y)).

Inductive TRC [R:(Bin A)]: (Bin A) :=

TRCb: (x:A)(TRC R x x)|

TRCf: (x,y,z:A)((R x z) -> (TRC R z y)->(TRC R x y)).

Definition Trans [R:(Bin A)]: Prop:=

(x,y,z:A)((R x y)->(R y z)->(R x z)).

Definition IND [R: (Bin A);P:(A->Prop)]: Prop :=

((a:A)((y:A)(a R y)->(P y))->(P a)).

Definition cr [R:(Bin A);a:A]:=

(b1,b2:A)(TRC R a b1)&(TRC R a b2)->(EX c:A|(TRC R b1 c)&(TRC R b2 c)).

Definition CR [R:(Bin A)]:=(a:A)(cr R a).

Definition WCR [R:(Bin A)]:=

(a,b1,b2:A)(a R b1)->(a R b2)->(EX c:A|(TRC R b1 c)&(TRC R b2 c)).

Definition WF [R:(Bin A)]:Prop:= (P:A->Prop)(IND R P)->(a:A)(P a).

Variable R:(Bin A).

First we introduce some userfriendly notation.

Notation. For a,b:A we write

(i) a R b := (R a b).

(ii) a R+ b := (TC R a b).

(iii) a R* b := (TRC R a b).

The following lemmas can be proved formally.

7

Lemma p1: (x,y:A)((x R y) -> (x R+ y)).

Lemma p2: (x,y:A)((x R+ y) -> (x R* y)).

Lemma p3: (Trans(R+)).

Lemma p4: (Trans(R*)).

Lemma p5: (x,y,z:A)(x R y)->(y R* z)->(x R* z).

Lemma p6: (x,y:A)((x R* y)-> (eq A x y) ∨ (x R+ y)).

Lemma p7: (x,y:A)((x R+ y)->(EX z:A | (x R z) & (z R* y))).

Now we will give a mathematical proof script of the main lemma, for which
we claim that it should be acceptable by a mathematician-friendly proof-
assistant. At <www.cs.kun.nl/~henk/mathmode.ps> one may view an inter-
active version of this script that conveys better the power of the proofmode.
If one has active dvi, then one should look at <mathmode.dvi> at the same
address.

Lemma (WCR R)->(IND R (cr R)).

Proof. Assume WCR(R). Remember IND. Let a:A. Assume

(y:A)((aRy)->(cr R y)). (IH)

Remember cr. Let a,b1,b2:A. Assume a R* bi, i=1,2,

in order to show (EX c:A | (b1 R* c) & (b2 R* c)).

We have, by lemma p6,

[a=b1 ∨ a R+ b1],

[a=b2 ∨ a R+ b2].

Case a=b1, take c=b2. Trivial. Hence wlog (a R+ b1).

Case a=b2, take c=b1. Trivial. Hence wlog (a R+ b2).

Therefore, by lemma p7, there exists x1, x2 such that

a R xi R* bi, i=1,2.

Hence, by (WCR R), there exists x such that xi R* x, i=1,2.

We have (cr R x1), by IH.

Hence there exists b such that b1 R* b & x R* b.

Moreover (cr R x2), by IH. Hence, by x2 R* b, there exists c

such that b R* c & b2 R* c. Since b1 R* c, by (Trans R*),

we have (bi R* c), i=1,2. Thus c works. QED

Newman’s Lemma. WCR(R)&WF(R) -> CR(R).

8

Proof. Assume WCR(R) and WF(R). Then (IND R(cr R)),

by WCR(R) and main. Remember IND. We have

(P:(A->Prop))((a:A)((y:A)(a R y)-> (P y))->(P a)). (+)

Apply (+) to P=(cr R). Then CR(R). QED

4. Towards a Mathematical Proof Language

We now will sketch rather loosly a language that may be called MPL: Math-
ematical Proof Language. The language will need many extensions, but this
kernal may be already useful.

4.1. Definition. The phrases used in MPL for the proposed proof-assistant
with interactive mathematical mode belong to the following set.

Assume B

Towards A

Let x:D

Remember t

Pick [in L] x

Take x=t [in B]

Apply B to t

Case B

As to

There exists x

QED

Then B [, by C]

Suffices

Wlog B, [since B ∨ C]

May assume B

Here A,B, C are propositions in context Gamma, D is a type, x is a variable and
t is a term of the right type. “Wlog” stands for “Without loss of generality”.

4.2. Definition (Synonyms).

Suffices = In order to show = We must show = Towards;

Let = Given;

Then = We have = It follows that = Hence = Moreover = Again;

9

and = with;

by = since.

Before giving a grammar for tactic statements we will give their semantics.
They have a precise effect on the so called proof-state. In the following
definition we show what the effect is of a statement on the proof-state. In
some of the cases the tactic has a side-effect on the proof-script, as we already
saw in the case study of Newman’s lemma.

4.3. Definition. (i) A proof-state (within a context Gamma) is a set of state-
ments Delta and a statement A, such that all members of Delta are well-
formed in Gamma and A is well-formed in Gamma, Delta. If the proof-state is
(Delta;A), then the goal is to show Delta ` A.

(ii) The initial proof-state of a statement A to be proved is of course (∅;A).
(iii) A tactic is map from proof-states to a list of proof-states, usually

having a formula or an element as extra argument.

4.4. Definition. Various tactics are defined as follows.

Assume C (Delta,C->B) = (Delta,C;B), and ‘‘Towards B’’

may be left in the script.

Let a:D (Delta,(x:D.P)) = (Delta,a:A;P[x:=a]).

Remember name (Delta;A) = (Delta;A’), where A’ results

from A by unfolding the defined

concept ‘name’. This can be

applied to an occurrence of

‘name’, by clicking on it. Other

occurrences remain closed but

become transparant (as if opened).

Pick [in L] x (Delta,L;A) = (Delta,x:D,B(x);A), where L is

a formula reference of (EX x:D.B).

Take x=name (Delta;EX x:D.A) = (Delta;A[x:=name]),

if Delta |- name:D.

Apply B to name (Delta;A) = (Delta,P[y:=name];A), where B of

the form ((y:D).P) is in Delta.

Case B (Delta;A) = (Delta,B;A),(Delta,C;A),

if B ∨ C in Delta; the second

proof-state represents

the next subgoal.

10

As to Bi (Delta;B0 & B1) = (Delta;Bi),(Delta;B(1-i)), the

second proof-state represents

the next subgoal;

As to B (Delta;B) = (Delta;B);

There exists x such that A

(Delta, (EX x:D.A); B) = (Delta,x:D,A;B).

In all cases nothing happens if the side conditions are not satisfied. One
should be able to refer to a statement C in two ways: either by naming C

directly or by referring to a label for C, like “IH” in the proof of the main
lemma above. We say that L is a formula reference of formula B if L is B
or if L is a label for B. Labels are sometimes handy, but they should also be
suppressed in order to keep the proof-state clean. If the argument of a tactic
occurs at several places the system should complain. Then reference should
be made to a unique label. It is assumed that proof-states (Delta,A) are in
normal form, that is, if B&C is in Delta, then it is replaced by the pair B,C.
If the final QED is accepted, then all the statements in the proof that did not
have an effect on the proof-state will be suppressed in the final lay-out of the
proof (or may be kept in color orange as an option in order to learn where
one did superfluous steps).

The following tactics require some automated deduction. If the proof-
assistant cannot prove the claimed result, an extra proof-state will be gener-
ated so that this result will be treated as the next subgoal.

4.5. Definition.

Then B (Delta;A) = (Delta,B;A), if Delta |- B;

Then B, by C (Delta;A) = (Delta,B;A) if Delta |- C and

Delta,C |- B;

Suffices B (Delta;A) = (Delta; B), if Delta |- B->A;

Wlog C (Delta;A) = (Delta,C;A), if Delta |- C;

Since B∨C wlog C (Delta;A) = (Delta,C;A), if B∨C in Delta

and Delta|-B->A.

May assume B (Delta,A) = (Delta,B;A) if the assistant

Delta|-~B->A and Delta|- B∨~B.

The tactic language MPL is defined by the following grammar.

4.6. Definition. Grammar of MPL.

formref := label | form

form+ := formref | form+ and formref

11

tactic := Assume form+ | Towards form | Remember name |

Let var:set | Pick [in formref] var | Case form |

Take var = term [in formref] |

Apply formref to term | Then form[, by form+] |

Suffices formref | Wlog form[, since form ∨ form]

tactic+ := tactic. | tactic, tactic+ | tactic. tactic+

Here label is the proof-variable, used as a name for a statement (like IH in the
proof of the main lemma), form is a Gamma, Delta inhabitant of Prop, name
is any defined notion during the proof development, and var is an variable.

An extension of MPL capable of dealing with computations will be useful.

We have A(t). Then A(s), since t=s.

Another one:

Then t=s, by computation.

It would be nice to have this in an ambiguous way: computation is meant
to be pure conversion or an application of reflection. This corresponds to the
actual mathematical usage:

5!=120, by computation;
In a commutative ring, (x + y)2 = x2 + 2xy + y2, by computation.

In typetheory the first equality would be an application of the conversion
rule, but for the second one reflection, see e.g. Constable [1995], is needed.

Procedural statements in the implementation of MPL

As we have seen in section 2 it is handy to have statements that modify the
proofstate, but are not recorded as such. For example if the proof state is
(Delta;(x:D)(A(x)->B(x)), then Intros is a fast way to generate

Let x:D. Assume A(x), in order to prove B(x).
in the proof. Another example is Clear L in order to remove the formula
indicated by L in the assumptions of the current subgoal. Also renaming
variables is useful, as some statements may come from libraries and have a
“wrong” choice of bound variables.

12

5. Conclusion

We claim that an interactive mathematical mode is necessary for proof-
assistants, if they are to be used in a user friendly way. It is hoped that in
this way also mathematicians (next to the computer scientists) will become
users of these systems. As has been argued elsewhere the use of mathematical
assistants will be able to modify the way mathematics is done and achieve a
higher standard of precision. The present proof sketch may serve as part of
a benchmark for such an improved mathematical assistant.

In Nederpelt [2002] a language WTT is developed with similar aims as
our language MPL. So far the development of WTT has been focussed on the
theory development: the formulation of the concepts and of the statements of
the lemmas. Hence it is a welcome (and much more developed) complement
to MPL. A combination of WTT and MPL is what is needed for a proof-
assistant with interactive mathematical mode.

References

de Bruijn, N.G. [1994]. The mathematical vernacular, a language for math-
ematics and typed sets, in Nederpelt et al. [1994], pp. 865–936.

Constable, R.L. [1995]. Using reflection to explain and enhance type theory,
in: H. Schwichtenberg (ed.), Proof and Computation, Computer and
System Sciences 139, Springer, pp. 109–144.

Constable, Robert L., Stuart F. Allen, H.M. Bromley, W.R. Cleaveland, J.F.
Cremer, R.W. Harper, Douglas J. Howe, T.B. Knoblock, N.P. Mendler,
P. Panangaden, James T. Sasaki and Scott F. Smith [1986]. Implement-
ing Mathematics with the Nuprl Development System, Prentice-Hall, NJ.

Gordon, M.J.C. and T.F. Melham (eds.) [1993]. Introduction to HOL, Cam-
bridge University Press, Cambridge.

Harrison, John [2000]. The HOL Light manual (1.1). URL:
<www.cl.cam.ac.uk/users/jrh/hol-light/manual-1.1.ps.gz>.

Muzalewski, M. [1993]. An Outline of PC Mizar, Fondation Philippe le
Hodey, Brussels. URL:
<www.cs.kun.nl/~freek/mizar/mizarmanual.ps.gz>.

13

Nederpelt, R. [2002]. Weak Type Theory: a formal language for mathematics,
Technical Report 02-05, Dept. of Mathematics and Computer Science,
Eindhoven University of Technology, Box 513, 5600 MB Eindhoven, The
Netherlands. URL:
<vubisweb.tue.nl/N/scripts/mgwms32.dll?TS=SA>.

Nederpelt, R. P., J. H. Geuvers and R. de Vrijer (eds.) [1994]. Selected papers
on Automath, North-Holland Publishing Co., Amsterdam.

Nipkow, T., L.C. Paulson and M. Wenzel [2002]. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, LNCS 2283, Springer.

Paulson, L.C. [1994]. Isabelle: a generic theorem prover, LNCS 828, Springer-
Verlag, New York.

Paulson, L.C. [2002]. The Isabelle Reference Manual. URL:
<isabelle.in.tum.de/doc/ref.pdf>.

The Coq Development Team [2002]. The Coq Proof Assistant Reference
Manual. URL:
<ftp.inria.fr/INRIA/coq/current/doc/Reference-Manual-all.ps.gz>.

Wenzel, M. [2002a]. Isabelle/Isar — a versatile environment for human-
readable formal proof documents, Dissertation, Institut für Informatik,
Technische Universität München. URL:
<tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html>.

Wenzel, M. [2002b]. The Isabelle/Isar Reference Manual, TU München. URL:
<isabelle.in.tum.de/doc/isar-ref.pdf>.

Wenzel, Markus [1999]. Isar — a generic interpretative approach to read-
able formal proof documents, in: Y. Bertot, G. Dowek, A. Hirschowitz,
C. Paulin and L. Thery (eds.), Theorem Proving in Higher Order Logics:
TPHOLs ’99, LNCS 1690.

Wiedijk, F. [1999]. Mizar: An Impression, URL:
<www.cs.kun.nl/~freek/mizar/mizarintro.ps.gz>.

14

