Week 8. Inductive types

In-class problems

1.

Let be given the inductive type of natural numbers nat : % with con-
structors 0 : nat and suc : nat — nat. Using its recursor, define the
function sub : nat — nat — nat of truncated subtraction (i.e., if the
difference would be negative, then the function has value zero.)

. One version of the Ackermann function is recursively defined by the

equations:

A(0,y) = y+1
Az +1,0) = A(z,1)
Alz+1L,y+1) = A(z,A(x+ 1,y))

Define this function as a term A : nat — nat — nat of Gddel’s system
T. Also, to get an impression of this function, give explicit formulas for
A(l,y), A(2,y) and A(3,y) and calculate the value of A(4,2).

Give the typing (formation, constructors, recursor) and reduction rules
for the type of lists of natural numbers. Give both types for a dependent
and a non-dependent recursor.

Give the typing (formation, constructors, recursor) and reduction rules
for the type of polymorphic vectors. Give both types for a dependent
and a non-dependent recursor.

Show how to define an inductive predicate even : nat — nat that says
whether its argument is even. Give the typing (formation, constructors,
recursor) and reduction rules. Give both types for a dependent and a
non-dependent recursor. (Hint: it is generally easier to first determine
the type of the dependent recursor, as described in the lecture.)

Give the typing (formation, constructors, recursor) and reduction rules
for Leibniz equality. Give both types for a dependent and a non-
dependent recursor.



Take-home problems

1.

Give the type of the dependent recursor for the product type A x B,
and from that derive the type of a non-dependent recursor. Show how
the functions m; and 7y from MLW can be defined from this second
recursor. Also, show how this recursor can be defined in terms of
and .

Define the lists over a given type A as a W-type.

Give the typing (formation, constructors, recursor) and reduction rules
of the W-trees. Give both types for a dependent and a non-dependent
recursor.

Let L be the empty inductive type, use the abbreviation -4 := A — 1,
and let = be the inductively defined Leibniz equality. Give a proof term
for

—(0 = suc 0)

You are allowed to use the ‘large’ recursor on the natural numbers
which defines a function in nat — . (In MLW there only is a ‘large’
recursor for the Booleans.)

Given the predicate even from exercise 5 on the front of this sheet, give
a proof term for
—even (suc 0)

Give an example of terms A : x, P: A — x and f : * — * such that:

FVz: A f(Px))
F—f(Ve: A. Px)

(Hint: take A := bool and P := Az : A.bool.)



