Lambda Calculus, Week 3

In-class problems

- 1. Let $F, G \in \Lambda^{\emptyset}$. Show that if Fx = Gx, then for all $M \in \Lambda$ one has FM = GM. The assumption that F, G are closed is necessary.
- 2. Write down a lambda term $F \in \Lambda^{\emptyset}$ such that

$$F^{\lceil} x y^{\rceil} = x,$$

where we use the encoding of lambda terms by Mogensen.

3. Let $W \in \Lambda^{\emptyset}$. Show that there are $M, F \in \Lambda^{\emptyset}$ such that

$$FM = MW$$

$$Mf = f^{\lceil}M^{\rceil}$$

Conclude $FM = W^{\lceil}M^{\rceil}$.

4. For a given T there exists a program P such that

$$P_{\mathbf{c}_k} = \mathbf{c}_{k+1}, \text{ if } k \text{ is even},$$

= $T^{\lceil} P^{\rceil} \mathbf{c}_k, \text{ otherwise}.$

Take-home problems

A finite list $M_{n_1}, \ldots, M_0 \in \Lambda$ is represented in Λ by $[M_{n_1}, \ldots, M_0] \in \Lambda$ defined as follows.

$$[] \triangleq \text{false};$$
$$[M_n, M_{n-1}, \dots, M_0] \triangleq \pi M_n[M_{n-1}, \dots]$$

Then

$$[M_0,\ldots,M_n] := \langle M_0,\langle M_1,\langle M_2,\cdots\langle M_n,\mathsf{F}\rangle\cdots\rangle\rangle\rangle$$

We can also represent an infinite *stream* of terms $\{M_0, M_1, ...\}$ by a term that looks like

$$[M] = \langle M_0, \langle M_1, \cdots \rangle \rangle$$

In this case, the term [M] is called the *uniform enumeration* of $\langle M_n \rangle$. For example, using the fixed-point theorem, we can define a term

$$\mathbb{N}x = \mathbf{cons}\ x\ (\mathbb{N}(S^+x))$$

Where S^+ is the successor on Church numerals. Then $[M] = \mathbb{N}\mathbf{c}_0$ is a uniform enumeration of $\{\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots\}$.

1. Given n, define a term P_n such that

$$\mathsf{P}_n[M] = M_n$$

for any uniform enumeration [M].

[Hint. It could be easier to solve 2 first.]

2. Define a term P such that

$$P_{\mathbf{c}_n}[M] = M_n$$

3. Given a term N, define a term $@_N$ such that, for any uniform enumeration $\langle M_n \rangle$, $@_N$ is a uniform enumeration of $\langle M_n N \rangle$.

Then define a term @ such that $@_N = @N$ for each N.

4. Define a term zip, such that

$$zip[M][N] = \langle M_0, \langle N_0, \langle M_1, \langle N_1, \ldots \rangle \rangle \rangle$$

is a uniform enumeration of $\{M_0, N_0, M_1, N_1, \dots\}$.

- 5. If for every fixed n, the sequence $\{M_{n,m}\}_m$ is uniformly enumerated by $[M_n]$, and the sequence of terms $\{[M_n]\}_n$ is uniformly enumerated by [M], define a term $[M^+]$ which uniformly enumerates the countable set $\{M_{n,m}\}$ (using any ordering you wish).
- 6. Use the fixed-point theorem to define a uniform enumeration \mathbb{C} of the set of combinators \mathcal{C} . Prove that every combinator indeed occurs in the stream enumerated by \mathbb{C} .

[Hint. Take $\mathbb{C} = [I, K, S, __]$, where " $__$ " depends on \mathbb{C} .]

7. Give a term E with the following property: For every *closed* lambda term $t \in \Lambda^0$, there exists an n such that

$$E\mathbf{c}_n = t$$