Week 2

In-class problems

1. (a) Let g, h be λ -defined by G, H. Find a $F \in \Lambda^{\emptyset}$ that is λ -defining

$$f(0,y) = g(y)$$

$$f(x+1,y) = h(f(x,y),x,y).$$

- (b) Lambda define the predecessor (having on 0 the value 0 itself).
- 2. (a) Show that times $\mathbf{c}_n \mathbf{c}_{m} = \beta \mathbf{c}_{n.m}$, for all $n, m \in \mathbb{N}$.
 - (b) Show that $\mathbf{c}_n \mathbf{c}_m = \beta \mathbf{c}_{m^n}$, for all $n, m \in \mathbb{N}$.
- 3. (a) Define the characteristic function K_{\leq} of the relation \leq . Show that it is λ -definable.
 - (b) Show that $L(n, m) = \lceil n \log m \rceil$ is λ -definable. Here, for $r \in \mathbb{R}$ the integer $\lceil r \rceil$ is its ceiling, the least element $n \in \mathbb{Z}$ such that $r \leq n$. [Hint. Use 2(b) and (a).]
- 4. Give an inductive definition of trees with natural numbers at the leaves.
 - (a) Specify the function mirror on trees. Show that the function $\mathsf{mirror} \in \Lambda^{\emptyset}$ (given on the slides) defines it.
 - (b) Specify the function that squares all leaves in a tree, leaving the tree structure the same. Construct a λ -defining term for this function.
- 5. (Klop) Define

 $\$ \triangleq \lambda abcdefghijklmnopqstuvwxyzr.r(thisisafixedpointcombinator)$

Show that \in is a reducing fixed point combinator: $\in f \rightarrow_{\beta} f(\in f)$.

Take-home problems

1. Show that there are no $F_1, F_2 \in \Lambda^{\emptyset}$ such that

$$F_1(xy) = x \& F_2(xy) = y.$$

[Hint. F_1 alone doesn't even exist.]

2. (Petorossi) Show that C has no nf, where $A \triangleq SSS$

B ≜ SAA

C ≜ BB.

3. Find a different representation $n \longmapsto \mathbf{d}_n$ of the numbers with $\mathbf{d}_n \in \Lambda^{\emptyset}$ such that $|\mathbf{d}_n| = O(\lg n)$ and there are $F, G \in \Lambda^{\emptyset}$ satisfying

$$F\mathbf{d}_n =_{\beta} \mathbf{c}_n \& G\mathbf{c}_n =_{\beta} \mathbf{d}_n.$$

Show that the terms do what is intended.

4. (a) Show that commutativity or associativity in λ does not hold in the following strong sense. Adding to λ one of the following axioms makes it inconsistent.

$$xy = yx \tag{1}$$

$$(xy)z = x(yz) (2)$$

(b) Adding either (1) or (2) to CL does not make it inconsistent; show that for this one *needs* an axiom scheme like

$$XY = YX$$
 for all terms X, Y .

- 5. (Barendregt, Klop, Dezani)
 - (a) Show that there are $A, B, C, E \in \Lambda^{\emptyset}$ that behave like Klein's four-group with multiplication table below. [Hint. First solve (b).]

	A	B	C	E
A	E	C	B	\boldsymbol{A}
B	C	E	\boldsymbol{A}	B
C	B	A	E	C
E	A	B	C	E

(b) Let $f: \mathbb{N}^2 \to \mathbb{N}$ be computable. Construct $=_{\beta}$ -distinct closed λ -terms $X_0, X_1, X_2 \dots$ such that for all $n, m \in \mathbb{N}$ one has

$$X_n X_m = \beta X_{f(n,m)}$$
.

[Hint. Try $X_n \triangleq \langle A, \mathbf{c}_n \rangle$.]