
Chapter 5

Type Assignment

The lambda calculus as treated so far is usually referred to as a type-free theory.
This is so, because every expression (considered as a function) may be applied to
every other expression (considered as an argument). For example, the identity
function I ≡ λx.x may be applied to any argument x to give as result that same
x. In particular I may be applied to itself.

There are also typed versions of the lambda calculus. These are introduced
essentially in Curry (1934) (for the so called Combinatory Logic, a variant of
the lambda calculus) and in Church (1940). Types are usually objects of a
syntactic nature and may be assigned to lambda terms. If M is such a term
and a type A is assigned to M , then we say ‘M has type A’ or ‘M in A’; the
denotation used for this is M : A. For example in some typed systems one has
I : (A→A), that is, the identity I may get as type A→A. This means that if
x being an argument of I is of type A, then also the value Ix is of type A. In
general, A→B is the type of functions from A to B.

Although the analogy is not perfect, the type assigned to a term may be
compared to the dimension of a physical entity. These dimensions prevent us
from wrong operations like adding 3 volt to 2 ampère. In a similar way types
assigned to lambda terms provide a partial specification of the algorithms that
are represented and are useful for showing partial correctness.

Types may also be used to improve the efficiency of compilation of terms
representing functional algorithms. If for example it is known (by looking at
types) that a subexpression of a term (representing a funtional program) is
purely arithmetical, then fast evaluation is possible. This is because the ex-
pression then can be executed by the alu of the machine and not in the slower
way in which symbolic expressions are evaluated in general.

The two original papers of Curry and Church introducing typed versions of
the lambda calculus give rise to two different families of systems. In the typed
lambda calculi à la Curry terms are those of the type-free theory. Each term
has a set of possible types. This set may be empty, be a singleton or consist
of several (possibly infinitely many) elements. In the systems à la Church the
terms are annotated versions of the type-free terms. Each term has (up to an
equivalence relation) a unique type that is usually derivable from the way the
term is annotated.

The Curry and Church approaches to typed lambda calculus correspond to

33

34 Introduction to Lambda Calculus

two paradigms in programming. In the first of these a program may be written
without typing at all. Then a compiler should check whether a type can be
assigned to the program. This will be the case if the program is correct. A
well-known example of such a language is ML, see Milner (1984). The style of
typing is called implicit typing . The other paradigm in programming is called
explicit typing and corresponds to the Church version of typed lambda calculi.
Here a program should be written together with its type. For these languages
type-checking is usually easier, since no types have to be constructed. Examples
of such languages are Algol 68 and Pascal . Some authors designate the Curry
systems as ‘lambda calculi with type assignment ’ and the Church systems as
‘systems of typed lambda calculus’.

Within each of the two paradigms there are several versions of typed lambda
calculus. In many important systems, especially those à la Church, it is the case
that terms that do have a type always possess a normal form. By the unsolv-
ability of the halting problem this implies that not all computable functions can
be represented by a typed term, see Barendregt (1990), Theorem 4.2.15. This
is not so bad as it sounds, because in order to find such computable functions
that cannot be represented, one has to stand on one’s head. For example in
λ2, the second order typed lambda calculus, only those partial recursive func-
tions cannot be represented that happen to be total, but not provably so in
mathematical analysis (second order arithmetic).

Considering terms and types as programs and their specifications is not the
only possibility. A type A can also be viewed as a proposition and a termM in A
as a proof of this proposition. This so called propositions-as-types interpretation
is independently due to de Bruijn (1970) and Howard (1980) (both papers
were conceived in 1968). Hints in this direction were given in Curry and Feys
(1958) and in Läuchli (1970). Several systems of proof checking are based
on this interpretation of propositions-as-types and of proofs-as-terms. See e.g.
de Bruijn (1980) for a survey of the so called automath proof checking system.
Normalization of terms corresponds in the formulas-as-types interpretation to
normalisation of proofs in the sense of Prawitz (1965). Normal proofs often
give useful proof theoretic information, see e.g. Schwichtenberg (1977).

In this section a typed lambda calculus will be introduced in the style of
Curry. For more information, see Barendregt (1992).

The system λ→-Curry

Originally the implicit typing paradigm was introduced in Curry (1934) for the
theory of combinators. In Curry and Feys (1958) and Curry et al. (1972) the
theory was modified in a natural way to the lambda calculus assigning elements
of a given set T of types to type free lambda terms. For this reason these calculi
à la Curry are sometimes called systems of type assignment . If the type σ ∈ T

is assigned to the term M ∈ Λ one writes `M : σ, sometimes with a subscript
under ` to denote the particular system. Usually a set of assumptions Γ is
needed to derive a type assignment and one writes Γ ` M : σ (pronounce this
as ‘Γ yields M in σ’). A particular Curry type assignment system depends on
two parameters, the set T and the rules of type assignment. As an example we

Type Assignment 35

now introduce the system λ→-Curry.

5.1. Definition. The set of types of λ→, notation Type(λ→), is inductively
defined as follows. We write T = Type(λ→). Let V = {α, α′, . . .} be a set of
type variables. It will be convenient to allow type constants for basic types such
as Nat, Bool. Let B be such a collection. Then

α ∈ V ⇒ α ∈ T,

B ∈ B ⇒ B ∈ T,

σ, τ ∈ T ⇒ (σ→τ) ∈ T (function space types).

For such definitions it is convenient to use the following abstract syntax to
form T.

T = V | B | T→T

with

V = α | V
′ (type variables).

Notation. (i) If σ1, . . . , σn ∈ T then

σ1→σ2→· · ·→σn

stands for

(σ1→(σ2→· · ·→(σn−1→σn)··));

that is, we use association to the right.

(ii) α, β, γ, . . . denote arbitrary type variables.

5.2. Definition. (i) A statement is of the form M : σ with M ∈ Λ and σ ∈ T.
This statement is pronounced as ‘M in σ’. The type σ is the predicate and the
term M is the subject of the statement.

(ii) A basis is a set of statements with only distinct (term) variables as
subjects.

5.3. Definition. Type derivations in the system λ→ are built up from as-
sumptions x:σ, using the following inference rules.

M : σ→τ N : σ

MN : τ

x : σ
·
·
·

M : τ

λx.M : σ→τ

5.4. Definition. (i) A statement M : σ is derivable from a basis Γ, notation

Γ `M : σ

(or Γ `λ→ M : σ if we wish to stress the typing system) if there is a derivation
of M : σ in which all non-cancelled assumptions are in Γ.

(ii) We use `M : σ as shorthand for ∅ `M : σ.

36 Introduction to Lambda Calculus

5.5. Example. (i) Let σ ∈ T. Then ` λfx.f(fx) : (σ→σ)→σ→σ, which is
shown by the following derivation.

f : σ→σ (2)

f : σ→σ (2) x : σ (1)

fx : σ

f(fx) : σ
(1)

λx.f(fx) : σ→σ
(2)

λfx.f(fx) : (σ→σ)→σ→σ

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

(ii) One has ` K : σ→τ→σ for any σ, τ ∈ T, which is demonstrated as
follows.

x : σ (1)

λy.x : τ→σ
(1)

λxy.x : σ→τ→σ

(iii) Similarly one can show for all σ ∈ T

` I : σ→σ.

(iv) An example with a non-empty basis is the statement

y:σ ` Iy : σ.

Properties of λ→

Several properties of type assignment in λ→ are valid. The first one analyses
how much of a basis is necessary in order to derive a type assignment.

5.6. Definition. Let Γ = {x1:σ1, . . . , xn:σn} be a basis.

(i) Write dom(Γ) = {x1, . . . , xn} and σi = Γ(xi). That is, Γ is considered
as a partial function.

(ii) Let V0 be a set of variables. Then Γ � V0 = {x:σ | x ∈ V0 &σ = Γ(x)}.
(iii) For σ, τ ∈ T substitution of τ for α in σ is denoted by σ[α := τ].

5.7. Basis Lemma. Let Γ be a basis.

(i) If Γ′ ⊇ Γ is another basis, then

Γ `M : σ ⇒ Γ′ `M : σ.

(ii) Γ `M : σ ⇒ FV(M) ⊆ dom(Γ).

(iii) Γ `M : σ ⇒ Γ � FV(M) `M : σ.

Proof. (i) By induction on the derivation of M : σ. Since such proofs will
occur frequently we will spell it out in this simple situation in order to be shorter
later on.

Type Assignment 37

Case 1. M : σ is x:σ and is element of Γ. Then also x:σ ∈ Γ′ and hence
Γ′ `M : σ.

Case 2. M : σ is (M1M2) : σ and follows directly from M1 : (τ→σ) and
M2 : τ for some τ . By the IH one has Γ′ `M1 : (τ→σ) and Γ′ `M2 : τ . Hence
Γ′ ` (M1M2) : σ.

Case 3. M : σ is (λx.M1) : (σ1→σ2) and follows directly from Γ, x : σ1 `
M1 : σ2. By the variable convention it may be assumed that the bound variable
x does not occur in dom(Γ′). Then Γ′, x:σ1 is also a basis which extends Γ, x:σ1.
Therefore by the IH one has Γ′, x:σ1 `M1 : σ2 and so Γ′ ` (λx.M1) : (σ1→σ2).

(ii) By induction on the derivation of M : σ. We only treat the case that
M : σ is (λx.M1) : (σ1→σ2) and follows directly from Γ, x:σ1 `M1 : σ2. Let y ∈
FV(λx.M1), then y ∈ FV(M1) and y 6≡ x. By the IH one has y ∈ dom(Γ, x:σ1)
and therefore y ∈ dom(Γ).

(iii) By induction on the derivation of M : σ. We only treat the case that
M : σ is (M1M2) : σ and follows directly from M1 : (τ→σ) and M2 : τ for some
τ . By the IH one has Γ � FV(M1) `M1 : (τ→σ) and Γ � FV(M2) `M2 : τ . By
(i) it follows that Γ � FV(M1M2) ` M1 : (τ→σ)and Γ � FV(M1M2) ` M2 : τ
and hence Γ � FV(M1M2) ` (M1M2) : σ. �

The second property analyses how terms of a certain form get typed. It is
useful among other things to show that certain terms have no types.

5.8. Generation Lemma. (i) Γ ` x : σ ⇒ (x:σ) ∈ Γ.
(ii) Γ `MN : τ ⇒ ∃σ [Γ `M : (σ→τ) &Γ ` N : σ].
(iii) Γ ` λx.M : ρ ⇒ ∃σ, τ [Γ, x:σ `M : τ & ρ ≡ (σ→τ)].

Proof. By induction on the structure of derivations. �

5.9. Proposition (Typability of subterms). Let M ′ be a subterm of M . Then

Γ `M : σ ⇒ Γ′ `M ′ : σ′ for some Γ′ and σ′.

The moral is: if M has a type, i.e. Γ ` M : σ for some Γ and σ, then every
subterm has a type as well.

Proof. By induction on the generation of M . �

5.10. Substitution Lemma.

(i) Γ `M : σ ⇒ Γ[α := τ] `M : σ[α := τ].
(ii) Suppose Γ, x:σ `M : τ and Γ ` N : σ. Then Γ `M [x := N] : τ .

Proof. (i) By induction on the derivation of M : σ.
(ii) By induction on the derivation showing Γ, x:σ `M : τ . �

The following result states that the set of M ∈ Λ having a certain type in
λ→ is closed under reduction.

5.11. Subject Reduction Theorem. Suppose M →→β M
′. Then

Γ `M : σ ⇒ Γ `M ′ : σ.

38 Introduction to Lambda Calculus

Proof. Induction on the generation of →→β using the Generation Lemma 5.8
and the Substitution Lemma 5.10. We treat the prime case, namely that M ≡
(λx.P)Q and M ′ ≡ P [x := Q]. Well, if

Γ ` (λx.P)Q : σ

then it follows by the Generation Lemma that for some τ one has

Γ ` (λx.P) : (τ→σ) and Γ ` Q : τ.

Hence once more by the Generation Lemma

Γ, x:τ ` P : σ and Γ ` Q : τ

and therefore by the Substitution Lemma

Γ ` P [x := Q] : σ. �

Terms having a type are not closed under expansion. For example,

` I : (σ→σ), but 6` KI (λx.xx) : (σ→σ).

See Exercise 5.1. One even has the following stronger failure of subject expan-
sion, as is observed in van Bakel (1992).

5.12. Observation. There are M,M ′ ∈ Λ and σ, σ′ ∈ T such that M ′ →→β M
and

`M : σ, `M ′ : σ′,

but
6`M ′ : σ.

Proof. Take M ≡ λxy.y,M ′ ≡ SK, σ ≡ α→(β→β) and σ′ ≡ (β→α)→(β→β);
do Exercise 5.1. �

All typable terms have a normal form. In fact, the so-called strong nor-
malization property holds: if M is a typable term, then all reductions starting
from M are finite.

Decidability of type assignment

For the system of type assignment several questions may be asked. Note that
for Γ = {x1:σ1, . . . , xn:σn} one has

Γ `M : σ ⇔ ` (λx1:σ1 · · · λxn:σn.M) : (σ1→· · ·→σn→σ),

therefore in the following one has taken Γ = ∅. Typical questions are
(1) Given M and σ, does one have `M : σ?
(2) Given M , does there exist a σ such that `M : σ?
(3) Given σ, does there exist an M such that `M : σ?

Type Assignment 39

These three problems are called type checking , typability and inhabitation re-
spectively and are denoted by M : σ?, M : ? and ? : σ.

Type checking and typability are decidable. This can be shown using the
following result, independently due to Curry (1969), Hindley (1969), and Milner
(1978).

5.13. Theorem. (i) It is decidable whether a term is typable in λ→.
(ii) If a term M is typable in λ→, then M has a principal type scheme, i.e.

a type σ such that every possible type for M is a substitution instance of σ.
Moreover σ is computable from M .

5.14. Corollary. Type checking for λ→ is decidable.

Proof. In order to check M : τ it suffices to verify that M is typable and that
τ is an instance of the principal type of M . �

For example, a principal type scheme of K is α→β→α.

Polymorphism

Note that in λ→ one has

` I : σ→σ for all σ ∈ T.

In the polymorphic lambda calculus this quantification can be internalized by
stating

` I : ∀α.α→α.

The resulting system is the polymorphic of second-order lambda calculus due
to Girard (1972) and Reynolds (1974).

5.15. Definition. The set of types of λ2 (notation T = Type(λ2)) is specified
by the syntax

T = V | B | T→T | ∀V.T.

5.16. Definition. The rules of type assignment are those of λ→, plus

M : ∀α.σ

M : σ[α := τ]

M : σ

M : ∀α.σ

In the latter rule, the type variable α may not occur free in any assumption on
which the premiss M : σ depends.

5.17. Example. (i) ` I : ∀α.α→α.
(ii) Define Nat ≡ ∀α.(α→α)→α→α. Then for the Church numerals cn ≡

λfx.fn(x) we have ` cn : Nat.

The following is due to Girard (1972).

5.18. Theorem. (i) The Subject Reduction property holds for λ2.
(ii) λ2 is strongly normalizing.

Typability in λ2 is not decidable; see Wells (1994).

40 Introduction to Lambda Calculus

Exercises

5.1. (i) Give a derivation of
` SK : (α→β)→(α→α).

(ii) Give a derivation of
` KI : β→(α→α).

(iii) Show that 6` SK : (α→β→β).
(iv) Find a common β-reduct of SK and KI. What is the most general type for

this term?

5.2. Show that λx.xx and KI(λx.xx) have no type in λ→.

5.3. Find the most general types (if they exist) for the following terms.
(i) λxy.xyy.
(ii) SII.
(iii) λxy.y(λz.z(yx)).

5.4. Find terms M,N ∈ Λ such that the following hold in λ→.
(i) `M : (α→β)→(β→γ)→(α→γ).
(ii) ` N : (((α→β)→β)→β)→(α→β).

5.5. Find types in λ2 for the terms in the exercises 5.2 and 5.3.

