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1. Systems with states

It is often maintained that the brain-as-computer metaphor is ill taken. Nev-
ertheless one can view conscious cognition as a Turing Machine process, Turing
(1937), with its discrete, deterministic, and universal aspects. Not being used to
the language of science one may object to the statement that computation plays
an important role in the life of humans (and in fact all animals). Nevertheless,
for goal directed movements fast and accurate (unconscious) computations are
necessary. Sensory input has to transformed to output in the form of action. Cog-
nitive scientists, who are aware of the need for computation, still may object to
the computer metaphor. Our brain is not a network of Boolean switches and it
does neither have numerical input nor output. Our claim is that nevertheless it is
useful to interpret cognition as a hybrid Turing Machine process.

Modelling systems (machines or living organisms) the notion of ‘state’ is im-
portant. Only considering stimulus-reaction (Input, Action) transitions, we get

I 7→ A. (1)

This ‘behavioristic’ view has limited possibilities. Actual systems can react differ-
ently on the same input. To model this difference, inspired by Turing machines,
one introduces states, modifying (1) to

I × S 7→ A× S. (2)

Now the output may depend also on the state. This will be elaborated below.
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2. The Turing Machine: processes and computation

A Turing Machine is a theoretical model of ad hoc computing devices, including
the universal Turing Machine2, after which the modern digital computers are built.
It consists of a potentially two-sided infinite tape3 with memory cells, a movable
reading/writing head placed on one of the cells, and a finite set S of states. The
cells each contain a symbol from a finite input alphabet I (set of symbols). Each
specific Turing Machine is determined by a finite set of transition rules:

t1, . . . , tm : I × S 7−→ A× S, (2′)

where we have the following

I = set of possible inputs (symbols)

the head reads on the tape at its location,

S = set of possible states,

A = {L,R,W (a)}, the set of possible actions:

L moving head left (or the tape moves right),

R moving head right (or the tape moves left),

W (a) overwriting present location with symbol a ∈ I.

For example a machine M can have a, b in I and s1, s2 in S, and transition rules

t1 : 〈a, s1〉 7−→ 〈R, s2〉
t2 : 〈b, s1〉 7−→ 〈W (a), s2〉

with the following meanings.

t1: if M reads an a in state s1, then
the reading head moves one cell to the right and M enters state s2;

t2: if M reads a b in state s1, then
it (over)writes (this b with) an a and M enters state s2.

With a Turing Machine one can run processes and perform computations.
A computation starts with an input. In the Turing Machine this is represented

as a finite list of data, elements of I, written on consecutive cells of the tape.
The other cells are blank (also considered as an element of the alphabet I). The

2The universality means that just one machine can simulate the behavior of all other ones by
giving it various programs.

3In modern computers a disc or flash memory is used instead of a tape. The infinity of the
tape was proposed by Turing in order to be technology independent. But each computation on
a Turing Machine uses only a finite amount of memory.
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read/write head is located at a particular cell of the tape and the machine is in
an initial state q0. The machine performs the actions according to its transition
rules, until no more rule applies and the machine ‘halts’. The resulting contents
on the tape is considered as the output of the computation.

Turing made it plausible that any kind of mechanical computation can be
performed in such a way. Moreover, he constructed a single Turing Machine UM,
the universal Turing Machine, that can simulate an arbitrary Turing Machine M .
Wanting to simulate the computation of M on input i, notation M(i), one can
construct a program pM for M such that for all input i one has

UM(pM , i) = M(i).

This means that UM requires an extra argument, the program code pM , next to
the given argument i. Turing used it to define a problem that cannot be answered
by the computation of a Turing Machine and hence not by any computation.

A process is like a computation, but without the requirement that there is
a final state in which the machine comes to a halt. So computations are special
processes focused on termination; processes in general are focused on continuation.
The usefulness of processes can be seen by giving some of the cells on the tape
a special status: for input (‘sensors’) and for output (‘actuators’) from and to
the outside world. A factory involving heating devices, thermometers, and safety
valves, may be controlled in this way by a Turing Machine acting as process.

The process (or computation) taking place in a Turing Machine is discrete and
deterministic: it consists of a stream of distinct steps, only depending on the input.

3. The neural Turing Machine

From the description of a process it is clear that life (humans, animals, and
even plants) can be thought of as processes. In Artificial Intelligence (AI) one tries
to emulate these processes. There are two views in AI, the symbolic rule-based of
Simon and Newell (1958), and the connectionist one Turing (1986), Hillis (1989).
Simon and Newell state that intelligence works in a discrete serial way following
specific rules. The connectionist view states that cognition uses the parallelism
of ‘neural nets’ and not a sequential system. In the hybrid version of Turing
Machines presented below, the sequential machine will get transition rules pro-
grammed by a parallel neural net, providing a useful unification for understanding
human cognition.

Let us review the model of the Turing Machine. A particular such machine is
determined by a finitely specified transition map (2′). Now we slightly change the
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interpretation of this notation.

I = now stands for sensory input

S = set of possible states

A = now stands for neural actions, including moving muscles

7−→ = the transition determined by a neural net

We do have an extension. No longer is I a finite alphabet, but a virtually un-
bounded set of inputs from the world. It still is essentially finite by the limitations
of our senses. In a Turing Machine the set I is typically of size 2n, with n < 10;
in human cognition it is orders of magnitude bigger. The same applies to the set
A. This set consists of bodily movements, speech, or mental action.

Another feature that happens in the brain is that while we are processing,
our processor does change. This includes development and is essential for homo
sapiens. This seems like a proper extension of the notion of a Turing Machine.
But thanks to the existence of a universal Turing Machine this is not so. Instead
of (N stands for the neural net determining the transitions and A can act on N)

I × S
N

// A× S (2′′)

one can employ the universal machine and write the equivalent

I × pN × S
UTM

// A× S .

Now it becomes possible that the A act on the program pN . In ordinary computing
this is not advisable, as it is difficult to reason about the resulting effects. But in
the neural evolution it fits perfectly well.

In the resulting model of cognition the set of states S plays an important role.
Rather than seeing human cognition in a stimulus response fashion like in (1) as
was fashionable in the behaviorist days of last century, the cognitive model (2′′)
shows the essence of states. A ‘state’ is a mathematical concept: giving the same
input-output relation. We know empirically that attention and emotions greatly
influence these states. Under the same circumstances these inner state can make
of a human being a saint, a scientist, a Scrooge or worse. It should be noted that
the model (2′′) is discrete. Conscious cognition is a stream of separate phenomena,
taking place in time. We will come back to this in the next section.

4. Conscious cognition: discrete temporal frames

A currently influential model of human conscious cognition is the global work-
space (GW) theory, Baars (1998); Baars et al. (2003). In this model, conscious
cognition enables an access to a varying subset of brain sources.
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A neuronal underpinning for the GW model has been developed in Dehaene
and Naccache (2001). It is characterized by a winner-take-all dynamics, forming
a ‘neural processing bottleneck’, involving ‘broadcasting’ activity from prefrontal
cortex to neurons on a global scale in the brain. Only one large-scale reverberating
neural assembly is assumed to be active at any given moment. This crucially
involves the thalamocortical pulse and imposes a temporal resolution for the stream
of conscious cognition, needing at least 100 ms for a perceptual awareness moment.

Independently, based on psychophysical, neurophysiological and electrophysio-
logical findings, in Varela (1995); Varela et al. (2001) a specific large scale neural
assembly is postulated to underlie the emergence and operation of each conscious
cognitive act. Such assemblies occur in the thalamocortical system, using closed-
loop signaling with periods of 100-300 ms, see Tononi and Edelman (1998).

These periods are consistent with the earlier behavioral evidence of the psycho-
logical refractory period, based on minimal temporal resolutions Welford (1952).
This is about 150 milliseconds, remarkably close to the lower limit of the period
for conscious cognition.

On the other hand Efron (1973) suggested, based on psychophysical evidence,
that conscious cognition is temporally discrete and parsed into sensory sampling
intervals or ‘perceptual frames’, estimated to be about 70-100 ms in average du-
ration. More recently, based on psychophysical and electrophysiological evidence,
the range 70-100 ms has been interpreted as an attentional object-based sampling
rate for visual motion, van Rullen and Koch (2006). These time rate could be
related to a sequence of shorter temporal processes, needed for unconscious treat-
ment of sensory and other input, see van Rullen and Koch (2003) for a review.
It may provide an estimate of the rate at which temporal representations at an
unconscious level can be accessed, van Wassenhove (2009).

To reconcile the framing of conscious cognition with the apparent continu-
ity of perceptual experience, John (1990) suggested the following mechanism. A
cortical convergence of a cascade of momentary perceptual frames establishes a
steady-state perturbation from baseline brain activity. This idea has received sub-
stantial support from electroencephalographic (EEG) studies. The dynamics of
the EEG field is represented by intervals of quasi-stability or ‘microstates’, with
sudden transitions between them, Strik and Lehmann (1993). Churchland and
Sejnowski (1992) argued that sequences of stable activation patterns at the neural
level may be consistent with the seamless nature of our ongoing phenomenal ex-
perience, as these stabilizations can take place very rapidly. See also Fingelkurts
and Fingelkurts (2006) for a similar view.
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5. Conscious cognition: mind states

According to Baars’ GW theory, Baars et al. (2003), sensory cognition works
as follows. Input as signals from the sensory cortex are amplified by attention
and become ‘contents’ of consciousness. After this amplification feed back to the
sensory cortex takes place to enable conscious access to the contents themselves,
in a recurrent GW process. See Dehaene and Naccache (2001) and Lamme (2003).

In this process ‘contextual’ brain systems play a role in shaping conscious
events. These include the ‘where’ and ‘what’ pathways in the parietal cortex for
visual processing, see Milner and Goodale (2008). Regions of prefrontal cortex
appear to do the same for other aspects of experience, including emotional, goal-
related and and self-representation aspects (Baars et al., 2003). Also the insula
appears to play a crucial role as body- and feeling-related contextual system for
awareness (Craig, 2009). More in general, as shown by behavioral research, affec-
tive states, including moods and emotions, provide a inner context guiding differ-
ent forms of human judgment and cognitive processing, see Clore and Huntsinger
(2007) for a review. All these contexts can be considered as mind states. We see
that these not only are determining the actions, but also the next input via the
mechanism of attention. This selectivity in turn stems from current goals repre-
sented in prefrontal cortex, Duncan (2001) and can ultimately be related to the
current mind state. In a synthetic view, apart from inputs from sensory fields,
inputs to the GW come from the GW output itself, see also Maia and Cleeremans
(2005), depending on a given mind state.

In a TM controlling an industrial process the input is determined solely by
the world. This is not so in human emotional cognition, where attention plays an
input selecting role. Therefore mind states are themselves the ground for conscious
cognition, not just a context. By their broadcasting, ‘speaking to the audience’ in
Baars’ theater metaphor, they have the greatest influence on the brain state as a
whole, and on (intentions for) action and thinking.

The brain substrates for mind states are potentially wider than those for the
GW, with an overlap with the latter, and with the inclusion of various kinds of
unconscious contextual systems supporting conscious processing of perceptual and
other mental contents. The neural substrates for longer lasting emotional mind
states plausibly also include the cerebrospinal fluid, as discussed in Veening and
Barendregt (2010).

6. Trained phenomenology

The temporally discrete view of conscious cognition stemming from psychophys-
ical and neuroscientific experiments, and models of conscious cognition, can be
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related to Buddhist psychology, based on trained phenomenology (insight medi-
tation). Also in this theory, conscious cognition is described as a deterministic
stream of successive ‘pulses’, with object and a state, see von Rospatt (1995).

Mindfulness, which can be conceived as a moment by moment reflexive aware-
ness, is described as providing psychologically wholesome mind states. It can bring
flexibility in the co-determination of mind states and conscious processes/delibera-
tions. Mindfulness plausibly is supported by adaptive coding regions in prefrontal
cortex, Raffone and Srinivasan (2009). It gives the possibility to be universal:
automatic reactions may be deconditioned.

The only way to influence the outcome of this deterministic process is to choose
the right input. This can be done by training our attention, which chooses input
and thereby the mind states. This is exactly what happens during the mental
development of insight meditation: training concentration and mindfulness.

7. Conclusion

Behavioral and neurophysiological experiments and also trained phenomenol-
ogy all point in the direction of conscious cognition as a discrete process depending
on input and states. This is very similar to the Turing model of general com-
putability. In fact the hybrid Turing Machine model of human conscious cognition
captures well the recursive aspects mentioned in Section 5 and gives a logical in-
terpretation of the notion of determinacy, emphasized both in cognitive science
and Buddhism. This does not exclude free will, see Dennett (2003).
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