Tuesday: Lambda Calculus & Combinatory Logic

2.1.1 Words, language, theory

Concept Example

An alphabet ¥ is a set of symbols (often finite) %o = {a, b}

A word over X is a finite sequence of elements in X

>>* consists of all words over X abba€Xy, be ¢ X

A language L over X Is a subset L C >*

L C X" chooses in some way meaningful strings called sentences

often such a language is given by a grammar

With a theory 1" we go one step further:
A theory in a language L is just a subset T' C L

A theory selects a set of correct sentences

often such a theory is given by an axiomatic system

HB Chapter 2 17.02.2009

2.1.2 Words, language, theory

® 3) (2—|— meaningless

o 32442 =172 meaningful,

032—|—42:52 me:

T

ningful,

Incorrec

correct

Z*

17.02.2009

2.1.3 Combinators

ZCL — {17K7 S,il?,/,)7 (7 :}

We introduce several simple regular grammars over >cy..

(i) |constant := I | K|S
(ii) |variable := z | variable'
(iii) |term := constant | variable | (term term)
(iv) |formula := term = term
Intuition:

in (F'A) the term F' stands for a function and A for an argument

Variables z, 2/, 2", .. .; write: =, vy, 2z, 1, vy1, 21, . . .

HB Chapter 2 17.02.2009

2.1.4 Combinatory Logic CL (Schonfinkel 1920)

Axioms
IP = P (I)
KPQ = P (K)
SPQR = PR(QR) (S)
Equational deduction rules
P=P
P=Q = @=P
P=Q,Q=R = P=R
P=¢ = PR=QR
P=@ = RP=RQ

Here P, (), R denote arbitrary terms

IP stands for (IP), KPQ for (KP)Q) and SPQR for (((SP)Q)R)

In general PQ1...Qn = (..((PQ1)Q2)...Qx) (association to the left)

HB Chapter 2 17.02.2009

2.1.5 Combinatory algebras

C= (X, K,S)
(Kz)y = =
((Sz)y)z = (x2)(yz)
K # S

The theory CL"°®

Fact. The theory CL"® is

e Consistent
e Essentially incomplete
e Essentially undecidable

This means the following: CL"“® does not prove every equation;
for every consistent extension T" of CL"“® one has
T is undecidable (there is no algorithm to determine provability)

T is incomplete (there are terms P, Q) such that neither P = Q nor P £ @ are in T))

HB Chapter 2 17.02.2009

2.1.6 Some magic with combinators

PROPOSITION.
(i) Let D = SII. Then (doubling)

Dx =cg, 2.
(ii)) Let B = S(KS)K. Then (composition)

Bfgr =cL f(gz).
(iii) Let L = D(BDD). Then (self-doubling, life!)

L =c¢1, LL.
PROOF.
(i) Dz = SIlx (ii) Bfgr = S(KS)Kfgx (iii) L = D(BDD)
— Tz(Iz) — KSf(Kf)gz — BDD(BDD)
= z. = S(Kf)gz = D(D(BDD))
= Kfz(gx) = DL
= f(gx). = LL.

We want to understand and preferably also to control this!

HB Chapter 2 17.02.2009

2.1.7 Lambda Calculus

The meaning of
AT.3x

Is the function
r —— 32

that assigns to x the value 3z (3 times x)
So according to this intended meaning we have

(\z.37)(6) = 18.

The parentheses around the 6 are usually not written:

(\z.32)6 = 18

Principal axiom

(Axe. M)N =5 M|z: = N]|

HB Chapter 2

17.02.2009

2.1.8 Language

Alphabet

2 = {3;7’7(7)7)\7:}

Language (abstract syntax)

variable := x| variable’
term variable | term term | Avariable term
formula := term = term
Theory
Axiom (A M)N = Mlx: = N|
Rules M=M
M=N = N=M
M=NN=L = M=N
M=N = ML=NL
M=N = LM=LN
M=N = XM=>MN

HB

17.02.2009

2.1.9 Bureaucracy

Substitution

M [M[z:=N]

x N

Y Y

PQ | (Plz: = N])(Qlz: = NJ)
A P | A\x P

Ay P | Ay (Plz: = NJ), where y # x

‘Association to the left’

PQri...Qn = (.((PQ1)Q2) ... Q).

‘Association to the right’
Ary ...y M = (Axy (A (. (Az, (M)).)))).

Outer parentheses are often omitted. For example

(Ax.x)y = (Azx)y)

HB Chapter 2 17.02.2009

2.1.10 Examples

| = \x.x = 1 X =5 X

K = A\ry.x = KXY =5 X

S = Avyzaz(yz) = SXYZ =53 XZ(YZ)

D = M\r.azx = DX =53 XX

B = Myzax(yz) = BXYZ =53 X(YZ2)
Set of lambda terms: A
Free variables of a term

FV(z) = {z}

FV(PQ) = FV(P)UFV(Q)
FV(Ax.P) = FV(P)—{z}

NP = {MeA | FV(M) = (0} the set of closed terms or combinators

HB Chapter 2 17.02.2009

2.1.11 Fixed point theorem

THEOREM. For all F'€A there is an M €A such that
FM =5 M
PROOF. Defines W = \z.F(zx) and M = WW. Then

M = WW
(A\z.F(zx))W
F(WW)
FM.m

COROLLARY. For any ‘context’ C'[Z, m| there exists a M such that
MX = C[X, M.

PROOF. M can be taken the fixed point of Amz.C|Z, m].
Then MX = (AmzZ.C|Z,m|)MX =C|X,M|. =

HB Chapter 2 17.02.2009

2.1.12 Consequences

We can construct terms Y, L, O, P such that

Yf = f(Yf) producing fixed points;

L = LL take L = YD;
Oxr = O take O = YK:
P = Pux.

Defne for n€Nat the Church numerals:
c, = Afx.f"x,

where Uz .=z, f"tx = f(f"x)
Note that for A, := Anmfxnf(mfzx) one has A c,c,, =5 Crim.

Similarly for Ay := Anmfx.n(mf)x one has Ayc,Cr =5 Crxm.

HB Chapter 2 17.02.2009

2.1.13 More Bureaucracy

Ax.x and Ay.y acting on M both give M

We write
AT.T =4 AYY

“Names of bound variables may be changed”.

NB (Hilbert and McCarthy did it wrong; von Neumann found the bug)

KMN = (Axy.x)MN
= ((Az(Ay z))M)N)
= ((AyM)N)
= M assuming that y not in M.
But
Kyz = ((Az(Ay z))y)z) better: Kyz = (((A'(Ay' 27))y)z)
=2 (A y)2) = (M y)z
= 277 = y as it should.

HB Chapter 2 17.02.2009

2.1.14 Bohm's Theorem

Let M, N be two A-terms with different 3n-nf.

FeA such that
FM =5 Ary.x
FN =3 Azy.y

In that case A + M =N becomes inconsistent

Then there exists an

HB Chapter 2

17.02.2009

HB

Chapter 2

17.02.2009

Representing computable functions

HB

Chapter 2

17.02.2009

2.2.1 Two examples of data types: natural numbers and trees

Natural numbers:

Nat := zero | suc Nat

Tree := 1leaf | pair Tree Tree

Equivalently, as a context-free grammar

Nat — =z | (s Nat)

Tree — 1 | (p Tree Tree)

We know what belongs to it

Nat = {z,(sz),(s(sz)),(s(s(s2))),...} = {s"z | neN}

HB Chapter 2

17.02.2009

2.2.2 Trees

Tree := 1 | (p Tree Tree)

Examples of elements of (language defined by) Tree

(pl1(pll)) and (p(pl(pll))1)
p
z/\ /\
p
z/\z /\
/\
[[

HB Chapter 2

17.02.2009

2.2.3 Translating data into lambda terms (Bohm-Berarducci)

Nat: t~ 't := \sz.t

For example

(s(s(sz))) = Isz.(s(s(s2))) =o Mfx.f?2 =: c3

Tree: t~ 't :=\pl.t

For example
(p1(p11)) = Apl.(pl(pll))

HB Chapter 2 17.02.2009

2.2.4 Operating on data after representing them

For Nat we could operate on the codes to ‘A-define’ functions:

Avn''m =5 ‘n+m
Ayn''m =5 ‘nxm

We can do this for all computable functions

Define on Trees the operation of mirroring:

Mirror (1) = 1
Mirror (p t1 t2) = (p (Mirror t2) (Mirror t1))

We will construct a A-term Aj; such that

Ay 't =5 Mirror(t)'
B

HB Chapter 2

17.02.2009

2.2.5 The computable functions

A (k-ary) numeric functionis a ¢ : N¥ — N

The initial numeric functions are defined by

Z(n) = 0
ST(n) = n+1
Uz’k(nh"'ank) = Ny

Let A be a class of numeric functions.
(i) A is closed under composition if for all x,v¢1,..., ¥meA

@ = AX(Y1(A), ..., Ym (7)) = pcA

(ii) A is closed under primitive recursion if for all ¥, x€A and ¢ defined by

p(0,7) = x(7)
@(k+17ﬁ) — w(go(k,ﬁ),k,ﬁ)

(iii) A is closed under minimalization if for all x€A and ¢ defined by

}:>90€A

p = Ai.um[x(i,m) = 0] = @A,

with x such that Vidm.x (7, m) = 0.

HB Chapter 2

17.02.2009

2.2.6 The computable functions and their A-definability

The computable functions are the smallest class C
that contains the inital functions and
Is closed under composition, primitive recursion and minimalization

A numeric function ¢ is \-definable if there is an F¢€A¢ such that
Vni...nyeN.F,cp, ... Ch. =58 Cyu(ny,...np)

PROPOSITION. The initial functions are A-definable

PROOF. Take Fz = Az.co, Fs+ = Anfrx.f(nfx), Fyr = Azy ... w25

One has e.g.

Fs+c, =3 Afz.f(c,fz)
Az f(f"z)
—3)\fm.fnJrlllf
Crr1 H

|
@

HB Chapter 2 17.02.2009

2.2.7 A-defining primitive recursion

S.C. Kleene invented the method to A-define the predecessor:

P~ (0) = 0
P (n+1) = n
Pairing
Define [M, N] = Az.2zM N. Then [My, Ms|(Ax120.20;) = M;

Kleene wanted to represent the informal n — [P~ (n), n|:

0,0],00,1],[1,2],[2,3],. ..
T [P~ (n),n] — [P~ (n+1),n+ 1]?
Take Fyr = \p.[p(Azy.y), ST (p(Azy.y))]. Then
Fr"|co, co] = [cp-(n); Cn)

Hence, Fp- = An.nFr|cy, cg|] works as A-definition of P~

HB Chapter 2 17.02.2009

2.2.8 Representing the basic operation on Tree

LEMMA. There exists a P€A such that

PROOF. Taking P: = Atytopl.p(tipl)(tapl) we claim that (1) holds.
Note that t&€Tree can be considered as a M\-term: Tree C A

Since t = Apl.t one has 't pl =5 t. Hence

Pty ty = (Atitopl.p(tipl)(tepl)) ty 'ty
= Apl.p(ti p1)(t2 p1)
= Apl.ptit,
= 'ptit, . N

HB Chapter 2 17.02.2009

2.2.9 Representing mirroring in A

PROPOSITION. There exists an Ays€A such that for all t€Tree
Ay 't =5 Mirror(t) (2)

PROOF. Take Ap; = Atpl.tp’l, where p’ = Aab.pba.
We claim by induction that (2) holds. Note that A, t pl = 't p'l.
Case t=1. Then

Apy'1'=2pl.(Apl.1)p'l = Apl.1 ='1 = Mirror('1)).
Case t = ptit,. Then
An'ptita! = Apl.'ptity'p'l
= AplP't;''t,'p'1
= Apl.p'('t:'p'1)("t2'p'D)
= Apl.p('t2'p'1)('t1p'l)
= Apl.p(An't2'pl) (A t1 pl)
= Apl.p(Mirror(tsz) pl)('Mirror(t:) pl), by the IH,
= 'p(Mirror(ts))(Mirror(ti))'
= 'Mirror(ptita) . N

HB Chapter 2 17.02.2009

2.3

Reduction in CL and)\

HB

Chapter 2

17.02.2009

2.3.1 Bn-reduction

1P —, P
KPQ) —, P
SPQR —, PR(QR)
(Az.M)N — 3 M|z := N|
A Mz —, M

Def
Gr(a) = ({b€A | a —g b}, —Rr)

Exercise. Draw Gg(M) with
= WWW W = \zy.xyy

M
M =TT T := \v.lzx
M = VV Vo= x| (xx)

HB Chapter 2

17.02.2009

Results on reduction

THEOREM (3-reduction, n-reduction, and (3n-reduction are CR

We have
¢ U] n
—> — . —— . hence
ﬁl 3 nl = Bl =3
_________ Y =Y ‘oY
3 n n
¢ ; 7 ; 7 and Bn .
Bi 3 ni 5i 8 ﬁni B
--------- >>Y >>V >>V . --------->>v
B n n Bn

Chapter 2

17.02.2009

2.3.2 Corollaries of the CR theorem

DEF. An equation M = N is called inconsistent, notation M # N,

if A+ M=N proves every equation, otherwise consistent

For example Axy.x # Axy.y. These terms are called “true, false’
PROP.)\ is consistent, i.e.does not prove z = y. By the CR theorem.
COR. M # N = M #3 N.

The converse is not true. Let €2 := (Ax.xx)(Ax.xx). Then

(Qtrue #5 (2false, but Qtrue = (false is consistent

COROLLARY. There are no terms P;, P, such that
Pi(xy) = x or Py(zy) =v.

If P, exists, we can apply it twice to both sides of truell = falsell.
If P, exists, we can apply it once to Kltrue = Klfalse.

HB Chapter 2 17.02.2009

2.4.1 Reflection in lambda calculus

DATA TYPES. [pat

— 2z | s(nat)
tree — Db | P tree tree
ltree — L var | P ltree ltree | !ltree
var — x| var’

Bohm-Berarducci (BB) representation of first two data types.
Asz.s"z (Church numerals); A\bP.Pb(Pbb), A\bP.P(Pbb)(Pbb).
We have seen the representation of addition on nat.

Mirroring on tree: Fuirror = AtbP.tbP’, where P’ = \ab.Pba.
Then Fiirror (ADP.Pb(Pbb)) =x ADP.P(Pbb)b.

HB Chapter 2

17.02.2009

2.4.2 Reflection in lambda calculus (2)

Az.zMq ... M,.
ALL...Tn -Ti-

Tuples and projections: (M, ..., My)
Ui*

Then <M1,,Mn>Uzn =\ M;.

Bohm-Piperno-Guerrini (BPG) representation of third data type.

Define Fr = JAze.eUize; or more mnemonical Frx = JAe.eUPze;
Fp = Jxye.eUszye; Fpxy =x Me.eUsxye;
F =)\xe.eUgaze. Fx =)\e.eUgaze.
Now define 'Lz =\ Frz; orinnf 'Lz = Je.eUize;
rPtltgT =, Fp r751T r7527; rPtltgT = Je. eU3 r751T r75276;
It =\ Bt It = Jde.eUs;'tle.

PROPOSITION. Let A, A2, As be given lambda terms. Then there exists a H such that

H(FL;B) = Ale; Hint. Try H = <<Bl,BQ,Bg>>.
H(Fpxy) =x AsxyH;

H(Fix) =x AszH.
APPLICATION. There exists an H that erases the !'s in an ltree.
H(Frx) =x FrLx, take A1 = \xh.Frx;
H(Fpxy) =x Fp(Hz)(Hy), take A2 = \zyh.Fp(hz)(hy);
H(Fix) =, Huz, take A3 = \xzh.hz.

HB Chapter 2 17.02.2009

2.4.3 Reflection in lambda calculus (3)

Coding lambda terms as other lambda terms in nf (Mogensen).

N A—)\e.eUf:L’e =\ Frax;
'MN' = JXe.eU3'M''N'e =x Fp'M''N';
.M = deeUs(A\z. ' MDe =, F(\z.'M)).

By the above proposition there exists a lambda term E (self-interpreter) such that
E'lx' =\ a;
EMN' =, EMI(EN;

E' e.M' =, MXz.(E'M).

Hence for all lambda terms M one has
E'M' =, M.
Following the construction one can take E = ((K,S,C)).
There exists lambda terms Py, P> such that
Pi'MN'=5 'M'"and P, MN' =, N

There exists a lambda term (Q such that

QTMNT L1 = "ML'.

HB Chapter 2 17.02.2009

2.4.4 Reflection revisited

The last slide shows that reflection gives power. We can select from the code of a term
(but not from the term itself) or we can replace part of it by the code of another term.

THEOREM. For all lambda terms F' there is a lambda term X such that
F'X' =, X.
APPLICATION. There is a term H such that

Hc,, = c3n if n is even;
Hc, = G'H'c, else.

Typical use of reflection actually happens during translation (so called compiling) of higher
programming languages into machine code. Often the compiler of the higher programming
language is written in that language itself. In order to run that compiler the first time,

one needs an older (usually less efficient) compiler in another language.

HB Chapter 2 17.02.2009

Typed lambda calculi

4.1.1 Simply typed lambda calculus A, (Curry version)

Let A be a set of symbols. Types over A, notation T = T4,

T = A|T->T

Type assignment

(axiom) Tk x: A, if (xz:A)el

'-M:(A—-B) THFN:A Iyz:A-M: B
(—E) (1)
I'-(MN):B ' (Ax.M): (A— B)
Examples
-1 (A—A)
FK : (A—- B — A) forall A, B,CeT
S : (A—-B—(C)—(A—B)—(A—-C)

Theorem. M : A = Me&SN (typable terms are strongly normalizing)
Theorem. Type checking is decidable; type reconstruction is computable

Theorem. W M : A& M — M’ =+ M': A (type checking only at compile time)

HB Chapter 2 17.02.2009

4.1.2 X% (Church version)

AcA = zeA*(A)
MeA*(A — B), NeA®*(A) = (MN)eA*(B)
MeA*(B) = (\x*.M)eA*(A — B)

Given M eA*(A), define |M|€A and Ty,

M| M| Ty

Az |z A

HB Chapter 2 17.02.2009

HB

Chapter 2

17.02.2009

