Finite Automata

Start indicated by ">", finish by double circle

$$M = \langle Q, \Sigma, \delta, q_0, F \rangle$$
 with

$$Q = \{q_0, q_1, q_2\}, \ \Sigma = \{a, b\}, \ F = \{q_2\} \ \text{and} \ \delta \ \text{given by}$$

δ	q_0	q_1	$oldsymbol{q}_2$
a	q_0	q_0	$oldsymbol{q}_2$
b	q_1	$oldsymbol{q}_2$	$oldsymbol{q}_2$

Accepts abba, but not baab

M is a DFA over Σ if $M=(Q,\Sigma,q_0,\delta,F)$ with

Q is a finite set of 'states'

 Σ is a finite alphabet

 $q_0 \in Q$ is the *initial* state

 $F \subseteq Q$ is a finite set of *final* states

 $\delta: Q \times \Sigma \rightarrow Q$ is the *transition* function (often given by a table)

Reading function $\hat{\delta}: Q \times \Sigma^* {
ightarrow} Q$ (arrival after multi-steps)

$$\hat{\delta}(q, \lambda) = q$$

$$[\hat{\delta}(q, a) = \delta(q, a)]$$

$$\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$$

Language accepted by M, notation L(M):

$$L(M) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$$

Computation for $\hat{\delta}(q, w)$ in the example w = abba:

This computation corresponds to an equivalent definition of $\hat{\delta}$:

$$\begin{aligned}
\hat{\delta}(q,\lambda) &= q \\
\hat{\delta}(q,a) &= \delta(q,a) \\
\hat{\delta}(q,aw) &= \hat{\delta}(\delta(q,a),w)
\end{aligned}$$

Example transition table for δ with $Q=\{0,1,2,3,4\}$, $\Sigma=\{a,b\}$, $q_0=0$, and $F=\{4\}$

δ	a	b
0	1	0
1	1	2
2	1	3
3	4	0
4	4	4

We have $\hat{\delta}(0,abba)=4\in F$ and $[0,abba]\vdash^*[4,\lambda]$, hence $abba\in L(M)$ Similarly $\hat{\delta}(0,baba)=1\notin F$; so even if $[0,baba]\vdash^*[1,\lambda]$ we have $baba\notin L(M)$. Even if $\hat{\delta}(1,bba)=4\in F$ and $[1,bba]\vdash^*[4,\lambda]$ we have $bba\notin L(M)$.

δ	q_0	q_1	$oldsymbol{q}_2$
a	q_1		
b		q_0	
c	$oldsymbol{q}_2$		

stands for

δ	q_0	q_1	$oldsymbol{q}_2$	q_e
a	q_1	q_e	q_e	q_e
b	q_e	q_0	q_e	q_e
c	$oldsymbol{q}_2$	q_e	q_e	q_e

δ	q_0	q_1	$oldsymbol{q}_2$
a	q_0	Ø	Ø
b	$\{q_0,q_1\}$	$oldsymbol{q}_2$	Ø

in shorthand

δ	q_0	q_1	$oldsymbol{q}_2$
a	q_0		
b	q_0, q_1	$oldsymbol{q}_2$	

Prop. If a language L over Σ is accepted by a DFA, then also $\overline{L} = \Sigma^* - L$.

Proof. Let L be accepted by $M = \langle Q, \Sigma, \delta, q_0, F \rangle$.

Then \overline{L} is accepted by $M = \langle Q, \Sigma, \delta, q_0, \overline{F} \rangle$.

Prop. If L_1 , L_2 are accepted by some NFA, then also $L_1 \cup L_2$.

Proof. "Put the two q_0 -s together."

DFA Deterministic finite automata

PFA Partial deterministic finite automata

NFA Non-deterministic finite automata

M is a DFA over Σ if $M=(Q,\Sigma,q_0,\delta,F)$ with

Q is a finite set of 'states'

 Σ is a finite alphabet

 $q_0 \in Q$ is the *initial* state

 $F \subseteq Q$ is a set of *final* states

 $\delta: Q \times \Sigma \rightarrow Q$ is the *transition* function

 $\mathsf{DFA} \quad \delta: Q \times \Sigma {\longrightarrow} Q \qquad \qquad \mathsf{given} \ q \in Q \ \mathsf{and} \ a \in \Sigma \mathsf{, then} \ \delta(q,a) \in Q$

 $\mathsf{PFA} \quad \delta: Q \times \Sigma \longrightarrow Q \qquad \quad \delta \text{ is } \mathit{partial} \colon \delta(q,a) \text{ is not always defined}$

NFA $\delta: Q \times \Sigma {
ightarrow} {\cal P}(Q)$ $\delta(q,a)$ is multiply defined

We have DFA \hookrightarrow PFA \hookrightarrow NFA \leadsto DFA

Officially a DFA is not an NFA:

the transition functions δ have different targets: Q resp. $\mathcal{P}(Q)$

But morally a DFA is an NFA: the uniquely determined $\delta(q,a)=q'\in Q$ can be considered as $\{q'\}\in \mathcal{P}(Q)$

So we can promote δ to $\overline{\delta}$ as follows: $\overline{\delta}(q,a)=\{\delta(q,a)\}$ giving the embedding DFA \hookrightarrow NFA via

$$(Q, \Sigma, q_0, \delta, F) \rightsquigarrow (Q, \Sigma, q_0, \overline{\delta}, F)$$

From DFA to PFA there is a plain inclusion DFA \subseteq PFA: indeed every function is a partial function that happens to be total. The transition NFA \leadsto DFA is via a modification of machines