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Overture

This book about typed lambda terms comes in two volumes: the present one about
lambda terms typed using simple, recursive and intersection types and a planned second
volume about higher order, dependent and inductive types.

In some sense this book is a sequel to Barendregt [1984]. That book is about untyped
lambda calculus. Types give the untyped terms more structure: function applications
are allowed only in some cases. In this way one can single out untyped terms having
special properties. But there is more to it. The extra structure makes the theory of
typed terms quite different from the untyped ones.

The emphasis of the book is on syntax. Models are introduced only in so far they
give useful information about terms and types or if the theory can be applied to them.

The writing of the book has been different from that about the untyped lambda
calculus. First of all, since many researchers are working on typed lambda calculus, we
were aiming at a moving target. Also there was a wealth of material to work with. For
these reasons the book has been written by several authors. Several long-term open
problems had been solved during the interval these volumes were written, notably the
undecidability of lambda definability in finite models, the undecidability of second order
typability, the decidability of the unique maximal theory extending βη-conversion and
the fact that the collection of closed terms of not every simple type is finitely generated.
(One of the remaining open problems is the decidability of matching at arbitrary types
higher than order 4.) The book is not written as an encyclopedic volume: many topics
are only partially treated. For example reducibility among types is analized for simple
types built up from only one atom.

One of the recurring distinctions made in the two volumes is the difference between
the implicit typing due to Curry versus the explicit typing due to Church. In the latter
case the terms are an enhanced version of the untyped terms, whereas in the Curry
theory to some of the untyped terms a collection of types is being assigned. Volume I
is mainly about Curry typing, although Part I of it we also treat the for simple types
equivalent Church variant in parallel.

The applications of the theory are either within the theory itself, in the theory of
programming languages, in proof theory, including the technology of fully formalized
proofs used for mechanical verification, or in linguistics. Often the applications are
given in an exercise with hints.

We hope that the volumes will inspire readers to pursue the topic.
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Lambda calculus is worth studying, because it is a simple formal system that provides a
model of computation with a distinctive quality. At first its expressions represent both
a program and its data which on their turn evolve by simple rules (β and η-reduction)
to instantaneous descriptions of intermediate computational results possibly ending in
output. These features, however, are also present in Term Rewriting Systems. Lambda
calculus has two extra qualities setting it apart from these other Rewriting Systems.
Firstly it is applicative, in that an expression may be applied to another expression,
giving them the possibility to act both as function and as argument. Secondly, Lambda
Calculus has abstraction built in, meaning that the expressions are closed under explicit
definitions.

Lambda calculus as model of computation can be introduced in an untyped fashion:
arbitrary expressions may be applied to each other. A similarly flat approach to computing
was present in the early assembly languages. Later in imperative programming languages
types were introduced to keep order among the code. Exactly the same use of types
happened even earlier with lambda calculus as model of computation. Types from a
very partial specification of what a program does. In this sense types are somewhat
comparable to dimensions in physics that provide—on the basis of meaning—an order
in the wealth of quantitative notations. There are certain basic dimensions, like g (gram),
m (meter) and s (second) and other dimensions can be expressed using these.

The systems of simple types considered in Part I are built up from atomic types A

using as only operator the constructor→ of forming function spaces. For example, from
the atoms A = {α, β} one can form types α→β, (α→β)→α, α→(α→β) and so on. Two
choices of the set of atoms will be made most often are A = {α0, α1, α2, . . .}, an infinite
set of type variables, and A = {o}, consisting of only one atomic type. Particular atomic
types that occur in applications are e.g. Bool, Nat, Real. Even for these simple type
systems, the ordering effect is quite powerful.

As a short anthology of what is going to come in Part I we state the following. For an
untyped lambda term one can find the collection of its possible types. Similarly, given
a simple type, one can find the collection of its possible inhabitants (in normal form).
Equality of terms of a certain type can be reduced to equality of terms in a fixed type.
The problem of unification

∃X:A.MX =βη NX

is for complex enough A undecidable. That of pattern matching

∃X:A.MX =βη N

will turn out to be decidable for A simple enough. It is open if this also holds for
arbitrary types. The terms of finite type are extended by δ-functions, functionals for
primitive and bar recursion. Applications of the theory in computing, proof-checking
and linguistics will be discussed.
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Chapter 1

The systems λ→

1.1. The λ→ systems à la Curry

Types in this part are syntactic objects built from atomic types using the operator →.
In order to classify untyped lambda terms, such types will be assigned to a subset of
these terms. The main idea is that if M gets type A→B and N gets type A, then the
application MN is ‘legal’ (as M is considered as a function from terms of type A to
those of type B) and gets type B. In this way types help determining what terms fit
together.

1.1.1. Definition. (i) Let A be a non-empty set of ‘atomic types’. The set of simple
types over A, notation TT = TTA, is inductively defined as follows.

α∈A ⇒ α∈TT type atoms;

A,B ∈TT ⇒ (A→B)∈TT function space types.

Such definitions will be used often and for these it is convenient to use the so called
abstract syntax , see Waite and Goos [1984]. As an example we give the abstract syntax
for TT = TTA.

TT = A |TT→TT

Figure 1.1: Simple types

(ii) Let Ao = {o}. Then we write TTo = TTAo .
(iii) Let A∞ = {α0, α1, α2, . . .}. Then we write TT∞ = TTA∞

We consider that o = α0, hence TTo ⊆ TT∞. If we write simply TT, then this refers to TTA

for an unspecified A.

1.1.2. Notation. (i) If A1, . . . , An ∈TT, then

A1→ . . .→An ≡ (A1→(A2→ . . .→(An−1→An)..)).

That is, we use association to the right (here ≡ denotes syntactic equality).

13



14 CHAPTER 1. THE SYSTEMS λ→

(ii) α,β, γ, . . . denote arbitrary elements of A.
(iii) A,B,C, . . . denote arbitrary elements of TT.

Remember the untyped lambda calculus denoted by λ, see e.g. B[1984]1. It consists
of a set of terms Λ defined by the following abstract syntax.

V = x |V′

Λ = V |λV Λ |Λ Λ

Figure 1.2: Untyped lambda terms

This makes V = {x, x′, x′′, . . .} = {x0, x1, x2, . . .}.
1.1.3. Notation. (i) x, y, z, . . . denote arbitrary term variables.

(ii) M,N,L, . . . denote arbitrary lambda terms.
(iii) MN1 . . . Nk ≡ (..(MN1) . . . Nk).
(iv) λx1 . . . xn.M ≡ (λx1(..(λxn(M))..)).

1.1.4. Definition. On Λ the following equational theory λβη is defined by the usual
equality axiom and rules (reflexivity, symmetry, transitivity, congruence), inluding congruence
with respect to abstraction:

M = N ⇒ λx.M = λx.N,

and the following special axiom(schemes)

(λx.M)N = M [x := N ] (β-rule)
λx.Mx = M, if x /∈FV(M) (η-rule)

Figure 1.3: The theory λβη

As is know this theory can be analyzed by a notion of reduction.

1.1.5. Definition. On Λ we define the following notions of reduction

(λx.M)N → M [x: = N ] (β)
λx.Mx → M, if x /∈FV(M) (η)

Figure 1.4: βη-contraction rules

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations→β,→→β,→η,→→η,→βη and→→βη. Also there are the corresponding conversion
relations =β,=η and =βη. Terms in Λ will often be considered modulo =β or =βη. If
we write M = N , then we mean M =βη N by default. (In B[1984] the default was =β.)

1.1.6. Proposition. For all M,N ∈Λ one has

⊢λβη M = N ⇐⇒ M =βη N.

1This is an abbreviation fo the reference Barendregt [1984].
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Proof. See B[1984], Proposition 3.3.2.

One reason why the analysis in terms of the notion of reduction βη is useful is that
the following holds.

1.1.7. Theorem (Church-Rosser Theorem for λβη). For the notions of reduction →→β

and →→βη one has the following.

(i) Let M,N ∈Λ. Then

M =β(η) N ⇒ ∃Z ∈Λ.M →→β(η) Z & N →→β(η) Z.

(ii) Let M,N1, N2 ∈Λ. Then

M →→β(η) N1 & M →→β(η) N2 ⇒ ∃Z ∈Λ.N1 →→β(η) Z & N2 →→β(η) Z.

Proof. (i) See Theorems 3.2.8 and 3.3.9 in B[1984].

(ii) By (i).

1.1.8. Definition (λCu
→ ). (i) A (type assignment) statement is of the form

M : A,

with M ∈Λ and A∈TT. This statement is pronounced as ‘M in A’. The type A is the
predicate and the term M is the subject of the statement.

(ii) A declaration is a statement with as subject a term variable.

(iii) A basis is a set of declarations with distinct variables as subjects.

(iv) A statement M :A is derivable from a basis Γ, notation

Γ ⊢Cu
λ→

M :A

(or Γ ⊢λ→
M : A, Γ ⊢Cu M : A or even Γ ⊢M :A if there is little danger of confusion) if

Γ ⊢M :A can be produced by the following rules.

(x:A)∈Γ ⇒ Γ ⊢ x : A;

Γ ⊢M : (A→ B), Γ ⊢ N : A ⇒ Γ ⊢ (MN) : B;

Γ, x:A ⊢M : B ⇒ Γ ⊢ (λx.M) : (A→ B).

These rules are usually written as follows.



16 CHAPTER 1. THE SYSTEMS λ→

(axiom) Γ ⊢ x : A, if (x:A)∈Γ;

(→-elimination)
Γ ⊢M : (A→ B) Γ ⊢ N : A

;
Γ ⊢ (MN) : B

(→-introduction)
Γ, x:A ⊢M : B

.
Γ ⊢ (λx.M) : (A→ B)

Figure 1.5: The system λCu
→ of type assignment á la Curry

This is the modification to the lambda calculus of the system in Curry [1934], as
developed in Curry et al. [1958].

Notation. Another way of writing these rules is sometimes found in the literature.

Introduction rule x : A
...

M : B

λx.M : (A→B)

Elimination rule
M : (A → B) N : A

MN : B

λCu
→ alternative version

In this version the axiom is considered as implicit and is not notated. The notation

x : A
...

M : B

denotes that M : B can be derived from x:A. Striking through x:A means that for the conclusion
λx.M : A→B the assumption x:A is no longer needed; it is discharged.

1.1.9. Definition. Let Γ = {x1:A1, . . . , xn:An}. Then
(i) dom(Γ) = {x1, . . . , xn}.
(ii) x1:A1, . . . , xn:An ⊢M : A denotes Γ ⊢M : A.
(iii) In particular ⊢M : A stands for ∅ ⊢M : A.
(iv) x1, . . . , xn:A ⊢M : B stands for x1:A, . . . , xn:A ⊢M : B.

1.1.10. Example. (i) ⊢ (λxy.x) : (A→ B → A) for all A,B ∈TT.
We will use the notation of version 1 of λ→ for a derivation of this statement.

x:A, y:B ⊢ x : A

x:A ⊢ (λy.x) : B→A
⊢ (λxλy.x) : A→B→A
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Note that λxy.x ≡ λxλy.x by definition.
(ii) A natural deduction derivation (for the alternative version of the system) of the

same type assignment is the following.

x:A 2 y:B 1

x:A
1

(λy.x) : (B → A)
2

(λxy.x) : (A→ B → A)

The indices 1 and 2 are bookkeeping devices that indicate at which application of a rule
a particular assumption is being discharged.

(iii) A more explicit way of dealing with cancellations of statements is the ‘flag-
notation’ used by Fitch (1952) and in the languages AUTOMATH of de Bruijn (1980).
In this notation the above derivation becomes as follows.

y:B

x:A

(λxy.x) : (A→ B → A)

(λy.x) : (B → A)

x:A

As one sees, the bookkeeping of cancellations is very explicit; on the other hand it is
less obvious how a statement is derived from previous statements in case applications
are used.

(iv) Similarly one can show for all A∈TT

⊢ (λx.x) : (A→ A).

(v) An example with a non-empty basis is y:A ⊢ (λx.x)y : A.

In the rest of this chapter and in fact in the rest of this book we usually will introduce
systems of typed lambda calculi in the style of the first variant of λ→.

1.1.11. Definition. Let Γ be a basis and A∈TT. Then

(i) ΛΓ
→(A) = {M ∈Λ |Γ ⊢λ→

M : A}.
(ii) ΛΓ

→ =
⋃

A∈TT
ΛΓ
→(A).

(iii) Λ→(A) = Λ∅
→(A).

(iv) Λ→ = Λ∅
→
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1.1.12. Definition. Let Γ be a basis, A∈TT and M ∈Λ. Then

(i) If M ∈Λ→(A), then we say that

M has type A or A is inhabited by M .

(ii) If M ∈Λ→, then M is called typable.

(iii) If M ∈ΛΓ
→(A), then M has type A relative to Γ.

(iv) If M ∈ΛΓ
→, then M is called typeable relative to Γ.

(v) If Λ
(Γ)
→ (A) 6= ∅, then A is inhabited (relative to Γ).

1.1.13. Example. We have

K ∈ Λ∅
→(A→B→A);

Kx ∈ Λ{x:A}
→ (B→A).

1.1.14. Definition. Let A∈TT(λ→).

(i) The depth of A, notation dpt(A), is defined as follows.

dpt(α) = 0

dpt(A→B) = max{dpt(A),dpt(B)}+ 1

(ii) The rank of A, notation rk(A), is defined as follows.

rk(α) = 0

rk(A→B) = max{rk(A) + 1, rk(B)}

(iii) The order of A, notation ord(A), is defined as follows.

ord(α) = 1

ord(A→B) = max{ord(A) + 1, ord(B)}

(iv) The depth (rank or order) of a basis Γ is

max
i
{dpt(Ai) | (xi:Ai)∈Γ},

(similarly for the rank and order, respectively). Note that ord(A) = rk(A) + 1.

1.1.15. Definition. For A∈TT we define Ak→B by recursion on k:

A0→B = B;

Ak+1→B = A→Ak→B.

Note that rk(Ak→B) = rk(A→B), for all k > 0.
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Several properties can be proved by induction on the depth of a type. This holds for
example for Lemma 1.1.18(i).

The asymmetry in the definition of rank is intended because e.g. a type like (o→o)→o
is more complex than o→o→o, as can be seen by looking to the inhabitants of these
types: functionals with functions as arguments versus binary function. Sometimes one
uses instead of ‘rank’ the name type level. This notion will turn out to be used most of
the times.

In logically motivated papers one finds the notion ord(A). The reason is that in
first-order logic one deals with domains and their elements. In second order logic one
deals with functions between first-order objects. In this terminology 0-th order logic can
be identified with propositional logic.

The minimal and maximal systems λo
→ and λ∞→

The collection A of type variables serves as set of base types from which other types are
constructed. We have TTo = {o} with just one type atom and TT∞ = {α0, α1, α2, . . .}
with infinitely many of them. These two sets of atoms and their resulting type systems
play a major role in this Part I of the book.

1.1.16. Definition. We define the following systems of type assignment.
(i) λo

→ = λTTo
→ . This system is also called λτ in the literature.

(ii) λ∞→ = λTT∞
→ .

If it becomes necessary to distinguish the set of atomic types, will use notations like
Λo(A) = ΛTTo(A) and Λ∞(A) = ΛTT∞

(A).
Many of the interesting features of the ‘larger’ λ→ are already present in the minimal

version λo
→. The complexity of λ→ is already present in λo

→.

1.1.17. Definition. (i) The following types of TTo ⊆ TTA are often used.

0 = o, 1 = 0→0, 2 = (0→0)→0, . . . .

In general
0 = o and k + 1 = k→0.

Note that rk(n) = n.
(ii) Define nk by cases on n.

ok = o;

(n+ 1)k = nk→o.

For example

12 = o→o→o;
23 = 1→1→1→o.

Notice that rk(nk) = rk(n), for k > 0.
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1.1.18. Lemma. (i) Every type A of λ∞→ is of the form

A = A1→A2→ . . .→An→α.

(ii) Every type A of λo
→ is of the form

A = A1→A2→ . . .→An→o.

(iii) rk(A1→A2→ . . .→An→α) = max{rk(Ai) + 1 | 1 ≤ i ≤ n}.

Proof. (i) By induction on the structure (depth) of A. If A = α, then this holds for
n = 0. If A = B→C, then by the induction hypothesis one has
C = C1→ . . .→Cn→γ. Hence A = B→C1→ . . .→Cn→γ.

(ii) By (i).

(iii) By induction on n.

1.1.19. Notation. Let A∈TTA and suppose A = A1→A2→ . . .→An→α. Then the Ai

are called the components of A. We write

arity(A) = n,

A(i) = Ai, for 1 ≤ i ≤ n;

target(A) = α.

Iterated components are denoted as follows

A(i, j) = A(i)(j).

Different versions of λA
→

The system λA
→ that was introduced in Definition 1.1.8 assigns types to untyped lambda

terms. These system will be referred to as the Curry system and be denoted by λA
→Cu

or λCu
→ , as the set A often does not need to be specified. There will be introduced two

variants of λA
→.

The first variant of λCu
→ is the Church version of λA

→, denoted by λA
→Ch or λCh

→ . In
this theory the types are assigned to embellished terms in which the variables (free and
bound) come with types attached. For example the Curry style type assignments

⊢Cu
λ→

(λx.x) : A→A (1Cu)

y:A ⊢Cu
λ→

(λx.xy) : (A→B)→A→B (2Cu)

now becoming

(λxA.xA)∈ΛCh
→ (A→A) (1Ch)

(λxA→B.xA→ByA) : ΛCh
→ ((A→B)→A→B) (2Ch)



1.2. NORMAL INHABITANTS 21

The second variant of λCu
→ is the de Bruijn version of λA

→, denoted by λA
→dB or λdB

→ . Now
only bound variables get ornamented with types, but only at the binding stage. The
examples (1), (2) now become

⊢dB
λ→

(λx : A.x) : A→A (1dB)

y:A ⊢dB
λ→

(λx : (A→B).xy) : (A→B)→A→B (2dB)

The reasons to have these variants will be explained later in Section 1.4. In the meantime
we will work intuitively.

1.1.20. Notation. Terms like (λfx.f(fx))∈Λø(1→o→o) will often be written

λf1x0.f(fx)

to indicate the types of the bound variables. We will come back to this notational issue
in section 1.4.

1.2. Normal inhabitants

In this section we will give an algorithm that enumerates the set of closed terms in normal
form of a given type A∈TT. Since we will prove in the next chapter that all typable
terms do have a nf and that reduction preserves typing, we thus have an enumeration of
essentially all closed terms of that given type. We do need to distinguish various kinds
of nf’s.

1.2.1. Definition. Let A = A1→ . . . An→α and suppose Γ ⊢M : A.

(i) Then M is in long-nf, notation lnf, if M ≡ λxA1
1 . . . xAn

n .xM1 . . .Mn and each Mi

is in lnf. By induction on the depth of the type of the closure of M one sees that this
definition is well-founded.

(ii) M has a lnf if M =βη N and N is a lnf.

In Exercise 1.5.16 it is proved that if M has a β-nf, which according to Theorem 2.2.4
is always the case, then it also has a unique lnf and will be its unique βη−1 nf. Here
η−1 is the notion of reduction that is the converse of η.

1.2.2. Examples. (i) Note that λf1.f =βη λf
1λxo.fx and that λf1.f is a βη-nf but

not a lnf.

(ii) λf1λxo.fx is a lnf, but not a βη-nf.

(iii) λx:o.x is both in βη-nf and lnf.

(iv) The β-nf λF :22λf :1.Ff(λx:o.fx) is neither in βη-nf nor lnf.

(v) A variable of atomic type α is a lnf, but of type A→B not.

(vi) A variable f : 1→1 has as lnf λg1λxo.f(λyo.gy)x.

1.2.3. Proposition. Every β-nf M has a lnf M ℓ such that M ℓ →→η M .
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Proof. Define M ℓ by induction on the depth of the type of the closure of M as follows.

M ℓ ≡ (λ~x.yM1 . . .Mn)ℓ = λ~x~z.yM ℓ
1 . . .M

ℓ
n~z

ℓ.

Then M ℓ does the job.

Now we will define a 2-level grammar for obtaining the collection of all lnf’s of a
given type A.

1.2.4. Definition. Let N = {L(A; Γ) | A∈TTA; Γ a context of λ→}. Let Σ be the
alphabet of the terms of the λCh

→ . Define the following two-level grammar, see van
Wijngaarden et al. [1976], as a notion of reduction over words over N ∪Σ. The elements
of N are the non-terminals (unlike in a context-free language there are now infinitely
many of them).

L(α; Γ) ⇒ xL(B1; Γ) . . . L(Bn; Γ), if (x: ~B→α)∈Γ;

L(A→B; Γ) ⇒ λxA.L(B; Γ, x:A).

Typical productions of this grammar are the following.

L(3; ∅) ⇒ λF 2.L(o;F 2)

⇒ λF 2.FL(1;F 2)

⇒ λF 2.F (λxo.L(o;F 2, xo))

⇒ λF 2.F (λxo.x).

But one has also

L(o;F 2, xo) ⇒ FL(1;F 2, xo)

⇒ F (λxo
1.L(o;F 2, xo, xo

1))

⇒ F (λxo
1.x1).

Hence (⇒⇒ denotes the transitive reflexive closure of ⇒)

L(3; ∅) ⇒⇒ λF 2.F (λxo.F (λxo
1.x1)).

In fact, L(3; ∅) reduces to all possible closed lnf’s of type 3. Like in abstract syntax we
do not produce parentheses from the L(A; Γ), but write them when needed.

1.2.5. Proposition. Let Γ,M,A be given. Then

L(A,Γ)⇒⇒M ⇐⇒ Γ ⊢M : A & M is in lnf.

Now we will modify the 2-level grammar and the inhabitation machines in order to
produce all β-nf’s.
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1.2.6. Definition. The 2-level grammar N is defined as follows.

N(A; Γ) ⇒ xN(B1; Γ) . . . N(Bn; Γ), if (x: ~B→A)∈Γ;

N(A→B; Γ) ⇒ λxA.N(B; Γ, x:A).

Now the β-nf’s are being produced. As an example we make the following production.
Remember that 1 = o→o.

L(1→o→o; ∅) ⇒ λf1.L(o→o; f :o→o)
⇒ λf1.f.

1.2.7. Proposition. Let Γ,M,A be given. Then

N(A,Γ)⇒⇒M ⇐⇒ Γ ⊢M : A & M is in β-nf.

Inhabitation machines

Inspired by this proposition one can introduce for each type A a machine MA producing
the set of closed terms of that type. If one is interested in terms containing variables
xA1

1 , . . . , xAn
n , then one can also find these terms by considering the machine for the type

A1→ . . .→An→A and look at the subproduction at node A.

1.2.8. Examples. (i) A = o→o→o. Then MA is

o→o→o λxoλyo

// o // x

y
��

This shows that the type 12 has two closed inhabitants: λxy.x and λxy.y. We see that
the two arrows leaving o represent a choice.

(ii) A = α→((o→β)→α)→β→α. Then MA is

α→((o→β)→α)→β→α

λaαλf (o→β)→αλbβ

��
α

f
��

// a

o→β
λyo

// β // b

Again there are only two inhabitants, but now the production of them is rather different:
λafb.a and λafb.f(λxo.b).
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(iii) A = ((α→β)→α)→α. Then MA is

((α→β)→α)→α

λF (α→β)→α

��
α F // α→β

λxα
// β

This type, corresponding to Peirce’s law, does not have any inhabitants.
(iv) A = 1→o→o. Then MA is

1→o→o
λf1λxo

��
f o@GAFBE // x

This is the type Nat having the Church’s numerals λf1xo.fnx as inhabitants.
(v) A = 1→1→o→o. Then MA is

1→1→o→o
λf1λg1λxo

��
f o g@GAFBE AFBECD

��
x

Inhabitants of this type represent words over the alphabet Σ = {f, g}, for example

λf1g1xo.fgffgfggx,

where we have to insert parentheses associating to the right.
(vi) A = (α→β→γ)→β→α→γ. Then MA is

(α→β→γ)→β→α→γ

λfα→β→γλbβλaα

��
γ

��
a αoo oo f // β // b

giving as term λfα→β→γλbβλaα.fab. Note the way an interpretation should be given
to paths going through f : the outgoing arcs (to α and β ) should be completed both
separately in order to give f its two arguments.
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(vii) A = 3. Then MA is

3

λF 2

��
o

��

F **
1

λxo

jj

x

This type 3 has inhabitants having more and more binders:

λF 2.F (λxo
0.F (λxo

1.F (· · · (λxo
n.xi)))).

The novel phenomenon that the binder λxo may go round and round forces us to give new
incarnations λxo

0, λx
o
1, . . . each time we do this (we need a counter to ensure freshness of

the bound variables). The ‘terminal’ variable x can take the shape of any of the produced
incarnations xk. As almost all binders are dummy, we will see that this potential infinity
of binding is rather innocent and the counter is not yet really needed here.
(viii) A = 3→o→o. Then MA is

3→o→o

λΦ3λco

��
f o@GAFBE

Φ
**

��

2
λf1

jj

c

This type, called the monster M, does have a potential infinite amount of binding,
having as terms e.g.

λΦ3co.Φλf1
1 .f1Φλf

1
2 .f2f1Φ . . . λf

1
n.fn . . . f2f1c,

again with inserted parentheses associating to the right. Now a proper bookkeeping of
incarnations (of f1 in this case) becomes necessary, as the f going from o to itself needs
to be one that has already been incarnated.

(ix) A = 12→o→o. Then MA is

12→o→o
λp12λco

// o

��

// c

p

JJ TT

This is the type of binary trees, having as elements, e.g. λp12co.c and λp12co.pc(pcc).
Again, as in example (vi) the outgoing arcs from p (to o ) should be completed both
separately in order to give p its two arguments.
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(x) A = 12→2→o. Then MA is

1

λxo




12→2→o λF 12λG2

// o

G

JJ

��

// x

F

II UU

This is the type L corresponding to untyped lambda terms. For example the untyped
terms ω ≡ λx.xx and Ω ≡ (λx.xx)(λx.xx) can be translated to (ω)t ≡ λF 12G2.G(λxo.Fxx)
and

(Ω)t ≡ λF 12G2.F (G(λxo.Fxx))(G(λxo.Fxx))
=β λFG.F ((ω)tFG)((ω)tFG)
=β (ω)t ·L (ω)t,

where for M,N ∈L one defines M ·L N = λFG.F (MFG)(NFG). All features of
producing terms inhabiting types (bookkeeping bound variables, multiple paths) are
present here.

Following the 2-level grammar N one can make inhabitation machines for β-nf Mβ
A .

1.2.9. Example. We show how the production machine for β-nf’s differs from the one
for lnf’s. Let A = 1→o→o. Then λf1.f is the (unique) β-nf of type A that is not a lnf.

It will come out from the following machine Mβ
A .

1→o→o
λf1

��
o→o //

λxo

��

f

f o@GAFBE // x

So in order to obtain the β-nf’s, one has to allow output at types that are not atomic.

1.3. Representing data types

In this section it will be shown that first order algebraic data types can be represented
in λo

→. We start with several examples: Booleans, the natural numbers, the free monoid
over n generators (words over a finite alphabet with n elements) and trees with at the
leafs labels from a type A. The following definitions depend on a given type A. So in
fact Bool = BoolA etcetera. Often one takes A = o.
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Booleans

1.3.1. Definition. Define

Bool ≡ A→A→A;

true ≡ λxy.x;

false ≡ λxy.y.

Then true ∈Λ(Bool) and false ∈Λ(Bool).

1.3.2. Proposition. There are terms not, & , or, imp, iff with the expected behavior
on Booleans. For example not ∈Λ(Bool→Bool) and

not true =β false,

not false =β true.

Proof. Take not ≡ λaxy.ayx and or ≡ λabxy.ax(bxy). From these two operations the
other Boolean functions can be defined. For example, implication can be represented by

imp ≡ λab.or(not a)b.

A shorter representation is λabxy.a(bxy)x, the normal form of imp.

Natural numbers

Following Church the set of natural numbers can be represented as a type

Nat ≡ (A→A)→A→A.

For each natural number n∈N we define its representation

cn ≡ λfx.fnx,

where

f0x ≡ x

fn+1x ≡ f(fnx).

1.3.3. Proposition. (i) There exists a term S+ ∈Λ(Nat→Nat) such that

S+cn =β cn+1, for all n∈N.

(ii) There is a term zero? ∈Λ(Nat→Bool) such that

zero?c0 =β true

zero? (S+x) =β false.
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Proof. (i) Take S+ ≡ λnλfx.f(nfx). Then

S+cn =β λfx.f(cnfx)

=β λfx.f(fnx)

≡ λfx.fn+1x

≡ cn+1.

(ii) Take zero? ≡ λnλab.n(Kb)a. Then

zero?c0 =β λab.c0(Kb)a

=β λab.a

≡ true;

zero? (S+x) =β λab.S+x(Kb)a

=β λab.(λfy.f(xfy))(Kb)a

=β λab.Kb(x(Kb)a)

=β λab.b

≡ false.

Addition and multiplication are definable in λ→.

1.3.4. Proposition. (i) There is a term plus ∈Λ(Nat→Nat→Nat) satisfying

plus cn cm =β cn+m.

(ii) There is a term times ∈Λ(Nat→Nat→Nat) such that

times cn cm =β cn·m

Proof. (i) Take plus ≡ λnmλfx.nf(mfx). Then

plus cn cm =β λfx.cnf(cmfx)

=β λfx.fn(fmx)

≡ λfx.fn+mx

≡ cn+m.

(ii) Take times ≡ λnmλfx.m(λy.nfy)x. Then

times cn cm =β λfx.cm(λy.cnfy)x

=β λfx.cm(λy.fny)x

=β λfx. (fn(fn(. . . (fn

︸ ︷︷ ︸
m times

x)..)))

≡ λfxp.fn·mx

≡ cn·m.
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1.3.5. Corollary. For every polynomial p∈N[x1, . . . ,xk] there is a closed term Mp:Λ(Natk→Nat)
such that ∀n1, . . . ,nk ∈N.Mpcn1 . . . cnk

=β cp(n1,...,nk).

From the results obtained so far it follows that the polynomials extended by case
distinctions (being equal or not to zero) are definable in λ→. In Statman [1976] or
Schwichtenberg [1976] it is proved that exactly these so-called extended polynomials are
definable in λ→. Hence primitive recursion cannot be defined in λ→; in fact not even
the predecessor function, see Proposition 2.4.22.

Words over a finite alphabet

Let Σ = {a1, . . . , ak} be a finite alphabet. Then Σ∗ the collection of words over Σ can
be represented in λ→.

1.3.6. Definition. (i) The type for words in Σ∗ is

Sigma∗ ≡ (o→o)k→o→o.

(ii) Let w = ai1 . . . aip be a word. Define

w ≡ λa1 . . . akx.ai1(. . . (aipx)..)

≡ λa1 . . . akx. (ai1◦ · · · ◦ aip)x.

Note that w∈Λ(Sigma∗). If ǫ is the empty word ( ), then naturally

ǫ ≡ λa1 . . . akx.x

≡ KkI.

Now we show that the operation concatenation can be defined in λ→.

1.3.7. Proposition. There exists a term concat ∈Λ(Sigma∗→Sigma∗→Sigma∗) such
that for all w, v ∈Σ∗

concat w v = wv.

Proof. Define

concat ≡ λwv.~ax.w~a(v~ax).

Then the type is correct and the definition equation holds.

1.3.8. Proposition. (i) There exists a term empty ∈Λ(Sigma∗) such that

empty ǫ = true

empty w = false if w 6= ǫ.
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(ii) Given a (represented) word w0 ∈Λ(Sigma∗) and a term G∈Λ(Sigma∗→Sigma∗)
there exists a term F ∈Λ(Sigma∗→Sigma∗) such that

F ǫ = w0;

F w = Gw, if w 6= ǫ.

Proof. (i) Take empty ≡ λwpq.w(Kq)~kp.

(ii) Take F ≡ λwλx~a.emptyw(w0~ax)(Gw~ax).

One cannot define a terms ‘car’ or ‘cdr’ such that car aw = w and cdr aw = w.

Trees

1.3.9. Definition. The set of binary trees, notation T2, is defined by the following
abstract syntax

t = ǫ | p(t, t)
Here ǫ is the ‘empty tree’ and P is the constructor that puts two trees together. For
example p(ǫ, p(ǫ, ǫ))∈T2 can be depicted as

•
??

??
?

��
��

�

•
??

??
?

��
��

�

ǫ

ǫ

ǫ

Now we will represent T2 as a type in λ→.

1.3.10. Definition. (i) The set T2 will be represented by the type

⊤2 ≡ (o2→o)→o→o.

(ii) Define for t∈T2 its representation t inductively as follows.

ǫ = λpe.e;

p(t, s) = λp(tpe)(spe).

(iii) Write

E = λpe.e;

P = λtspe.p(tpe)(spe).

Note that Note that for t∈T2 one has t∈Λ(⊤2)

The following follows immediately from this definition.
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1.3.11. Proposition. The map : T2→⊤2 can be defined inductively as follows

ǫ = E;

p(t, s) = Pt s.

Interesting functions, like the one that selects on of the two branches of a tree cannot
be defined in λ→.

The type ⊤2 will play an important role in Section 3.4.

Representing Free algebras with a handicap

Now we will see that all the examples are special cases of a general construction. It turns
out that first order algebraic data types A can be represented in λo

→. The representations
are said to have a handicap because not all primitive recursive functions on A are
representable. Mostly the destructors cannot be represented. In a special cases one
can do better. Every finite algebra can be represented with all possible functions on
them. Pairing with projections can be represented.

1.3.12. Definition. (i) An algebra is a set A with a specific finite set of operators of
different arity:

c1, c2, . . . ∈ A (constants, we may call these 0-ary functions);

f1, f2, . . . ∈ A→A (unary functions);

g1, g2, . . . ∈ A2→A (binary function));

. . .

h1, h2, . . . ∈ An→A (n-ary functions).

(ii) An n-ary function k : An→A is called algebraic iff k can be defined explicitly from
the constructors. For example

k = λλa1a2.g1(a1, (g2(h1(a2), c2)))

is a binary algebraic function.
(iii) An element a of A is called algebraic iff a is an algebraic 0-ary function. Algebraic

elements of A can be denoted by first-order terms over the algebra.
(iv) The algebra A is free(ly generated) if every element of A is algebraic and moreover

if for two first-order terms t, s one has

t = s ⇒ t ≡ s.

In a free algebra the given operators are called constructors.

For example N with constructors 0, s (s is the successor) is a free algebra. But Z with
0, s, p (p is the predecessor) is not free. Indeed, 0 = p(s(0)), but 0 6≡ p(s(0)) as syntactic
expressions.
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1.3.13. Theorem. For a free algebra A there is a type A∈TTo and a map λλa.a : A→Λ(A)
satisfying the following.

(i) a is a lnf, for every a∈A.
(ii) a =βη b ⇐⇒ a = b.
(iii) Λ(A) = {a | a∈A}, up to βη-conversion.
(iv) For k-ary algebraic functions f on A there is an f ∈Λ(A→A) such that

f a1 . . . ak = f(a1, . . . ,ak).

(v) There is a representable discriminator distinguishing between elements of the form
c, f1(a), f2(a, b), . . . , fn(a1, . . . ,an). More precisely, there is a term test ∈Λ(A→N) such
that for all a, b∈A

test c = c0;
test f1(a) = c1;

test f2(a, b) = c2

. . .
test fn(vectan) = cn

Proof. We show this by a representative example. Let A be freely generated by, say,
the 0-ary constructor c, the 1-ary constructor f and the 2-ary constructor g. Then an
element like

a = g(c, f(c))

is represented by
a = λcfg.gc(fc)∈Λ(o→1→12→o).

Taking A = o→1→12→o we will verify the claims. First realize that a is constructed
from a via a∼ = gc(fc) and then taking the closure a = λcfg.a∼.

(i) Clearly the a are in lnf.
(ii) If a and b are different, then their representations a, b are different lnfs, hence

a 6=βη b .
(iii) The inhabitation machine MA = Mo→1→12→o looks like

o→1→12→o
λcλfλg

��
f o@GAFBE

��

// gss
kk

c

It follows that for every M ∈Λ(A) one has M =βη λcfg.a∼ = a for some a∈A. This
shows that Λ(A) ⊆ {a | a∈A}. The converse inclusion is trivial. In the general case
(for other data types A) one has that rk(A) = 2. Hence the lnf inhabitants of Λ(A)
have the form λcfg.P , where P is a combination of the variables c, f, g. This means
that the corresponding inhabitation machine is similar and the argument goes through
in general.
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(iv) An algebraic function is explicitly defined from the constructors. We first define
representations for the constructors.

c = λcfg.c : A;
f = λacfg.f(acfg) : A→A;

g = λabcfg.g(acfg)(bcfg) : A2→A.

Then f a = λcfg.f(acfg)

= λcfg.f(a∼)
≡ λcfg.(f(a))∼, (tongue in cheek),
≡ f(a).

Similarly one has g a b = g(a, b).

Now if e.g. h(a, b) = g(a, f(b)), then we can take

h ≡ λab.ga(fb) : A2→A.

Then clearly h a b = h(a, b).
(v) Take test ≡ λafc.a(c0fc)(λx.c1fc)(λxy.c2fc).

1.3.14. Definition. The notion of free algebra can be generalized to a free multi-sorted
algebra. We do this by giving an example. The collection of lists of natural numbers,
notation LN can be defined by the ’sorts’ N and LN and the constructors

0 ∈ N;

s ∈ N→N;

nil ∈ ΛN;

cons ∈ N→LN→LN.

In this setting the list [0, 1]∈LN is

cons(0,cons(s(0),nil)).

More interesting multisorted algebras can be defined that are ‘mutually recursive’, see
Exercise 1.5.15.

1.3.15. Corollary. Every freely generated multi-sorted first-order algebra can be represented
in a way similar to that in Theorem 1.3.13.

Proof. Similar to that of the Theorem.

Finite Algebras

For finite algebras one can do much better.

1.3.16. Theorem. For every finite set A = {a1, . . . ,an} there exists a type A∈TTo and
elements a1, . . . ,an ∈Λ(A) such that the folowing holds.
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(i) Λ(A) = {a | a∈A}.
(ii) For all k and f : Ak→A there exists an f ∈Λ(Ak→A) such that

f b1 . . . bk = f(b1, . . . ,bk).

Proof. Take A = 1n = on→o and a i = λb1 . . . bn.bi ∈Λ(1n).

(i) By a simple argument using the inhabitation machine M1n .
(ii) By induction on k. If k = 0, then f is an element of A, say f = ai. Take f = ai.

Now suppose we can represent all k-ary functions. Given f : Ak+1→A, define for b∈A

fb(b1, . . . ,bk) = f(b, b1, . . . ,bk).

Each fb is a k-ary function and has a representative fb. Define

f = λb~b.b(fa1
~b) . . . (fan

~b),

where ~b = b2, . . . , bk+1. Then

f b1 . . . bk+1 = b1 (fa1
~b) . . . (fan

~b)

= fb1 b2 . . . bk+1

= fb1(b2, . . . , bk+1), by the induction hypothesis ,

= f(b1, . . . ,bk+1), by definition of fb1 .

One even can faithfully represent the full type structure over A as closed terms of λo
→,

see Exercise ??.

Examples as free or finite algebras

The examples in the beginning of this section all can be viewed as free or finite algebras.
The Booleans form a finite set and its representation is type 12. For this reason all
Boolean functions can be represented. The natural numbers N and the trees T are
examples of free algebras with a handicapped representation. Words over a finite
alphabet Σ = {a1, . . . ,an} can be seen as an algebra with constant ǫ and further
constructors fai

= λλw.aiw. The representations given are particular cases of the theorems
about free and finite algebras.

Pairing

In the untyped lambda calculus arbitrary two elements can be put in a pair

[M,N ] ≡ λz.zMN.

From the pairs the components can be retrieved:

[M1,M2](λx1x2.xi) = Mi.
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As a handicapped representation this works. But if we want to retrieve the elements
from a pair of terms of different types, then this representation does not work for λo

→,
because no proper type can be given to z in order to make the projections work. If,
however, M,N have the same type, then they can be paired using only β-conversion.
This will enable us to represent also heterogenous pairs.

1.3.17. Lemma. For every type A∈TTo there is a type A × A∈TTo such that there are
terms pairA

o , left
A
o and rightA

o such that rk(A×A) = rk(A) + 2 and

pairA
o ∈ Λø

o(A→A→A×A);

leftA
o ∈ Λø

o(A×A→A);

rightA
o ∈ Λø

o(A×A→A),

and for M,N ∈ΛΓ
o (A) one has

leftA
o (pairA

o MN) =β M ;

rightA
o (pairA

o MN) =β N.

Proof. Take

A×A = (A→A→A)→A;

pairA
o = λmnz.zmn;

leftA
o = λp.pK;

leftA
o = λp.pK∗.

Using βη-conversion one can define a cartesian product for all pairs of types.

1.3.18. Proposition (Gandy [1950?], Grzegorczyk [1964]). Let A,B ∈TTo be arbitrary
types. Then there is a type A×B ∈TTo with

rk(A×B) = max{rk(A), rk(B), 2}

such that there are terms pairA,B
o , leftA,B

o and rightA,B
o such that

pairA,B
o ∈ Λø

o(A→A→A×B);

leftA,B
o ∈ Λ{z:o}

o (A×B→A);

rightA,B
o ∈ Λ{z:o}

o (A×B→B),

and for M ∈Λ∆
o (A), N ∈Λ∆

o (B) one has

leftA,B
o (pairA,B

o MN) =βη M ;

rightA,B
o (pairA,B

o MN) =βη N.
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Proof. Write n = arity(A),m = arity(B). Define

A×B = A(1)→ . . .→A(n)→B(1)→ . . .→B(m)→o× o,
where o× o = (o→o→o)→o. Then

rk(A×B) = max
i,j
{rk(Ai) + 1, rk(Bj) + 1, rk(o2→o) + 1}

= max{rk(A), rk(B), 2}.
Define zA inductively: zo = z; zA→B = λa.zB. Then zA ∈Λz:o

o (A). Write ~x = x1, . . . , xn, ~y =
y1, . . . , ym, ~zA = zA(1), . . . , zA(n) and ~zB = zB(1), . . . , zB(m). Now define

pairA,B
o = λmn.λ~x~y.pairo

o(m~x)(n~y);

leftA,B
o = λp.λ~x.lefto

o(p~x~zB);

rightA,B
o = λp.λ~x.righto

o(p~zA~y).

Then e.g. and

leftA,B
o (pairA,B

o MN) =β λ~x.lefto
o(pair

o
oMN~x~zB)

=β λ~x. lefto
o[pair

o
o(M~x)(N~zB)]

=β λ~x.(M~x)

=η M.

In Barendregt [1974] it is proved that η-conversion is essential: with β-conversion one
can pair only certain combinations of types. Also it is shown that there is no surjective
pairing in the theory with βη-conversion. Surjectivity states that

pair(leftz)(rightz)=βηz.

In Section 5.2 we will discuss systems extended with surjective pairing. With similar
techniques as in mentioned paper it can be shown that in λ∞→ there is no pairing function
pairα,β

o for base types (even with η-conversion). In section 2.3 we will encounter other
differences between λ∞→ and λo

→.

1.3.19. Proposition. Let A1, . . . ,An ∈TTo. There are closed terms

tuplen : A1→ . . .→An→(A1× . . .×An)

projn
k : A1× . . .×An→Ak

such that for M1, . . . ,Mn of the right type one has

projn
k(tuplenM1 . . .Mn) =βη Mk.

If there is little danger of confusion and the ~M,N are of the right type we write

〈M1, . . . ,Mn〉 ≡ tuplenM1 . . .Mn;

N · k ≡ projn
kN.

Proof. By iterating pairing.
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1.4. The λ→ systems à la Curry, à la Church and à la de Bruijn

The Curry version of λ→ is called implicitly typed because an expression like

λx.xK

has a type, but it requires work to find it. In §2.2 we will see that this work is feasible. In
systems more complex than λ→ finding types in the implicit version is more complicated
and may even not be computable. This will be the case with second and higher order
types, like λ2 (system F ), treated in Volume II.

Therefore there are also versions of the systems that are typed explicitly à la Church.
The explicitly typed version of λ→ will be denoted by λA

→Ch or more often by λCh
→ . In

this system one writes for example for the term above

λx(A→B→A)→C .x(A→B→A)→C(λyAzB.yA).

In the system á la de Bruijn this is written as

λx:((A→B→A)→C).x(λy:Aλz:B.y).

So in both cases terms are not just elements of Λ, but versions ornamented with elements
of TT.

1.4.1. Definition. Let A be a set of type atoms. The Church version of λ→, notation
λA

→Ch or λCh
→ if A is not emphasized, is defined as follows. The system has the same set

of types TTA as λA
→Cu.

(i) The set of term variables is different: each such variable is coupled with a unique
type. Let

VTT = V × TT.

(ii) Notation. x,y, z, . . . range over VTT. If x = 〈x,A〉, then we also write

x = xA = x:A.

(iii) Terms of type A, notation ΛCh
→ (A), are defined as follows.

xA ∈Λ→(A);

M ∈Λ→(A→B), N ∈Λ→(A) ⇒ (MN)∈Λ→(B);

M ∈Λ→(B) ⇒ (λxA.M)∈Λ→(A→B).

Figure 1.6: The system λCh
→ of typed terms á la Church

(iv) The set of terms of λCh
→ , notation ΛCh

→ , is defined as

ΛCh
→ =

⋃

A∈TT

ΛCh
→ (A).
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For example

yB→AxB ∈ ΛCh
→ (A)

λxA.yB→A ∈ ΛCh
→ (A→B→A)

λxA.xA ∈ ΛCh
→ (A→A)

Substitution of a term N for a typed variable xB is defined as usual. If also N has
type B, then the resulting term keeps its type.

1.4.2. Proposition. (i) Let M ∈Λ→(A), N ∈Λ→(B). Then

(M [xB := N ])∈Λ→(A).

(ii) Let A,B ∈TT. Then

M ∈ΛCh
→ (A) ⇒ M [α := B]∈ΛCh

→ (A[α := B]).

Proof. (i), (ii) By induction on the structure of M .

1.4.3. Definition. On ΛCh
A

we define the following notions of reduction.

(λxA.M)N → M [x: = N ] (β)
λx:A.Mx → M, if x /∈FV(M) (η)

Figure 1.7: βη-contraction rules for λA

→Ch

As usual, see B[1984], these notions of reduction generate the corresponding reduction
relations. Also there are the corresponding conversion relations =β, =η and =βη. Terms
in λCh

→ will often be considered modulo =β or =βη. The notation M = N , means
M =βη N by default.

For every type A the set ΛCh
→ (A) is closed under reduction.

1.4.4. Proposition. (i) ((λxB.M)N)∈ΛCh
→ (A) ⇒ MA[x := NB]∈ΛCh

→ (A).

(ii) λxB.MxB ∈ΛCh
→ (A) and xB /∈ FV(M), then M ∈ΛCh

→ (A).

(iii) M ∈ΛCh
→ and M →→βη N . Then N ∈ΛCh

→ .

Proof. (i) If (λxB.M)N ∈ΛCh
→ (A), then λxB.M ∈ΛCh

→ (B′→A), soB = B′, and N ∈ΛCh
→ (B).

Now Lemma 1.4.2 applies.

(ii) Similarly. If (λxB.MxB)∈ΛCh
→ (C), then C = B→A and MxB ∈ΛCh

→ (A). But
then M ∈ΛCh

→ (B→A).

(iii) By induction on the relation →→βη, using (i), (ii).

The reasoning needed in the proof of this Lemma is made more explicit in the generation
lemmas in Section 2.1.
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Relating the Curry and Church systems

There are canonical translations between λCh
→ and λCu

→ .

1.4.5. Definition. There is a ‘forgetful’ map | · | : ΛA → Λ defined as follows:

|xA| ≡ x;

|MN | ≡ |M ||N |;
|λx:A.M | ≡ λx.|M |.

The map | · | just erases all type ornamentations of a term in ΛCh
→ . The following result

states that ornamented legal terms in the Church version ‘project’ to legal terms in the
Curry version of λ→. Conversely, legal terms in λCu

→ can be ‘lifted’ to legal terms in λCh
→ .

There is however a condition needed. The term

λxA→A→BλxA.xA→BxAxA ∈Λ((A→A→B)→(A→B))

projects to λxλx.xxx which does not have a type.

1.4.6. Definition. (i) A collection of type variables X ⊆ VTT is called well-named iff
xA, xB ∈X ⇒ A = B. (If we consider x as the first name of xA and A as its family
name, then the notion that X is well named means that first names uniquely describe
the variable.)

(ii) A term is well-named if FV(M) is well-named.

1.4.7. Proposition. (i) Let M ∈ΛA be well-named. Then

M ∈ΛCh
A

(A) ⇒ ΓM ⊢Cu
λ→
|M | : A,

where ΓM = {x:A | xA ∈FV(M)}
(ii) Let M ∈Λ. Then

Γ ⊢Cu
λ→

M : A ⇐⇒ ∃M ′ ∈ΛCh
A (A).|M ′| ≡M and M ′ is well-named.

Proof. (i) By induction on the generation of ΛCh
A

. The assumption that M is well-
named insures that ΓM is well-defined and that ΓP ∪ ΓQ = ΓPQ.

(ii) (⇒) By induction on the proof of Γ ⊢ M : A with the induction loading that
ΓM ′ = Γ. (⇐) By (i).

Notice that the converse of Proposition 1.4.7(i) is not true: one has

⊢Cu
λ→
|λxAλyA.xAyA| : (A→A)→(A→A),

but (λxAλyA.xAyA) /∈ ΛCh((A→A)→(A→A)).

1.4.8. Corollary. In particular, for a type A∈TT one has

A is inhabited in λCu
→ ⇐⇒ A is inhabited in λCh

→ .
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Proof. Immediate.

The translation preserves reduction and conversion.

1.4.9. Proposition. Let R = β,η or βη. Then

(i) Let M,N ∈ΛCh
→ . Then

M →R N ⇒ |M | →R |N |.

(ii) Let M1,M2 ∈ΛΓ
→Cu(A), M1 = |M1

′|, with M ′
1 ∈ΛCh

→ (A). Then

M1 →R M2 ⇒ ∃M2
′ ∈ΛCh

→ (A).

|Mi
′| ≡Mi & M1

′ →R M2
′.

(iii) The same results hold for →→R and R-conversion.

Proof. Easy.

The systems λ→ à la de Bruijn

There is the following disadvantage about the Church systems. Consider

I ≡ λxA.xA.

In the next volume we will consider dependent types coming from the Authomath
language family, see Nederpelt et al. [1994], designed for formalizing arguments and
proof-checking. These are types that depend on a term variable (ranging over another
type). An intuitive example is An, where n is a variable ranging over natural numbers.
A more formal example is Px, where x : A and P : A→TT. In this way types may contain
redexes and we may have the following reduction

I ≡ λxA.xA →β λx
A.xA′

,

by reducing only the second A to A′. The question now is whether λxA binds the xA′

.
If we write I as

I ≡ λx:A.x,
then this problem disappears

λx:A.x→→ λx:A′.x.

In the following system λA

→dB this idea is formalized.

1.4.10. Definition. The system λA

→dB starts with a collection of pseudo-terms, notation
ΛdB
→ , is defined by the following grammar.

ΛA = A |ΛA ΛA |λ A:TT.ΛA.
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For example λx:α.x and (λx:α.x)(λy:β.y) are pseudo-terms. As we will see, the first one
is a legal , i.e. actually typeable term in λA

→dB, whereas the second one is not.

1.4.11. Definition. (i) Let Γ be a basis consisting of a set of declarations x:A with
distinct term variables x and types A∈TTA. This is exactly the same as for λA

→Cu.
(ii) The system of type assignment obtaining statements Γ ⊢ M : A with Γ a basis,

M a pseudoterm and A a type, is defined as follows.

(axiom) Γ ⊢ x : A, if (x:A)∈Γ;

(→-elimination)
Γ ⊢M : (A→ B) Γ ⊢ N : A

;
Γ ⊢ (MN) : B

(→-introduction)
Γ, x:A ⊢M : B

.
Γ ⊢ (λx:A.M) : (A→ B)

Figure 1.8: λdB
→

Provability in λdB
→ is denoted by ⊢dB

λ→
. Thus the legal terms of λdB

→ are defined by

making a selection from the context-free language ΛdB
→ . That λx:α.x is legal folows from

x:α ⊢dB
λ→

x : α using the →-introduction rule. That (λx:α.x)(λy:β.y) is not follows
systematically from section 2.3. These legal terms do not form a context-free language,
do exercise 1.5.8.

There is a close connection between λCh
→ and λdB

→ . First we need the following.

1.4.12. Lemma. Let Γ ⊆ Γ′ be bases of λdB
→ . Then

Γ ⊢dB
λ→

M : A ⇒ Γ′ ⊢dB
λ→

M : A.

Proof. By induction on the derivation of the first statement.

1.4.13. Definition. (i) LetM ∈ΛCh
→ and suppose FV(M) ⊆ dom(Γ). DefineMΓ inductively

as follows.

xΓ = xΓ(x);

(MN)Γ = MΓNΓ;

(λx:A.M)Γ = λxA.MΓ,x:A.

(ii) Let M ∈ΛCh
→ (A) in λCh

→ . Define M−, a pseudo-term of λdB
→ , as follows.

(xA)− = x;

(MN)− = M−N−;

(λxA.M)− = λx:A.M−.
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(iii) For M a term of λdB
→ define the basis ΓM as follows.

ΓxA = {x:A};
ΓMN = ΓM ∪ ΓN ;

ΓλxA.M = ΓM \ {x:A}

1.4.14. Example. To get the (easy) intuition, consider the following.

(λx:A.x)∅ ≡ (λxA.xA);

(λxA.xA)− ≡ (λx:A.x);

(λx:A→B.xy){y:A} ≡ λxA→B.xA→ByA;

Γ(λxA→B .xA→ByA) = {y:A}.

1.4.15. Proposition. (i) Let M ∈ΛCh
A

and let M be well-named. Let Γ a basis of λdB
→ .

Then

M ∈ΛCh
A (A) ⇐⇒ ΓM ⊢dB

λ→
M− : A.

(ii) Γ ⊢dB
λ→

M : A ⇐⇒ MΓ ∈ΛCh
→ (A).

Proof. (i), (ii)(⇒) By induction on the proof or the definition of the LHS.

(i)(⇐) By (ii)(⇒), using (M−)ΓM ≡M .

(ii)(⇐) By (i)(⇒), using (MΓ)− ≡M,ΓMΓ ⊆ Γ and proposition 1.4.12.

1.4.16. Corollary. In particular, for a type A∈TT one has

A is inhabited in λCh
→ ⇐⇒ A is inhabited in λdB

→ .

Proof. Immediate.

Again the translation preserves reduction and conversion

1.4.17. Proposition. (i) Let M,N ∈ΛΓ
→Ch. Then

M →R N ⇐⇒ MΓ →R NΓ,

where R = β,η or βη.

(ii) Let M1,M2 ∈Λ(A) and R as in (i). Then

M1 →R M2 ⇐⇒ M−
1 →R M−

2 .

(iii) The same results hold for conversion.

Proof. Easy.
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Comparing λdB
→ and λCu

→

1.4.18. Proposition. (i) Let M ∈ΛA be well-named. Then

M ∈ΛdB
→ (A) ⇒ ΓM ⊢Cu

λ→
|M | : A,

where ΓM = {x:A | xA ∈FV(M)}
(ii) Let M ∈Λ. Then

Γ ⊢Cu
λ→

M : A ⇐⇒ ∃M ′ ∈ΛdB
A (A).|M ′| ≡M and M ′ is well-named.

Proof. As for Proposition 1.4.7.

Again the implication in (i) cannot be reversed.

The three systems compared

Now we can harvest a comparison between the three systems λCh
→ , λdB

→ and λCu
→ .

1.4.19. Theorem. Let M be a well-named term in ΛTTA
. Then we have

M ∈ΛCh
A (A) ⇐⇒ ΓM ⊢dB

λ→
M− : A

⇒ ΓM ⊢Cu
λ→
|M | : A

⇒ M ′ ∈ΛCh
→ (A).|M ′| ≡M & M ′ is well-named.

Proof. By Propositions 1.4.7 and 1.4.18 and the fact that |M−| = |M |.

Again the second and third arrows cannot be reversed.
It may seem a bit exaggerated to have three versions of the simply typed lambda

calculus: λCu
→ , λCh

→ and λdB
→ . But this is indeed necessary.

The Curry version corresponds to implicitly typed programming languages like ML.
Since implicit typing makes programming more easy, we want to consider this system.

For extensions of λCu
→ , like λ2 with second order (polymorphic) types, type checking

is not decidable, see Wells [1999], and hence one needs the explicit versions. The two
explicitly typed systems λCh

→ and λdB
→ are basically isomorphic as shown above. These

systems have a very canonical semantics if the version λCh
→ is used. Nevertheless we

want two versions because the version λdB
→ can be extended more naturally to more

powerful type systems in which there is a notion of reduction on the types (those with
‘dependent types’ and those with higher order types to be treated in Volume II) generated
simultaneously. Also there are important extensions in which there is a reduction relation
on types, e.g. in the system λω with higher order types. The classical version of λ→ gives
problems. For example, if A →→ B, does one have that λxA.xA →→ λxA.xB? Moreover,
is the xB bound by the λxA? By denoting λxA.xA as λx:A.x, as is done in λCh

→ , these
problems do not arise. This is so important that for explicitly typed extensions of λ→
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we will need to use the Ch-versions, even if for these systems the model theory will be
a bit more complicated to express.

The situation is not so bad as it may seem, since the three systems and their
differences are easy to memorize. Just look at the following examples.

λx.xy ∈ Λ
{y:o}
→Cu((o→o)→o)) (Curry);

λx:(o→o).xy ∈ Λ
{y:o}
→dB((o→o)→o)) (de Bruijn);

λxo→o.xo→oyo ∈ Λ→Ch((o→o)→o)) (Church).

We have chosen to present the three versions of λ→ because one finds them like this in
the literature.

In this Part I of the book we are interested in untyped lambda terms that can be
typed using simple types. We will see that up to substitution this typing is unique. For
example

λfx.f(fx)

can have as type (o→o)→o→o, but also (A→A)→A→A for any type A. Moreover there
is a simple algorithm to find all possible types for an untyped lambda term, see Section
2.3.

We are interested in typable terms M . This can be terms in the set of untyped
lambda terms Λ with Curry typing. Since we are at the same time also interested in the
types of the subterms of M , the Church typing is a convenient notation. Moreover, this
information is almost uniquely determined once the type A of M is known or required.
By this we mean that the Church typing is uniquely determined by A for the nf Mnf

of M , if M contains some redexes of the form (λx.M)N with x /∈FV(M) (K-redexes),
otherwise for M itself. For example the Church typing of M ≡ KIy of type α→α is
(λxα→αyβ.xα→α)(λzα.zα)yβ . The type β is not determined. But for the βη-nf of M ,
the term I, the Church typing is is uniquely determined and is Iα ≡ λzα.zα. See Exercise
2.5.3.

If A is not available, then the type information forM is schematic in the groundtypes.
By this we mean that e.g. the term I ≡ λx.x has a Church version λxα.xα and type α→α,
where one can substitute both in the term and type any A∈TTA for α. We will study
this in greater detail in Section 2.3.

1.5. Exercises

1.5.1. Show that the well-known combinators

I ≡ λx.x,
K ≡ λxy.x,
S ≡ λxyz.xz(yz)

respectively have the following types.

I : A→A;
K : A→B→A;
S : (A→B→C)→(A→B)→(A→C).
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1.5.2. Find types for
B ≡ λxyz.x(yz);
C ≡ λxyz.xzy;
C∗ ≡ λxy.yx;
K∗ ≡ λxy.y;
W ≡ λxy.xyy.

1.5.3. Find types for SKK, λxy.y(λz.zxx)x and λfx.f(f(fx)).

1.5.4. Show that rk(A→B→C) = max{rk(A) + 1, rk(B) + 1, rk(C)}.
1.5.5. Show that if M ≡ P [x := Q] and N ≡ (λx.P )Q, then M may have a type in λCu

→

but N not. A similar observation can be made for pseudo-terms of λdB
→ .

1.5.6. Show the following.
(i) λxy.(xy)x /∈ Λ∅

→Cu.

(ii) λxy.x(yx)∈Λ∅
→Cu.

1.5.7. Find inhabitants in (A→B→C)→B→A→C and (A→A→B)→A→B.

1.5.8. [van Benthem] Show that Λ→Ch(A) and Λ∅
→Cu(A) is for some A∈TTA not a context

free language.

1.5.9. Define in λo
→ the ‘pseudo-negation’ ∼A ≡ A→o. Construct an inhabitant of

∼∼∼A→∼A.

1.5.10. Let X be a finite set. Give a representation of X in λo
→ such that every function

f :Xk → X can be lambda defined in λo
→.

1.5.11. Prove the following, see definition 1.4.13.
(i) LetM ∈Λ→Ch be such that FV(M) ⊆ dom(Γ), then (MΓ)− ≡M and ΓMΓ ⊆

Γ.
(ii) Let M ∈Λ→dB, then (M−)ΓM ≡M .

1.5.12. Construct a term F with ⊢λo
→
F : T2→T2 such that for trees t one has Ft =β t

mir,
where tmir is the mirror image of t, defined by

ǫmir = ǫ;

(p(t, s))mir = p(smir, tmir).

1.5.13. A term M is called proper if all λ’s appear in the prefix of M , i.e. M ≡ λ~x.N
and there is no λ occurring in N . Let A be a type such that Λø(A) is not empty.
Show that

Every nf of type A is proper ⇐⇒ rk(A) ≤ 2.

1.5.14. Determine the class of closed inhabitants of the types 4 and 5.

1.5.15. The collection of multi-ary trees can be seen as part of a multi-sorted algebra
with sorts MTree and LMTree as follows.

nil ∈ LMtree;

cons ∈ Mtree→LMtree→LMtree;

p ∈ LMtree→Mtree.
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Represent this multi-sorted free algebra in λo
→. Construct the lambda term

representing the tree

p
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? p

• • •

.

1.5.16. In this exercise it will be proved that each term (having a β-nf) has a unique
lnf. A term M (typed or untyped) is always of the form λx1 . . . xn.yM1 . . .Mm or
λx1 . . . xr.(λx.M0)M1 . . .Ms. Then yM1 . . .Mm (or (λx.M0)M1 . . .Mm) is the
matrix of M and the (M0, )M1, . . . ,Mm are its components. A typed term
M ∈ΛΓ(A) is said to be fully eta (f.e.) expanded if its matrix is of type o and its
components are f.e. expanded. Show the following for typed terms. (For untyped
terms there is no finite f.e. expanded form, but the Nakajima tree, see B[1984]
Exercise 19.4.4, is the corresponding notion for the untyped terms.)

(i) M is in lnf iff M is a β-nf and f.e. expanded.

(ii) If M =βη N1 =βη N2 and N1, N2 are β-nfs, then N1 =η N2. [Hint. Use
η-postponement, see B[1984] Proposition 15.1.5.]

(iii) N1 =η N2 and N1, N2 are β-nfs, then there exist N↓ and N↑ such that
Ni →→η N↓ and N↑ →→η Ni, for i = 1, 2. [Hint. Show that both →η and η←
satisfy the diamond lemma.]

(iv) If M has a β-nf, then it has a unique lnf.

(v) If N is f.e. expanded and N →→β N
′, then N ′ is f.e. expanded.

(vi) For all M there is a f.e. expanded M∗ such that M∗ →→η M .

(vii) If M has a β-nf, then the lnf of M is the β-nf of M∗, its full eta expansion.

1.5.17. Like in B[1984], the terms in this book are abstract terms, considered modulo
α-conversion. Sometimes it is useful to be explicit about α-conversion and even
to violate the variable convention that in a subterm of a term the names of free
and bound variables should be distinct. For this it is useful to modify the system
of type assignment.

(i) Show that ⊢λ→ is not closed under α-conversion. I.e.

Γ ⊢M :A,M ≡α M
′ 6⇒ Γ ⊢M ′:A.

[Hint. Consider M ′ ≡ λx.x(λx.x).]
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(ii) Consider the following system of type assignment to untyped terms.

{x:A} ⊢ x : A;

Γ1 ⊢M : (A→B) Γ2 ⊢ N : A
,

Γ1 ∪ Γ2 ⊢ (MN) : B
provided Γ1 ∪ Γ2 is a basis;

Γ ⊢M : B
,

Γ− {x:A} ⊢ (λx.M) : (A→ B)
provided Γ ∪ {x:A} is a basis.

Provability in this system will be denoted by Γ ⊢′ M : A.
(iii) Show that ⊢′ is closed under α-conversion.
(iv) Show that

Γ ⊢′ M : A ⇐⇒ ∃M ′ ≡α M.Γ ⊢M ′ : A.

1.5.18. (i) Let M = λx1 . . . xn.xiM1 . . .Mm be a β-nf. Define by induction on the
length of M its Φ-normal form, notation Φ(M), as follows.

Φ(λ~x.xiM1 . . .Mm) := λ~x.xi(Φ(λ~x.M1)~x) . . . (Φ(λ~x.Mm)~x).

(ii) Compute the Φ-nf of S = λxyz.xz(yz).
(iii) Write Φn,m,i := λy1 . . . ymλx1 . . . xn.xi(y1~x) . . . (ym~x). Then

Φ(λ~x.xiM1 . . .Mm) = Φn,m,i(Φ(λ~x.M1)) . . . (Φ(λ~x.Mm)).

Show that the Φn,m,i are typable.
(iv) Show that every closed nf of type A can be written as a product of the Φn,m,i.
(v) Write S in such a manner.
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Chapter 2

Properties

2.1. First properties

In this section we will treat simple properties of the various systems λ→. Deeper
properties—like strong normalization of typeable terms—will be considered in Section
2.2.

Properties of λCu
→ , λCh

→ and λdB
→

Unless stated otherwise, properties stated for λ→ apply to both systems.

2.1.1. Proposition (Weakening lemma for λ→).
Suppose Γ ⊢M : A and Γ′ is a basis with Γ ⊆ Γ′. Then Γ′ ⊢M : A.

Proof. By induction on the derivation of Γ ⊢M : A.

2.1.2. Lemma (Free variable lemma). (i) Suppose Γ ⊢M : A. Then FV (M) ⊆ dom(Γ).
(ii) If Γ ⊢ M : A, then Γ ↾ FV(M) ⊢ A : M , where for a set X of variables one has

Γ ↾ FV(M) = {x:A∈Γ |x∈X}.

Proof. (i), (ii) By induction on the generation of Γ ⊢M : A.

The following result is related to the fact that the system λ→ is ‘syntax directed’, i.e.
statements Γ ⊢M : A have a unique proof.

2.1.3. Proposition (Generation lemma for λCu
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.
(ii) Γ ⊢MN : A ⇒ ∃B ∈TT [Γ ⊢M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx.M : A ⇒ ∃B,C ∈TT [A ≡ B→C & Γ, x:B ⊢M : C].

Proof. (i) Suppose Γ ⊢ x : A holds in λ→. The last rule in a derivation of this statement
cannot be an application or an abstraction, since x is not of the right form. Therefore
it must be an axiom, i.e. (x:A)∈Γ.

(ii), (iii) The other two implications are proved similarly.

49
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2.1.4. Proposition (Generation lemma for λdB
→ ).

(i) Γ ⊢ x : A ⇒ (x:A)∈Γ.
(ii) Γ ⊢MN : A ⇒ ∃B ∈TT [Γ ⊢M : B→A & Γ ⊢ N : B].
(iii) Γ ⊢ λx:B.M : A ⇒ ∃C ∈TT [A ≡ B→C & Γ, x:B ⊢M : C].

Proof. Similarly.

2.1.5. Proposition (Generation lemma for λCh
→ ).

(i) xB ∈ΛCh
→ (A) ⇒ B = A.

(ii) (MN)∈ΛCh
→ (A) ⇒ ∃B ∈TT.[M ∈ΛCh

→ (B→A) & N ∈ΛCh
→ (B)].

(iii) (λxB.M)∈ΛCh
→ (A) ⇒ ∃C ∈TT.[A = (B→C) & M ∈ΛCh

→ (C)].

Proof. As before.

The following two results hold for λCu
→ and λdB

→ . Variants already have been proved
for λCh

→ , Propositions 1.4.2 and 1.4.4(iii).

2.1.6. Proposition (Substitution lemma for λCu
→ and λdB

→ ).
(i) Γ, x:A ⊢M : B & Γ ⊢ N : A ⇒ Γ ⊢M [x: = N ] : B.
(ii) Γ ⊢M : A ⇒ Γ[α := B] ⊢M : A[α := B].

Proof. The proof will be given for λCu
→ , for λdB

→ it is similar.
(i) By induction on the derivation of Γ, x:A ⊢M : B. Write

P ∗ ≡ P [x: = N ].
Case 1. Γ, x:A ⊢M : B is an axiom, hence M ≡ y and (y:B)∈Γ ∪ {x:A}.

Subcase 1.1. (y:B)∈Γ. Then y 6≡ x and Γ ⊢M∗ ≡ y[x:N ] ≡ y : B.
Subcase 1.2. y:B ≡ x:A. Then y ≡ x and B ≡ A, hence Γ ⊢M∗ ≡ N : A ≡ B.

Case 2. Γ, x:A ⊢ M : B follows from Γ, x:A ⊢ F : C→B, Γ, x:A ⊢ G : C and
FG ≡ M . By the induction hypothesis one has Γ ⊢ F ∗ : C→B and Γ ⊢ G∗ : C. Hence
Γ ⊢ (FG)∗ ≡ F ∗G∗ : B.

Case 3. Γ, x:A ⊢M : B follows from Γ, x:A, y:D ⊢ G : E, B ≡ D→E and λy.G ≡M .
By the induction hypothesis Γ, y:D ⊢ G∗ : E, hence Γ ⊢ (λy.G)∗ ≡ λy.G∗ : D→E ≡ B.

(ii) Similarly.

2.1.7. Proposition (Subject reduction property for λCu
→ and λdB

→ ). Suppose
M →→βη M

′. Then Γ ⊢M : A ⇒ Γ ⊢M ′ : A.

Proof. The proof will be given for λdB
→ , for λCu

→ it is similar. Suppose Γ ⊢ M : A and
M → M ′ in order to show that Γ ⊢ M ′ : A; then the result follows by induction on the
derivation of Γ ⊢M : A.

Case 1. Γ ⊢ M : A is an axiom. Then M is a variable, contradicting M → M ′.
Hence this case cannot occur.

Case 2. Γ ⊢ M : A is Γ ⊢ FN : A and is a direct consequence of Γ ⊢ F : B→A and
Γ ⊢ N : B. Since FN ≡M →M ′ we can have three subcases.



2.1. FIRST PROPERTIES 51

Subcase 2.1. M ′ ≡ F ′N with F → F ′.

Subcase 2.2. M ′ ≡ FN ′ with N → N ′.
In these two subcases it follows by the induction hypothesis that Γ ⊢M ′ : A.

Subcase 2.3. F ≡ λx:B.G and M ′ ≡ G[x: = N ]. Since

Γ ⊢ λx.G : B→A & Γ ⊢ N : B

it follows by the generation lemma 2.1.3 for λ→ that

Γ, x:B ⊢ G : A & Γ ⊢ N : B.

Therefore by the substitution lemma 2.1.6 for λ→ it follows that
Γ ⊢ G[x: = N ] : A, i.e. Γ ⊢M ′ : A.

Case 3. Γ ⊢ M : A is Γ ⊢ λx:B.N : B→C and follows from Γ, x:B ⊢ N : C. Since
M → M ′ we have M ′ ≡ λx:B.N ′ with N → N ′. By the induction hypothesis one has
Γ, x:B ⊢ N ′ : C, hence Γ ⊢ λx:B.N ′ : B→C, i.e. Γ ⊢M ′ : A.

The following result also holds for λCh
→ and λdB

→ , Exercise 2.5.4.

2.1.8. Corollary (Church-Rosser Theorem for λCu
→ ). On typable terms of λCu

→ the Church-
Rosser theorem holds for the notions of reduction →→β and →→βη.

(i) Let M,N ∈ΛΓ
→(A). Then

M =β(η) N ⇒ ∃Z ∈ΛΓ
→(A).M →→β(η) Z & N →→β(η) Z.

(ii) Let M,N1, N2 ∈ΛΓ
→(A). Then

M →→βη N1 & M →→β(η) N2 ⇒ ∃Z ∈ΛΓ
→(A).N1 →→β(η) Z & N2 →→β(η) Z.

Proof. By the Church-Rosser theorems for→→β and→→βη on untyped terms, Theorem
1.1.7, and Proposition 2.1.7.

The following property of uniqueness of types only holds for the Church and de
Bruijn versions of λ→. It is instructive to find out where the proof brakes down for λCu

→

and also that the two contexts in (ii) should be the same.

2.1.9. Proposition (Unicity of types for λCh
→ and λdB

→ ).

(i) M ∈ΛCh
→ (A) & M ∈ΛCh

→ (B) ⇒ A = B.

(ii) Γ ⊢dB
λ→

M : A & Γ ⊢dB
λ→

M : B ⇒ A = B.

Proof. (i), (ii) By induction on the structure of M , using the generation lemma 2.1.4.
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Normalization

For several applications, for example for the problem to find all possible inhabitants of a
given type, we will need the weak normalization theorem, stating that all typable terms
do have a βη-nf (normal form). The result is valid for all versions of λ→ and a fortiori
for the subsystems λo

→. The proof is due to Turing and is published posthumously in
Gandy [1980]. In fact all typable terms in these systems are βη strongly normalizing,
which means that all βη-reductions are terminating. This fact requires more work and
will be proved in §12.2.

The notion of ‘abstract reduction system’, see Klop [1992], is useful for the understanding
of the proof of the normalization theorem.

2.1.10. Definition. (i) An abstract reduction system is a pair (X,→R), where X is a
set and →R is a binary relation on X.

(ii) An element x∈X is said to be in R-normal form (R-nf) if for no y ∈X one has
x→R y.

(iii) (X,R) is called weakly normalizing (R-WN, or simply WN) if every element has
an R-nf.

(iv) (X,R) is said to be strongly normalizing (R-SN, or simply SN) if every R-
reduction path

x0 →R x1 →R x2 →R . . . .

is finite.

2.1.11. Definition. (i) A multiset over nat can be thought of as a generalized set S in
which each element may occur more than once. For example

S = {3, 3, 1, 0}

is a multiset. We say that 3 occurs in S with multiplicity 2; that 1 has multiplicity 1;
etcetera.

More formally, the above multiset S can be identified with a function f ∈N
N that is

almost everywhere 0, except

f(0) = 1, f(1) = 1, f(3) = 2.

This S is finite if f has finite support , where

support(f) = {x∈N | f(x) 6= 0}.

(ii) Let S(N) be the collection of all finite multisets over N. S(N) can be identified
with {f ∈N

N | support(f) is finite}.

2.1.12. Definition. Let S1, S2 ∈S(N). Write

S1 →S S2
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if S2 results from S1 by replacing some elements (just one occurrence) by finitely many
lower elements (in the usual ordering of N). For example

{3, 3, 1, 0} →S {3, 2, 2, 2, 1, 1, 0}.

2.1.13. Lemma. We define a particular (non-deterministic) reduction strategy F on S(N).
A multi-set S is contracted to F (S) by taking a maximal element n∈S and replacing
it by finitely many numbers < n. Then F is a normalizing reduction strategy, i.e. for
every S ∈S(N) the S-reduction sequence

S →S F (S)→S F
2(S)→S . . .

is terminating.

Proof. By induction on the highest number n occuring in S. If n = 0, then we are
done. If n = k+1, then we can successively replace in S all occurrences of n by numbers
≤ k obtaining S1 with maximal number ≤ k. Then we are done by the induction
hypothesis.

In fact (S(N),→→S) is SN. Although we do not strictly need this fact, we will give
even two proofs of it. In the first place it is something one ought to know; in the second
place it is instructive to see that the result does not imply that λ→ satisfies SN.

2.1.14. Lemma. The reduction system (S(N),→S) is SN.

We will give two proofs of this lemma. The first one uses ordinals; the second one is
from first principles.

Proof1. Assign to every S ∈S(N) an ordinal #S < ωω as suggested by the following
examples.

#{3, 3, 1, 0, 0, 0} = 2ω3 + ω + 3;

#{3, 2, 2, 2, 1, 1, 0} = ω3 + 3ω2 + 2ω + 1.

More formally, if S is represented by f ∈N
N with finite support, then

#S = Σi∈Nf(i) · ωi.

Notice that
S1 →S S2 ⇒ #S1 > #S2

(in the example because ω3 > 3ω2 + ω). Hence by the well-foundedness of the ordinals
the result follows. 1

Proof2. Define

Fk = {f ∈N
N | ∀n ≥ k f(n) = 0};

F = ∪k∈NFk.
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The set F is the set of functions with finite support. Define on F the relation >
corresponding to the relation →S for the formal definition of S(N).

f > g ⇐⇒ f(k) > g(k), where k∈N is largest

such that f(k) 6= g(k).

It is easy to see that (F , >) is a linear ordering. We will show that it is even a well-
ordering, i.e. for every non-empty set X ⊆ F there is a least element f0 ∈ X. This
implies that there are no infinite descending chains in F .

To show this claim it suffices to prove that each Fk is well-ordered, since

. . . > (Fk+1 \ Fk) > Fk

element-wise. This will be proved by induction on k. If k = 0, then this is trivial, since
F0 = {λλn.0}. Now assume (induction hypothesis) that Fk is well-ordered in order to
show the same for Fk+1. Let X ⊆ Fk+1 be non-empty. Define

X(k) = {f(k) | f ∈X} ⊆ N;

Xk = {f ∈X | f(k) minimal in X(k)} ⊆ Fk+1;

Xk|k = {g ∈Fk | ∃f ∈Xk f |k = g} ⊆ Fk,

where

f |k(i) = f(i), if i < k;

= 0, else.

By the induction hypothesis Xk|k has a least element g0. Then g0 = f0|k for some
f0 ∈Xk. This f0 is then the least element of Xk and hence of X. 2

2.1.15. Remark. The second proof shows in fact that if (D,>) is a well-ordered set,
then so is (S(D), >), defined analogously to (S(N), >). In fact the argument can be
carried out in Peano Arithmetic, showing

⊢PA TI(α)→ TI(αω),

where TI(α) is the principle of transfinite induction for the ordinal α. Since TI(ω) is in
fact ordinary induction we have in PA

TI(ω), TI(ωω), TI(ω(ωω)), . . . .

This implies that the proof of TI(α) can be carried out in Peano Arithmetic for every
α < ǫ0. Gentzen [1936] shows that TI(ǫ0), where ǫ0 = ωωω...

, cannot be carried out in
PA.

In order to prove the λ→ is WN it suffices to work with λCh
→ . We will use the following

notation. We write terms with extra type information, decorating each subterm with its
type. For example, instead of (λxA.M)N ∈ termB we write (λxA.MB)A→BNA.
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2.1.16. Definition. (i) Let R ≡ (λxA.MB)A→BNA be a redex. The depth of R,
notation #R, is defined as follows.

#R = #(A→B)

where # on types is defined inductively by

#α = 0;

#(A→B) = max(#A,#B) + 1.

(ii) To each M in λCh
→ we assign a multi-set SM as follows

SM = {#R |R is a redex occurrence in M},

with the understanding that the multiplicity of R in M is copied in SM .

In the following example we study how the contraction of one redex can duplicate
other redexes or create new redexes.

2.1.17. Example. (i) Let R be a redex occurrence in a typed term M . Assume

M−→R β N,

i.e. N results form M by contracting R. This contraction can duplicate other redexes.
For example (we write M [P ], or M [P,Q] to display subterms of M)

(λx.M [x, x])R1 →β M [R1, R1]

duplicates the other redex R1.
(ii) (J.J. Lévy [1978]) Contraction of a β-redex may also create new redexes. For

example

(λxA→B .M [xA→BPA]C)(A→B)→C(λyA.QB) →β M [(λyA.QB)A→BPA]C ;

(λxA.(λyB .M [xA, yB ]C)B→C)A→(B→C)PAQB →β (λyB .M [PA, yB ]C)B→CQB ;

(λxA→B .xA→B)(A→B)→(A→B)(λyA.PB)A→BQA →β (λyA.PB)A→BQA.

2.1.18. Lemma. Assume M−→R β N and let R1 be a created redex in N . Then #R > #R1.

Proof. In Lévy [1978] it is proved that the three ways of creating redexes in example
2.1.17(ii) are the only possibilities. For a proof do exercise 14.5.3 in B[1984]. In each of
three cases we can inspect that the statement holds.

2.1.19. Theorem (Weak normalization theorem for λ→). If M ∈Λ is typable in λ→, then
M is βη-WN, i.e. has a βη-nf.
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Proof. By Proposition 1.4.9(ii) it suffices to show this for terms in λCh
→ . Note η-

reductions decreases the length of a term; moreover, for β-normal terms η-contractions
do not create β-redexes. Therefore in order to establish βη-WN it is sufficient to prove
that M has a β-nf.

Define the following β-reduction strategy F . If M is in nf, then F (M) = M .
Otherwise, let R be the rightmost redex of maximal depth n in M . Then

F (M) = N

where M−→R β N . Contracting a redex can only duplicate other redexes that are to
the right of that redex. Therefore by the choice of R there can only be redexes of M
duplicated in F (M) of depth < n. By lemma 2.1.18 redexes created in F (M) by the
contraction M →β F (M) are also of depth < n. Therefore in case M is not in β-nf we
have

SM →S SF (M).

Since →S is SN, it follows that the reduction

M →β F (M)→β F
2(M)→β F

3(M)→β . . .

must terminate in a β-nf.

For β-reduction this weak normalization theorem was first proved by Turing, see Gandy
[1980b]. The proof does not really need SN for S-reduction. One may also use the
simpler result lemma 2.1.13.

It is easy to see that a different reduction strategy does not yield a S-reduction chain.
For example the two terms

(λxA.yA→A→AxAxA)A→A((λxA.xA)A→AxA) →β

yA→A→A((λxA.xA)A→AxA)((λxA.xA)A→AxA)

give the multisets {1, 1} and {1, 1}. Nevertheless, SN does hold for all systems λ→, as
will be proved in Section 2.2. It is an open problem whether ordinals can be assigned in
a natural and simple way to terms of λ→ such that

M →β N ⇒ ord(M) > ord(N).

See Howard [1970] and de Vrijer [1987].

Applications of normalization

We will prove that normal terms inhabiting the represented data types (Bool, Nat, Σ∗

and TB) are standard, i.e. correspond to the intended elements. From WN for λ→ and
the subject reduction theorem it then follows that all inhabitants of the mentioned data
types are standard.

2.1.20. Proposition. Let M ∈Λ be in nf. Then M ≡ λx1 · · ·xn.yM1 . . .Mm, with
n,m ≥ 0 and the M1, . . . ,Mm again in nf.
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Proof. By induction on the structure of M . See Barendregt [1984], proposition 8.3.8
for some details if necessary.

2.1.21. Proposition. Let Bool ≡ Boolα, with α a type variable. Then for M in nf one
has

⊢M : Bool ⇒ M ∈{true, false}.

Proof. By repeated use of proposition 2.1.20, the free variable lemma 2.1.2 and the
generation lemma for λCu

→ , proposition 2.1.3, one has the following chain of arguments.

⊢M : α→α→α ⇒ M ≡ λx.M1

⇒ x:α ⊢M1 : α→α
⇒ M1 ≡ λy.M2

⇒ x:α, y:α ⊢M2 : α

⇒ M2 ≡ x or M2 ≡ y.

So M ≡ λxy.x ≡ true or M ≡ λxy.y ≡ false.

2.1.22. Proposition. Let Nat ≡ Natα. Then for M in nf one has

⊢M : Nat ⇒ M ∈{ n |n∈N}.

Proof. Again we have

⊢M : α→(α→α)→α ⇒ M ≡ λx.M1

⇒ x:α ⊢M1 : (α→α)→α
⇒ M1 ≡ λf.M2

⇒ x:α, f :α→α ⊢M2 : α.

Now we have

x:α, f :α→α ⊢M2 : α ⇒ [M2 ≡ x ∨
[M2 ≡ fM3 & x:α, f :α→α ⊢M3 : α]].

Therefore by induction on the structure of M2 it follows that

x:α, f :α→α ⊢M2 : α ⇒ M2 ≡ fn(x),

with n ≥ 0. So M ≡ λxf.fn(x) ≡ n .

2.1.23. Proposition. Let Sigma∗ ≡ Sigma∗
α. Then for M in nf one has

⊢M : Sigma∗ ⇒ M ∈{w |w∈Σ∗}.
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Proof. Again we have

⊢M : α→(α→α)k→α ⇒ M ≡ λx.N
⇒ x:α ⊢ N : (α→α)k→α
⇒ N ≡ λa1.N1 & x:α, a1:α→α ⊢ N1 : (α→α)k−1→α
. . .

⇒ N ≡ λa1 · · · ak.N & x:α, a1, . . . , ak:α→α ⊢ Nk : α

⇒ [Nk ≡ x ∨
[Nk ≡ aijN

′
k & x:α, a1, . . . , ak:α→α ⊢ Nk

′ : α]]

⇒ Nk ≡ ai1(ai2(· · · (aipx) · ·))
⇒ M ≡ λxa1 · · · ak.ai1(ai2(· · · (aipx) · ·))

≡ ai1ai2 · · · aip .

Before we can prove that inhabitants of tree[β] are standard, we have to intoduce
an auxiliary notion.

2.1.24. Definition. Given t∈T [b1, . . . , bn] define [t]p,l ∈Λ as follows.

[bi]
p,l = lbi;

[P (t1, t2)]
p,l = p[t1]

p,l[t2]
p,l.

2.1.25. Lemma. For t∈T [b1, . . . , bn] we have

[t] =β λpl.[t]
p,l.

Proof. By induction on the structure of t.

[bi] ≡ λpl.lbi

≡ λpl.[bi]
p,l;

[P (t1, t2)] ≡ λpl.p([t1]pl)([t2]pl)

= λpl.p[t1]
p,l[t2]

p.l, by the IH,

≡ λpl.[P (t1, t2)]
p,l.

2.1.26. Proposition. Let tree[β] ≡ treeα[β]. Then for M in nf one has

b1, . . . , bn:β ⊢M : tree[β] ⇒ M ∈{[t] | t∈T [b1, . . . , bn]}.
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Proof. We have ~b:β ⊢M : (α→α→α)→(β→α)→α ⇒

⇒ M ≡ λp.M ′

⇒ ~b:β, p:α→α→α ⊢M ′ : (β→α)→α
⇒ M ′ ≡ λl.M ′′

⇒ ~b:β, p:(α→α→α), l:(β→α) ⊢M ′′ : α

⇒ M ′′ ≡ lbi ∨ [M ′′ ≡ pM1M2 &

~b:β, p:(α→α→α), l:(β→α) ⊢Mj : α], j=1,2,

⇒ M ′′ ≡ [t]p,l, for some t∈T [~b],

⇒ M ≡ λpl.[t]p,l =β [t], by lemma 2.1.25.

2.2. Proofs of strong normalization

We now will give two proofs showing that λ→ is strongly normalizing. The first one is
the classical proof due to Tait [1967] that needs little technique, but uses set theoretic
comprehension. The second proof due to Statman is elementary, but needs results about
reduction.

2.2.1. Theorem (SN for λCh
→ ). For all A∈TT∞, M ∈ΛCh

→ (A) one has SNβη(M).

Proof. We use an induction loading. First we add to λ→ constants dα ∈ΛCh
→ (α) for

each atom α, obtaining λ+
→Ch. Then we prove SN for the extended system. It follows a

fortiori that the system without the constants is SN.
One first defines for A∈TT∞ the following class CA of computable terms of type A.

We write SN for SNβη.

Cα = {M ∈Λ∅
→Ch(α) | SN(M)};

CA→B = {M ∈Λ∅
→Ch(A→B) | ∀P ∈CA.MP ∈CB}.

Then one defines the classes C∗A of terms that are computable under substitution

C∗A = {M ∈Λ→Ch(A) | ∀ ~Q∈C.[M [~x: = ~Q]∈Λ∅
→Ch(A) ⇒ M [~x: = ~Q]∈CA]}.

Write C(∗) =
⋃{C(∗)

A | A∈TT(λ+
→)}. For A = A1→ . . .→An→α define

dA ≡ λx1:A1 . . . λxn:An.dα.

Then for A one has
M ∈CA ⇐⇒ ∀~P ∈C.M ~P ∈SN, (0)

M ∈C∗A ⇐⇒ ∀~P , ~Q∈C.M [~x: = ~Q]~P ∈SN, (1)

where the ~P , ~Q should have the right types and M ~P and M [~x: = ~Q]~P are of type α,
respectively. By an easy simultaneous induction on A one can show

M ∈CA ⇒ SN(M); (2)



60 CHAPTER 2. PROPERTIES

dA ∈CA. (3)

In particular, since M [~x: = ~P ] ~Q∈SN ⇒ M ∈SN, it follows that

M ∈C∗ ⇒ M ∈ SN. (4)

Now one shows by induction on M that

M ∈Λ(A) ⇒ M ∈C∗A. (5)

We distinguish cases and use (1).
Case M ≡ x. Then for P, ~Q∈C one has M [x: = P ] ~Q ≡ P ~Q∈C ⊆ SN, by the

definition of C and (2).
Case M ≡ NL is easy.
Case M ≡ λx.N . Now λx.N ∈C∗ iff for all ~P ,Q, ~R∈C one has

(λx.N [~y: = ~P ])Q~R∈ SN. (6)

If ~P ,Q, ~R∈C ⊆ SN, then by the IH one has N ∈C∗ ⊆ SN so

N [x: = Q, ~y: = ~P ]~R∈SN. (7)

Now every maximal reduction path σ starting from the term in (6) passes through a
reduct of the term in (7), as reductions within N, ~P ,Q, ~R are finite, hence σ is finite.
Therefore we have (6).

Finally by (5) and (4), every typable term of λ+
→, hence of λ→, is SN.

The idea of the proof is that one would have liked to prove by induction on M that it
is SN. But this is not directly possible. One needs the induction loading that M ~P ∈SN.
For a typed system with only combinators this is sufficient and this was the original
argument of Tait [1967]. For lambda terms one needs the extra induction loading of
being computable under substitution. This argument was first presented by Prawitz
[1971] and Girard [1971].

2.2.2. Corollary (SN for λCu
→ ). ∀M ∈ΛA∞

→Cu.SNβη(M).

Proof. Suppose M ∈Λ has type A (with respect to Γ) and had an infinite reduction
path σ. By repeated use of Proposition 1.4.9(ii) lift M to M ′ ∈ΛCh

→ with an infinite
reduction path (that projects to σ), contradicting the Theorem.

An elementary proof of strong normalization

Now the elementary proof of strong normalization of λCu
→ due to Statman will be presented.

Inspiration came from Nederpelt, Gandy and Klop. The point of this proof is that
in this reduction system strong normalizability follows from normalizability by local
structure arguements similar to and in many cases identical to those presented for the
untyped lambda calculus in Barendregt [1984]. These include analysis of redex creation,
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permutabilty of head with internal reductions, and permutability of η- with β-redexes.
In particular, no special proof technique is needed to obtain strong normalization once
normalization has been observed. We assume that the reader is familiar with the untyped
lambda calculus

2.2.3. Definition. (i) Let R ≡ (λx.X)Y be a β-redex. Then R is

(1) βI if x∈FV(X);

(2) βK if x /∈ FV(X);

(3) βK− if R is βK and x:0 and X : 0;

(4) βK+ if R is a βK and is not a βK.

(ii) The term X is said to have the λK− property if every dummy abstraction λx.X
has x:0 and X : 0.

Notation. (i) →β is beta reduction.

(ii) →η is η reduction.

(iii) →βI is reduction of λI-redexes.

(iv) →βIK+ is reduction of λI- or λK+-redexes.

(v) →βK− is reduction of λK−-redexes.

2.2.4. Theorem. Every M ∈ΛCu
→ is strongly βη-normalizable.

Proof. The result is proved in several steps.

(i) Every term is β(η)-normalizable. For β this is Theorem 2.1.19.

(ii) β-head reduction sequences terminate. By the standardization theorem, B[1984]
Theorem 11.4.7, there is a standard reduction to the β-normal form.

(iii) No β-reduction cycles. Consider a shortest term M beginning a cyclic reduction.
By the standarization theorem there exists a standard reduction from M to M. By
choice of M this standard reduction contains a head reduction. By permutability of
head reductions with internal reductions for each natural number m, M begins a head
reduction with at least m steps contradicting (ii).

(iv) M →→βη N ⇒ ∃P.M →→β P →→η N (Church). This usually is referred to as η
postponement, see B[1984] Corollary 15.1.5, for a proof.

(v) Strong normalizability of →β implies strong normalizability of →βη. Take an
infinite →βη sequence and apply η postponement at each step. The result yields an
infinite →β sequence.

(vi) Let βI be the notion of reduction in which a β-redex (λx.M)N is only allowed to
be contracted if x∈FV(M). Then βI is weakly normalizing. Same arguement as for (i).

(vii) βI is strongly normalizing (Church). See B[1984], Theorem 11.3.7.

(viii) M →→β N ⇒ ∃P.M →→βIK+ P →→βK− N (βK−-redex postponement). Contraction
of βK−-redexes cannot create new redexes or copy old ones so βK−-redexes can be
permuted with βI and and βK+-redexes. This permutation can cause the βK−-redex to
be copied several times but it cannot turn an I-redex into a K-redex (indeed the reverse
can happen) so no new βK−-redexes are created.
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(ix) If M has the λK− property then M β-reduces to only finitely many N. This follows
by (vii) and (viii).

(x) If M has the λK− property then M is strongly β-normalizable. By (i), (iii) and
(ix).

(xi) If M has the λK− property then M is strongly βη-normalizable. By (v) and (x).
(xii) For each M there is an N with the λK− property such that N →→βη M . First

expand M by η expansion so that every subterm of M beginning with a lambda is a
lambda prefix followed by a matrix of type 0. Let a : α and f : 0→(0→0) be new
variables. For each type T = T1→ . . .→Tt→α with Ti = Ti,1→ . . .→Ti,ki

→αi for i =
1, . . . , t define terms UA : T recursively by

U0 = a;

UT = λx1 . . . xt.f(x1UT1,1 . . . UT1,k1
) . . .

(f(xt−1UTt−1,1 . . . UTt−1,kt−1
)(xtUTt,1 . . . UTt,kt

))..).

Now recursively replace each dummy λx occurring λxλy . . . λz.X with x : T and X : 0
by λxλy . . . λz.KX(xUT1 . . . UTt). Clearly the resulting N satisfies N →→βη M and the
λK− property, since all dummy lambdas appear in K : 12.
(xiii) Every typable term is strongly βη normalizable. By (xi) and (xii).

Still another proof is to be found in de Vrijer [1987] in which for a typed term M a
computation is given of the langest reduction path to β-nf.

2.3. Checking and finding types

There are several natural problems concerning type systems.

2.3.1. Definition. (i) The problem of type checking consists of determining, given basis
Γ, term M and type A whether Γ ⊢M : A.

(ii) The problem of typeability consists of given a term M determining whether M
has some type with respect to some Γ.

(iii) The problem of type reconstruction (‘finding types’) consists of finding all possible
types A and bases Γ that type a given M .

(iv) The inhabitation problem consists of finding out whether a given typeA is inhabited
by some term M in a given basis Γ.

(v) The enumeration problem consists of determining for a given type A and a given
context Γ all possible terms M such that Γ ⊢M : A.

The five problems may be summarized stylistically as follows.

Γ ⊢λ→
M : A ? type checking ;

∃A,Γ [Γ ⊢λ→
M : A] ? typeability ;

? ⊢λ→
M : ? type reconstruction;

∃M [Γ ⊢λ→
M : A] ? inhabitation;

Γ ⊢λ→
? : A enumeration.
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In another notation this is the following.

M ∈ ΛΓ
→(A) ? type checking ;

∃A,Γ M ∈ ΛΓ
→ (A)? typeability ;

M ∈ Λ?
→(?) type reconstruction;

ΛΓ
→(A) 6= ∅ ? inhabitation;

? ∈ ΛΓ
→(A) enumeration.

In this section we will treat the problems of type checking, typeability and type
reconstruction for the three versions of λ→. It turns out that these problems are decidable
for all versions. The solutions are essentially simpler for λCh

→ and λdB
→ than for λCu

→ . The
problems of inhabitation and enumeration will be treated in the next section.

One may wonder what is the role of the context Γ in these questions. The problem

∃Γ∃A Γ ⊢M : A.

can be reduced to one without a context. Indeed, for Γ = {x1:A1, . . . , xn:An}
Γ ⊢M : A ⇔ ⊢ (λx1(:A1) . . . λxn(:An).M) : (A1 → . . .→ An → A).

Therefore
∃Γ∃A [Γ ⊢M : A] ⇐⇒ ∃B [⊢ λ~x.M : B].

On the other hand the question

∃Γ∃M [Γ ⊢M : A] ?

is trivial: take Γ = {x:A} and M ≡ x. So we do not consider this question.
The solution of the problems like type checking for a fixed context will have important

applications for the treatment of constants.

Checking and finding types for λdB
→ and λCh

→

We will see again that the systems λCh
→ and λdB

→ are essentially equivalent. For these
systems the solutions to the problems of type checking, typeability and type reconstruction
are easy. All of the solutions are computable with an algorithm of linear complexity.

2.3.2. Proposition (Type checking for λdB
→ ). Let Γ be a basis of λdB

→ . Then there is a
computable function typeΓ : ΛTT → TT ∪ {error} such that

M ∈ ΛΓ
→Ch(A) ⇐⇒ typeΓ(M) = A.

Proof. Define

typeΓ(x) = Γ(x);

typeΓ(MN) = B, if typeΓ(M) = typeΓ(N)→B,

= error, else;

typeΓ(λx:A.M) = A→typeΓ∪{x:A}(M), if typeΓ∪{x:A}(M) 6= error,

= error, else.
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Then the statement follows by induction on the structure of M .

2.3.3. Corollary. Typeability and type reconstruction for λdB
→ are computable. In fact

one has the following.

(i) M ∈ ΛΓ
→dB ⇐⇒ typeΓ(M) 6= error.

(ii) Each M ∈ΛΓ
→dB(typeΓ) has a unique type; in particular

M ∈ ΛΓ
→dB(typeΓ(M)).

Proof. By the proposition.

For λCh
→ things are essentially the same, except that there are no bases needed, since

variables come with their own types.

2.3.4. Proposition (Type checking for λCh
→ ). There is a computable function type :

Λ→Ch → TT ∪ {error} such that

M ∈ Λ→Ch(A) ⇐⇒ type(M) = A.

Proof. Define

type(xA) = A;

type(MN) = B, if type(M) = type(N)→B,

= error, else;

type(λxA.M) = A→type(M), if type(M) 6= error,

= error, else.

Then the statement follows again by induction on the structure of M .

2.3.5. Corollary. Typeability and type reconstruction for λCh
→ are computable. In fact

one has the following.

(i) M ∈ Λ→Ch ⇐⇒ type(M) 6= error.

(ii) Each M ∈Λ→Ch has a unique type; in particular M ∈ Λ→Ch(type(M)).

Proof. By the proposition.

Checking and finding types for λCu
→

We now will show the computability of the three questions for λCu
→ . This occupies 2.3.6

- 2.3.16 and in these items ⊢ stands for ⊢TT∞

λ→Cu
.

Let us first make the easy observation that in λCu
→ types are not unique. For example

I ≡ λx.x has as possible type α→α, but also (β→β)→(β→β) and (α→β→β)→(α→β→β).
Of these types α→α is the ‘most general’ in the sense that the other ones can be obtained
by a substitution in α.
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2.3.6. Definition. (i) A substitutor is an operation ∗ : TT→ TT such that

∗(A→ B) ≡ ∗(A)→ ∗(B).

(ii) We write A∗ for ∗(A).
(iii) Usually a substitution ∗ has a finite support, that is, for all but finitely many

type variables α one has α∗ ≡ α (the support of ∗ being

sup(∗) = {α | α∗ 6≡ α}).

In that case we write

∗(A) = A[α1 := α∗
1, . . . , αn := α∗

n],

where {α1, . . . , αn} ⊇ sup(∗). We also write

∗ = [α1 := α∗
1, . . . , αn := α∗

n]

and
∗ = [ ]

for the identity substitution.

2.3.7. Definition. (i) Let A,B ∈TT. A unifier for A and B is a substitutor ∗ such that
A∗ ≡ B∗.

(ii) The substitutor ∗ is a most general unifier for A and B if

• A∗ ≡ B∗

• A∗1 ≡ B∗1 ⇒ ∃ ∗2 . ∗1 ≡ ∗2 ◦ ∗.
(iii) Let E = {A1 = B1, . . . , An = Bn} be a finite set of equations between types.

The equations do not need to be valid. A unifier for E is a substitutor ∗ such that
A∗

1 ≡ B∗
1 & · · · & A∗

n ≡ B∗
n. In that case one writes ∗ |= E. Similarly one defines the

notion of a most general unifier for E.

2.3.8. Examples. The types β → (α → β) and (γ → γ) → δ have a unifier. For
example ∗ = [β := γ → γ, δ := α → (γ → γ)] or ∗1 = [β := γ → γ, α := ε → ε,
δ := ε→ ε→ (γ → γ)]. The unifier ∗ is most general, ∗1 is not.

2.3.9. Definition. A is a variant of B if for some ∗1 and ∗2 one has

A = B∗1 and B = A∗2 .

2.3.10. Example. α→ β → β is a variant of γ → δ → δ but not of α→ β → α.

Note that if ∗1 and ∗2 are both most general unifiers of say A and B, then A∗1 and
A∗2 are variants of each other and similarly for B.

The following result due to Robinson (1965) states that unifiers can be constructed
effectively.
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2.3.11. Theorem (Unification theorem). (i) There is a recursive function U having (after
coding) as input a pair of types and as output either a substitutor or fail such that

A and B have a unifier ⇒ U(A,B) is a most general unifier

for A and B;

A and B have no unifier ⇒ U(A,B) = fail.

(ii) There is (after coding) a recursive function U having as input finite sets of
equations between types and as output either a substitutor or fail such that

E has a unifier ⇒ U(E) is a most general unifier for E;

E has no unifier ⇒ U(E) = fail.

Proof. Note that A1→A2 ≡ B1→B2 holds iff A1 ≡ B1 and A2 ≡ B2 hold.

(i) Define U(A,B) by the following recursive loop, using case distinction.

U(α,B) = [α := B], if α /∈ FV(B),

= [ ], if B = α,

= fail, else;

U(A1→A2, α) = U(α,A1→A2);

U(A1→A2, B1→B2) = U(A
U(A2,B2)
1 , B

U(A2,B2)
1 ) ◦ U(A2, B2),

where this last expression is considered to be fail if one of its parts is. Let #var(A,B) =‘the
number of variables in A → B’ and #→(A,B)=‘the number of arrows in A → B’.
By induction on (#var(A,B),#→(A,B)) ordered lexicographically one can show that
U(A,B) is always defined. Moreover U satisfies the specification.

(ii) If E = {A1 = B1, . . . , An = Bn}, then define U(E) = U(A,B), where A =
A1→· · ·→An and B = B1→· · ·→Bn.

See [???] for more on unification. The following result due to Parikh [1973] for
propositional logic (interpreted by the propositions-as-types interpretation) and Wand
[1987] simplifies the proof of the decidability of type checking and typeability for λ→.

2.3.12. Proposition. For every basis Γ, term M ∈Λ and A∈TT such that FV(M) ⊆
dom(Γ) there is a finite set of equations E = E(Γ,M,A) such that for all substitutors ∗
one has

∗ |= E(Γ,M,A) ⇒ Γ∗ ⊢M : A∗, (1)

Γ∗ ⊢M : A∗ ⇒ ∗1 |= E(Γ,M,A), (2)

for some ∗1 such that ∗ and ∗1 have the same

effect on the type variables in Γ and A.
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Proof. Define E(Γ,M,A) by induction on the structure of M :

E(Γ, x, A) = {A = Γ(x)};
E(Γ,MN,A) = E(Γ,M, α→A) ∪ E(Γ, N, α),

where α is a fresh variable;

E(Γ, λx.M,A) = E(Γ ∪ {x:α},M, β) ∪ {α→β = A},
where α, β are fresh.

By induction on M one can show (using the generation lemma (2.1.3)) that (1) and (2)
hold.

2.3.13. Definition. (i) Let M ∈Λ. Then (Γ, A) is a principal pair (pp) for M if

(1) Γ ⊢M : A.

(2) Γ′ ⊢M : A′ ⇒ ∃∗ [Γ∗ ⊆ Γ′ & A∗ ≡ A′].

Here {x1:A1, . . .}∗ = {x1:A
∗
1, . . .}.

(ii) Let M ∈Λ be closed. Then A is a principal type (pt) for M if

(1) ⊢M : A

(2) ⊢M : A′ ⇒ ∃∗ [A∗ ≡ A′].

Note that if (Γ, A) is a pp for M , then every variant (Γ′, A′) of (Γ, A), in the obvious
sense, is also a pp for M . Conversely if (Γ, A) and (Γ′, A′) are pp’s for M , then (Γ′, A′)
is a variant of (Γ, A). Similarly for closed terms and pt’s. Moreover, if (Γ, A) is a pp for
M , then FV(M) = dom(Γ).

The following result is independently due to Curry (1969), Hindley (1969) and Milner
(1978). It shows that for λ→ the problems of type checking and typeability are decidable.

2.3.14. Theorem (Principal type theorem for λCu
→ ). (i) There exists a computable function

pp such that one has

M has a type ⇒ pp(M) = (Γ, A), where (Γ, A) is a pp for M ;

M has no type ⇒ pp(M) = fail.

(ii) There exists a computable function pt such that for closed terms M one has

M has a type ⇒ pt(M) = A, where A is a pt for M ;

M has no type ⇒ pt(M) = fail.

Proof. (i) Let FV(M) = {x1, . . . , xn} and set Γ0 = {x1:α1, . . . , xn:αn} and A0 = β.
Note that

M has a type ⇒ ∃Γ ∃A Γ ⊢M : A

⇒ ∃ ∗ Γ∗
0 ⊢M : A∗

0

⇒ ∃ ∗ ∗ |= E(Γ0,M,A0).
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Define

pp(M) = (Γ∗
0, A

∗
0), if U(E(Γ0,M,A0)) = ∗;

= fail, if U(E(Γ0,M,A0)) = fail.

Then pp(M) satisfies the requirements. Indeed, if M has a type, then

U(E(Γ0,M,A0)) = ∗

is defined and Γ∗
0 ⊢ M : A∗

0 by (1) in proposition 2.3.12. To show that (Γ∗
0, A

∗
0) is a pp,

suppose that also Γ′ ⊢M : A′. Let Γ̃ = Γ′ ↾ FV(M); write Γ̃ = Γ∗0
0 and A′ = A∗0

0 . Then
also Γ∗0

0 ⊢ M : A∗0
0 . Hence by (2) in proposition 2.3.12 for some ∗1 (acting the same as

∗0 on Γ0, A0) one has ∗1 |= E(Γ0,M,A0). Since ∗ is a most general unifier (proposition
2.3.11) one has ∗1 = ∗2 ◦ ∗ for some ∗2. Now indeed

(Γ∗
0)

∗2 = Γ∗1
0 = Γ∗0

0 = Γ̃ ⊆ Γ′

and

(A∗
0)

∗2 = A∗1
0 = A∗0

0 = A′.

If M has no type, then ¬∃ ∗ ∗ |= E(Γ0,M,A0) hence

U(Γ0,M,A0) = fail = pp(M).

(ii) Let M be closed and pp(M) = (Γ, A). Then Γ = ∅ and we can put pt(M) = A.

2.3.15. Corollary. Type checking and typeability for λ→ are decidable.

Proof. As to type checking, let M and A be given. Then

⊢M : A ⇐⇒ ∃∗ [A = pt(M)∗].

This is decidable (as can be seen using an algorithm—pattern matching—similar to the
one in Theorem 2.3.11).

As to the question of typeability, let M be given. Then M has a type iff pt(M) 6=
fail.

The following result is due to Hindley [1969].

2.3.16. Theorem (Second principal type theorem for λCu
→ ). (i) For every type A∈TT one

has

⊢M : A ⇒ ∃M ′[M ′ →→βη M & pt(M ′) = A].

(ii) For every type A∈TT there exists a basis Γ and term M ∈Λ such that (Γ, A) is a
pp for M.
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Proof. (i) We present a proof by examples. We choose three situations in which we
have to construct an M ′ that are representative for the general case. Do exercise ?? for
the general proof.

Case M ≡ λx.x and A ≡ (α→β)→α→β. Then pt(M) ≡ α→α. Take M ′ ≡ λxy.xy.
The η-expansion of λx.x to λxy.xy makes subtypes of A correspond to unique subterms
of M ′.

Case M ≡ λxy.y and A ≡ (α→γ)→β→β. Then pt(M) ≡ α→β→β. Take M ′ ≡
λxy.Ky(λz.xz). The β-expansion forces x to have a functional type.

Case M ≡ λxy.x and A ≡ α→α→α. Then pt(M) ≡ α→β→α. Take M ′ ≡
λxy.Kx(λf.[fx, fy]). The β-expansion forces x and y to have the same types.

(ii) Let A be given. We know that ⊢ I : A→A. Therfore by (i) there exists an I′ →→βη I

such that pt(I′) = A→A. Then take M ≡ I′x. We have pp(I′x) = ({x:A}, A).

Complexity

The space and time complexity of finding a type for a typable term is exponential, see
exercise 2.5.18.

In order to decide whether for two typed terms M,N ∈Λ→(A) one has

M =βη N,

one can normalize both terms and see whether the results are syntactically equal (up to
α-conversion). In exercise 2.5.17 it will be shown that the time and space costs of doing
this is at least hyper-exponential (in the size of MN). The reason is that the type-free
application of Church numerals

cncm = cmn

can be typed, even when applied iteratively

cn1cn2 . . . cnk
.

In exercise 2.5.16 it is shown that the costs are also at most hyper-exponential. The
reason is that Turing’s proof of normalization for terms in λ→ uses a succesive development
of redexes of ‘highest’ type. Now the length of each such development depends exponentially
on the length of the term, whereas the length of a term increases at most quadratically
at each reduction step. The result even holds for typable terms M,N ∈Λ→Cu(A), as the
cost of finding types only ads a simple exponential to the cost.

One may wonder whether there is not a more efficient way to decide M =βη N , for
example by using memory for the reduction of the terms, rather than a pure reduction
strategy that only depends on the state of the term reduced so far. The sharpest question
is whether there is any Turing computable method, that has a better complexity class.
In Statman [1979] it is shown that this is not the case, by showing that every elementary
time bounded Turing machine computation can be coded as a a convertibility problem
for terms of some type in λo

→. A shorter proof of this result can be found in Mairson
[1992].
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2.4. Finding inhabitants

In this section we study for λ→ the problem of finding inhabitants. That is, given a type
A, we look for terms M such that in the empty context ⊢λ→

M : A. By Corollaries 1.4.8
and 1.4.16 it does not matter whether we work in the system à la Curry, Chrurch or
de Bruijn. Therefore we will focus on λCu

→ . Note that by proposition 2.1.2 the term M
must be closed.

For example, if A = α→α, then we can take M ≡ λx(:α).x. In fact we will see later
that this M is modulo β-conversion the only choice. For A = α→α→α there are two
inhabitants: M1 ≡ λx1x2.x1 ≡ K and M2 ≡ λx1x2.x2 ≡ K∗. Again we have exhausted
all inhabitants. If A = α, then there are no inhabitants, as we will see soon.

Various interpretations will be useful to solve inhabitation problems.

The Boolean model

Type variables can be interpreted as ranging over B = {0, 1} and → as the two-ary
function on B defined by

x→y = 1− x+ xy

(classical implication). This makes every type A into a Boolean function. More formally
this is done as follows.

2.4.1. Definition. (i) A Boolean valuation is a map ρ : TT var→B.
(ii) Let ρ be a Boolean valuation. The Boolean interpretation under ρ of a type

A∈TT(λ→), notation [[A]]ρ, is defined inductively as follows.

[[α]]ρ = ρ(α);

[[A1→A2]]ρ = [[A1]]ρ→[[A2]]ρ.

(iii) A Boolean valuation ρ satisfies a type A, notation ρ |= A, if [[A]]ρ = 1. Let
Γ = {x1 : A1, . . . , xn : An}, then ρ satisfies Γ, notation ρ |= Γ, if

ρ |= A1 & . . . & ρ |= An.

(iv) A type A is classically valid , notation |= A, iff for all Boolean valuations ρ one
has ρ |= A.

2.4.2. Proposition. Let Γ ⊢λ→
M :A. Then for all Boolean valuations ρ one has

ρ |= Γ ⇒ ρ |= A.

Proof. By induction on the derivation in λ→.

From this it follows that inhabited types are classically valid. This in turn implies
that the type α is not inhabited.

2.4.3. Corollary. (i) If A is inhabited, then |= A.
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(ii) A type variable α is not inhabited.

Proof. (i) Immediate by proposition 2.4.2, by taking Γ = ∅.
(ii) Immediate by (i), by taking ρ(α) = 0.

One may wonder whether the converse of 2.4.3(i), i.e.

|= A ⇒ A is inhabited (1)

holds. We will see that in λ→ this is not the case. For the subsystem λo
→(having only

one base type o), however, the implication (1) is valid.

2.4.4. Proposition (Statman [1982]). Let A = A1→ . . .→An→o, with n ≥ 1 be a type
of λo

→. Then

A is inhabited ⇐⇒ for some i with 1 ≤ i ≤ n the type

Ai is not inhabited.

Proof. ( ⇒ ) Assume ⊢λo
→
M : A. Suppose towards a contradiction that all Ai are

inhabited, i.e. ⊢λo
→
Ni : Ai. Then ⊢λo

→
MN1 . . . Nn : o, contradicting 2.4.3(ii).

(⇐) By induction on the structure of A. Assume that Ai with 1 ≤ i ≤ n is not
inhabited.

Case 1. Ai = o. Then

x1 : A1, . . . , xn : An ⊢ xi : o

so

⊢ (λx1 . . . xn.xi) : A1→ . . .→An→o,

i.e. A is inhabited.

Case 2. Ai = B1→ . . .→Bm→o. By (the contrapositive of) the induction hypothesis
applied to Ai it follows that all Bj are inhabited, say ⊢Mj : Bj . Then

x1 : A1, . . . , xn : An ⊢ xi : Ai = B1→ . . .→Bm→o
⇒ x1 : A1, . . . , xn : An ⊢ xiM1 . . .Mm : o

⇒ ⊢ λx1 . . . xn.xiM1 . . .Mm : A1→ . . .→An→o = A.

From the proposition it easily follows that inhabitation of terms in λo
→ is decidable

with a linear time algorithm.

2.4.5. Corollary. In λo
→ one has for all types A

A is inhabited ⇐⇒ |= A.
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Proof. ( ⇒ ) By proposition 2.4.3(i). (⇐) Assume |= A and that A is not inhabited.
Then A = A1→ . . .→An→o with each Ai inhabited. But then for ρ0(o) = 0 one has

1 = [[A]]ρ0

= [[A1]]ρ0
→ . . .→[[An]]ρ0

→o
= 1→ . . .→1→0, since |= Ai for all i,

= 0, since 1→0 = 0,

contradiction.

Corollary 2.4.5 does not hold for λ∞→. In fact the type ((α→β)→α)→α (corresponding
to Peirce’s law) is a valid type that is not inhabited, as we will see soon.

2.4.6. Exercise. Each type A of λo
→ can be interpreted as an element [[A]]∈BB as

follows.
[[A]](i) = [[A]]ρi

,

where ρi(o) = i. There are four elements in BB

{λλx∈B.0, λλx∈B.1, λλx∈B.x, λλx∈B.1− x}.

Prove that [[A]] = λλx∈B.1 iff A is inhabited and [[A]] = λλx∈B.x iff A is not inhabited.

Intuitionistic propositional logic

Although inhabited types correspond to Boolean tautologies, not all such tautologies
correspond to inhabited types. Intuitionistic logic provides a precise characterization of
inhabited types. The underlying idea, the propositions-as-types correspondence will be
explaned in more detail in §5.2 and then in §30.1.

2.4.7. Definition. (i) The set of formulas of the implicational fragment of propositional
logic, notation form(PROP), is defined by the following abstract syntax. Write form =
form(PROP).

form = var | form ⊃ form

var = p | var ′

For example p′, p′ ⊃ p, p′ ⊃ (p′ ⊃ p) are formulas.
(ii) Let Γ be a set of formulas and let A be a formula. Then A is derivable from Γ,

notation Γ ⊢PROP A, if Γ ⊢ A can be produced by the following formal system.

A∈Γ ⇒ Γ ⊢ A
Γ ⊢ A ⊃ B, Γ ⊢ A ⇒ Γ ⊢ B

Γ, A ⊢ B ⇒ Γ ⊢ A ⊃ B

Notation. (i) q, r, s, t, . . . stand for arbitrary propositional variables.
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(ii) As usual Γ ⊢ A stands for Γ ⊢PROP A if there is little danger for confusion.
Morover, Γ ⊢ A stands for ∅ ⊢ A.

2.4.8. Example. (i) ⊢ A ⊃ A;
(ii) B ⊢ A ⊃ B;
(iii) ⊢ A ⊃ (B ⊃ A);
(iv) A ⊃ (A ⊃ B) ⊢ A ⊃ B.

2.4.9. Definition. Let A∈ form(PROP) and Γ ⊆ form(PROP).
(i) We define [A]∈TT and ΓA ⊆ TT as follows.

A [A] ΓA

p α ∅
P ⊃ Q [P ]→[Q] ΓP ∪ ΓQ

It so happens that ΓA = ∅ and A ≡ [A] for all A. But the setup will be needed for more
complex logics and type theories.

(ii) Moreover, we set [Γ] = {xA:A |A∈Γ}.

2.4.10. Proposition. Let A∈ form(PROP) and ∆ ⊆ form(PROP). Then

∆ ⊢PROP A ⇒ [∆] ⊢λ→
M : [A], for some M.

Proof. By induction on the generation of ∆ ⊢ A.
Case 1. ∆ ⊢ A because A∈∆. Then (xA:[A])∈ [∆] and hence [∆] ⊢ xA : [A]. So we

can take M ≡ xA.
Case 2. ∆ ⊢ A because ∆ ⊢ B ⊃ A and ∆ ⊢ B. Then by the induction hypothesis

[∆] ⊢ P : [B]→[A] and [∆] ⊢ Q : [B]. Therefore, [∆] ⊢ PQ : [A].
Case 3. ∆ ⊢ A because A ≡ B ⊃ C and ∆, B ⊢ C. By the induction hypothesis

[∆], xB:[B] ⊢M : [C]. Hence [∆] ⊢ (λxB.M) : [B]→[C] ≡ [B ⊃ C] ≡ [A].

Conversely we have the following.

2.4.11. Proposition. Let ∆, A ⊆ form(PROP). Then

[∆] ⊢λ→
M : [A] ⇒ ∆ ⊢PROP A.

Proof. By induction on the structure of M .
Case 1. M ≡ x. Then by the generation lemma 2.1.3 one has (x:[A])∈ [∆] and hence

A∈∆; so ∆ ⊢PROP A.
Case 2. M ≡ PQ. By the generation lemma for some C ∈Λ one has [∆] ⊢ P : C→[A]

and [∆] ⊢ Q : C. Clearly, for some C ′ ∈ form one has C ≡ [C]. Then C→[A] ≡ [C ′ ⊃ A].
By the induction hypothesis one has ∆ ⊢ C ′→A and ∆ ⊢ C ′. Therefore ∆ ⊢ A.

Case 3. M ≡ λx.P . Then [∆] ⊢ λx.P : [A]. By the generation lemma [A] ≡ B→C
and [∆], x:B ⊢ P : C, so that [∆], x:[B′] ⊢ P : [C ′], with B′] ≡ B, [C ′] ≡ C (hence
[A] ≡ [B′ ⊃ C ′]). By the induction hypothesis it follows that ∆, B ⊢ C and therefore
∆ ⊢ B→C ≡ A.
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Although intuitionistic logic gives a complete characterization of those types that are
inhabited, this does not answer immediately the question whether a type like ((α→β)→α)→α
corresponding to Peirce’s law is inhabited.

Kripke models

Remember that a typeA∈TT(λ→) is inhabited iff [A], the translation ofA into propositional
calculus is intuitionistically provable. This explains why

A inhabited ⇒ |= A,

but not conversely, since |= A correspond to classical validity. A common tool to prove
that types are not inhabited or that formulas are not intuitionistically derivable consist
of so called Kripke models that we will introduce now.

2.4.12. Definition. (i) A Kripke model consists of a tuple K =< K,≤,⊥, F >, such
that

(1) < K,≤,⊥ > is a partially ordered set with least element ⊥;

(2) F : K→℘(var) is a monotonic map from K to the powerset of the set of type-
variables: ∀k, k′ ∈K [k ≤ k′ ⇒ F (k) ⊆ F (k′)].

We often just write K =< K,F >.

(ii) Let K =< K,F > be a Kripke model. For k∈K we define by induction on the
structure of A∈TT(λ→) the notion k forces A, notation k ⊢K A. We often omit the
subscript.

k ⊢ α ⇐⇒ α∈F (k);

k ⊢ A1→A2 ⇐⇒ ∀k′ ≥ k [k′ ⊢ A1 ⇒ k′ ⊢ A2].

(iii) K forces A, notation K ⊢ A, is defined as ⊥ ⊢K A.

(iv) If Γ = {x1:A1, . . . , xn:An}, then we write K ⊢ Γ, pronounce K forces Γ, for
K ⊢ A1 & . . . & K ⊢ An. Define Γ ⊢ A, pronounce ‘Γ forces A’, iff for all Kripke
models K one has

K ⊢ Γ ⇒ K ⊢ A.

In particular ⊢ A, pronounce ‘forced A’, if K ⊢ A for all Kripke models K.

2.4.13. Lemma. Let K be a Kripke model. Then for all A∈TT(λ→) one has

k ≤ k′ & k ⊢K A ⇒ k′ ⊢K A.

Proof. By induction on the structure of A.

2.4.14. Proposition. Γ ⊢λ→
M : A ⇒ Γ ⊢ A.
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Proof. By induction on the derivation of M : A from Γ. If M : A is x : A and is
in Γ, then this is trivial. If Γ ⊢ M : A is Γ ⊢ FP : A and is a direct consequence of
Γ ⊢ F : B→A and Γ ⊢ P : B, then the conclusion follows from the induction hypothesis
and the fact that k ⊢ B→A & k ⊢ B ⇒ k ⊢ A. In the case that Γ ⊢ M : A is
Γ ⊢ λx.N : A1→A2 and follows directly from Γ, x:A1 ⊢ N : A2 we have to do something.
By the induction hypothesis we have for all K

K ⊢ Γ, A1 ⇒ K ⊢ A2. (2)

We must show Γ ⊢ A1→A2, i.e. K ⊢ Γ ⇒ K ⊢ A1→A2 for all K.
Given K and k∈K, define

Kk =< {k′ ∈K | k ≤ k′},≤, k,K >,

(where ≤ and F are in fact the appropriate restrictions to the subset {k′ ∈K | k ≤ k′}
of K). Then it is easy to see that also Kk is a Kripke model and

k ⊢K A ⇐⇒ Kk ⊢ A. (3)

Now suppose K ⊢ Γ in order to show K ⊢ A1→A2, i.e. for all k∈K
k ⊢K A1 ⇒ k ⊢K A2.

Indeed,

k ⊢K A1 ⇒ Kk ⊢ A1, by (3)

⇒ Kk ⊢ A2, by (2), since by lemma 2.4.13 also Kk ⊢ Γ,

⇒ k ⊢K A2.

2.4.15. Corollary. Let A∈TT(λ→). Then

A is inhabited ⇒ ⊢ A.
Proof. Take Γ = ∅.

Now it can be proved, see exercise 2.4.16, that (the type corresponding to) Peirce’s
law P = ((α→β)→α)→α is not forced in some Kripke model. Since 6 ⊢P it follows that
P is not inhabited, in spite of the fact that |= P .

2.4.16. Exercise. Show that Peirce’s law P = ((α→β)→α)→α is not forced in the
Kripke model K =< K,≤, 0, F > with K = {0, 1}, 0 ≤ 1 and F (0) = ∅, F (1) = {α}.

We also have a converse to corollary 2.4.15 which theoretically answers the inhabitation
question for λ→, namely the completeness theorem, Kripke [ ], (usually formulated for
provability in intuitionistic logic):

A is inhabited ⇐⇒ ⊢ A.
This is done by constructing for a type that is not inhabited a Kripke ‘counter-model’ K,
i.e. K 6 ⊢ A. In [ ] it is shown that these Kripke countermodels can be taken to be finite.
This solves the decision problem for inhabitation in λ→. In Statman [1979] the decision
problem is shown to be PSPACE complete, so that further analysis of the complexity of
the decision problem appears to be very difficult.
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Set-theoretic models

Now we will prove using set-theoretic models that there do not exists terms satisfying
certain properties.

2.4.17. Definition. An A×A→A pairing is a triple (P,L,R) such that in λ→ one has

⊢ P : A→A→A;

⊢ L : A→A & ⊢ R : A→A;

L(Pxy) =βη x & L(Pxy) =βη y.

It can be shown that there does not exists a A × A→A pairing for arbitrary types A,
see Barendregt [1974].

2.4.18. Definition. Let X be a set. The full typed structure (for λo
→ types) over X,

notation MX = {X(A)}A∈TTo , is defined as follows. For A∈TTo let X(A) be defined
inductively as follows.

X(o) = X;

X(A→B) = X(B)X(A), the set of functions from X(A) into X(B).

The reason that λo
→-classic was introduced can be seen now from the way terms of

that system can be interpreted easily intoMX .

2.4.19. Definition. (i) A valuation inMX is a map ρ from typed variables into ∪AX(A)
such that ρ(xA)∈X(A) for all A∈TTo.

(ii) Let ρ be a valuation in MX . The interpretation under ρ of a λo
→-classic term

into MX , notation [[M ]]ρ, is defined as follows.

[[xA]]ρ = ρ(xA);

[[MN ]]ρ = [[M ]]ρ[[N ]]ρ;

[[λxA.M ]]ρ = λλd∈X(A).[[M ]]ρ(xA:=d),

where ρ(xA: = d) = ρ′ with ρ′(xA) = d and ρ′(yB) = ρ(yB) if yB 6≡ xA.1

(iii) Define
MX |= M = N ⇐⇒ ∀ρ [[M ]]ρ = [[N ]]ρ.

Before proving properties about the models it is good to do exercises 2.5.8 and 2.5.9.

2.4.20. Proposition. (i) M ∈ termA ⇒ [[M ]]ρ ∈X(A).
(ii) M =βη N ⇒ MX |= M = N .

1Sometimes it is prefered to write [[λxA.M ]]ρ as λλd∈X(A).[[M [xA: = d]]]ρ, where d is a constant to
be interpreted as d. Although this notation is perhaps more intuitive, we will not use it, since it also
has technical drawbacks.
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Proof. (i) By induction on the structure of M .

(ii) By induction on the ‘proof’ of M =βη N , using

[[M [x: = N ]]]ρ = [[M ]]ρ(x:=[[N ]]ρ), for the β-rule;

ρ |FV(M) = ρ′ |FV(M) ⇒ [[M ]]ρ = [[M ]]ρ′ , for the η-rule;

[∀d∈X(A) [[M ]]ρ(x:=d) = [[N ]]ρ(x:=d)] ⇒ [[λxA.M ]]ρ = [[λxA.N ]]ρ, for the

ξ-rule.

Now we will give applications of the notion of typed structure.

2.4.21. Proposition. Let A be a type in λo
→.Then there does not exists an A × A→A

pairing.

Proof. Take X = {0, 1}. Then for every type A the set X(A) is finite. Therefore by a
cardinality argument there cannot be an A×A→A pairing, for otherwise f defined by

f(x, y) = [[P ]]xy

would be an injection from X(A)×X(A) into X(A), do exercise 2.5.9.

2.4.22. Proposition. There does not exists a term pred such that ⊢λo
→
pred : Nat→Nat

and

pred 0 = 0 ;

pred n+ 1 = n .

Proof. As before for X = {0, 1} the set X(Nat) is finite. Therefore

MX |= n = m

for some n 6= m. If pred did exist, then it follows easily that MX |= 0 = 1 . But
this implies that X(o) has cardinality 1, since 0 (Kx)y = y but 1 (Kx)y = Kxy = x, a
contradiction.

Another application of semantics is that there are no fixed-point operators in λo
→.

2.4.23. Definition. Let A be a type of λo
→. A term Y is a fixed-point operator of type

A iff ⊢τ Y : (A→A)→A and

Y =βη λf :A→A.f(Yf).

2.4.24. Proposition. For no type A there exists in λo
→ a fixed-point combinator.
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Proof. Take X = {0, 1}. Then for every A the set X(A) has at least two elements, say
x, y ∈X(A) with x 6= y. Then there exists an f ∈X(A→A) without a fixed-point:

f(z) = x, if z 6= x;

f(z) = y, else.

Suppose a fixed-point combinator of type A did exist, then inMX one has

[[Y]]f = f([[Y]]f),

contradicting that f has no fixed-point.

The results can easily be generalized to λ→, do exercise 2.5.10.

2.5. Exercises

2.5.1. Find out which of the following terms are typeable and determine for those that
are the principal type.

λxyz.xz(yz);

λxyz.xy(xz);

λxyz.xy(zy).

2.5.2. (i) Let A = (α→β)→((α→β)→α)→α Construct a term M such that ⊢ M : A.
What is the principal type of M?

(ii) Find an expansion of M such that it has A as principal type.

2.5.3. (Uniqueness of Type Assignments) A K-redex is anR ≡ (λx.M)N with x /∈FV(M);
if x∈FV(M), then R is an I-redex. In the following we consider a Church typing
of an untyped term M and all of its subterms so that M ∈Λ→Ch(A).
(i) Use the principal type theorem to show that if more than one such typing

exists then there is one which contains an atomic type not in A.
(ii) Show that if M only has lambda-I redexes, then every atomic type in such

a typing must occur in A [Hint: Show this for βη-nf and show that atomic
types are preserved by βη-reduction of λI-terms].

(iii) Conclude that if a term M ∈ΛCu
→ (A) has only I-redexes, then it has exactly

one typing: if M1,M2 ∈ΛCh
→ (A) such that |M1| ≡ |M2| ≡M , then M1 ≡M2.

(iv) Give an example of a λK-term M ∈Λ of type A with a non-unique Church
typing of its subterms.

(v) Explain why an untyped term with only I-redexes may have more than one
type.

2.5.4. (i) Formulate and prove an appropriate version of the Church-Rosser theorem
for λCh

→ . [Hint. One possibility is to redo the proof of this result for untyped
terms, as e.g. in B[1984]. An alternative is to use Proposition 1.4.9, Theorem
2.1.8 for λCu

→ , the normalization theorem for λ→ 2.1.19 and Exercise 2.5.3.
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(ii) Show that λdB
→ satisfies the Church-Rosser Theorem. [Hint. Use (i) and

translations between λdB
→ and λCh

→ .]

2.5.5. (Hindley) Show that if ⊢Cu
λ→

M : A, then there is a M ′ such that

M ′ →→βη M & pt(M ′) = A.

[Hints. 1. First make an η-expansion of M in order to obtain a term with a
principal type having the same tree as A. 2. Show that for any type B with a
subtype B0 there exists a context C[ ] such that

z:B ⊢ C[z] : B0.

3. Use 1,2 and a term like λfz.z(fP )(fQ) to force identification of the types of
P and Q. (For example one may want to identify α and γ in (α→β)→γ→δ.)]

2.5.6. Prove that Λo
→(o) = ∅ by applying the normalization and subject reduction

theorems.

2.5.7. Let X be a set and consider the modelMX of λo
→. Notice that every permutation

π = pio (bijection) of X can be lifted to all levels X(A) by defining

πA→B(f) = πB ◦ f ◦ π−1
A .

Prove that every lambda definable element f ∈X(A) inM(X) is invariant under
all lifted permutations; i.e. πA(f) = f . [Hint. Use the fundamental theorem for
logical relations.]

2.5.8. (i) Show thatMX |= (λxA.xA)yA = yA.
(ii) Show thatMX |= (λxA→A.xA→A) = (λxA→AλyA.xA→AyA).
(iii) Show that [[ 2 (Kxo)yo]]ρ = ρ(x).

2.5.9. Let P,L,R be an A×B→C pairing. Show that in every structureMX one has

[[P ]]xy = [[P ]]x′y′ ⇒ x = x′ & y = y′,

hence card(A).card(B)≤card(C).

2.5.10. Show that propositions 2.4.21, 2.4.22 and 2.4.24 can be generalized to λ→ by
modifying the notion of typed structure.

2.5.11. Prove that Λo
→(o) = ∅ by applying models and the fact shown in the previous

exercise that lambda definable elements are invariant under lifted permutations.

2.5.12. Let ∼A ≡ A→o. Show that if o does not occur in A, then ∼∼(∼∼A→A) is not
inhabited. Why is the condition about o necessary?

2.5.13. We say that the structure of the rational numbers can be represented in λ→ if
there is a type Q∈TT(λ→) and closed lambda terms:

0, 1 : Q;

+, · : Q→Q→Q;

−,−1 : Q→Q;
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such that (Q,+, ·,−,−1, 0, 1) satisfies the axioms of a field of characteristic 0.
Show that the rationals cannot be represented in λ→.

2.5.14. Show that there is no closed term

P : Nat→Nat→Nat

such that P is a bijection in the sense that

∀M :Nat∃!N1, N2:Nat PN1N2 =βη M.

2.5.15. Show that every closed term of type (0→0→0)→0→0 is βη-convertible to λf0→0→0.λx0.t
with t given by the grammar

t := x | ftt.
The next two exercises show that the minimal length of a reduction-path of a term

to normal form is non-elementary in the length of the term2. See Péter [1967] for the
definition of the class of (Kalmar) elementary functions. This class is the same as E3
in the Grzegorczyk hierarchy. To get some intuition for this class, define the family of
functions 2n:N→N as follows.

20(x) = x;

2n+1(x) = 22n(x).

Then every elementary function f is eventually bounded by some 2n:

∃n,m∀x>m f(x) ≤ 2n(x).

2.5.16. (i) Define the function gk : N→N by

gk(m) = #FGK(M), if m = #(M) for some untyped

lambda term M ;

= 0, else.

Here #M denotes the Gödelnumber of the term M and FGK is the Gross-
Knuth reduction strategy defined by completely developing all present redexes
in M , see B[1984]. Show that gk is Kalmar elementary.

(ii) For a type A∈TT∞ define its depth D(A)∈N by

D(α) = 0;

D(A→B) = max(D(A), D(B)) + 1.

For a term M ∈ΛCh
→ define

D(M) = max{D(A→B) | (λxA.P )A→BQ is a redex in M}
2In Gandy [1980a] this is also proved for arbitrary reduction paths starting from typable terms. In

de Vrijer [1987] an exact calculation is given for the longest reduction paths to normal form.
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Show that

FGK(|M |) = |N | ⇒ D(M) > D(N).

[Hint. Use Lévy’s analysis of redex creation, see Barendregt [1984], exercise
14.5.3.]

(iii) If M is a term, then its length, notation lth(M), is the number of symbols
in M . If a closed term M ∈Λ has a type, then its principal type pt(M) has
a depth bounded by its length:

D(pt(M)) ≤ lth(M).

See the proof of theorem 2.3.14.

(iv) Write σ:M→Mnf if σ is some reduction path of M to normal form Mnf. Let
$σ be the number of reduction steps in σ. Define

$(M) = min{$σ | σ : M→Mnf}.

Show that $M ≤ g(lth(M)), for some function g ∈E4. [Hint. Take g(m) =
gkm(m).]

2.5.17. (i) Define 21 = λfo→oxo.f(fx) and 2n+1 = ([o:=o→o])2n)2. Then the type of
2n is principal.

(ii) [Church] Show ([o:=o→o]cn)cm =β cmn .

(iii) Show 2n =β c2n(1).

(iv) Let M,N ∈Λ be untyped terms. Show that if M →→β N , then

length(M) ≤ length(N)2.

(v) Conclude that the shortest length of a reduction path starting with a typed
term M to normal form is in the worst case non-elementary in the length of
M .

2.5.18. It will be shown that the length of the principal type of a typable term is
at least exponential in the length of the term. This means that if f(m) =
max{length(pt(M)) | length(M) ≤ m}, then for some real number c1 > 1
one has cn1 ≤ f(n), for sufficiently large n. It will be shown also that the depth of
the principal type of a typable term M is linear in the length of M . It follows that
the length of the principal type of M is also at most exponential in the length of
M .

(i) Define Mn to be the following term:

λxn . . . x1.(xn(xn(xn−1))(xn−1(xn−1xn−2)) . . . (x2(x2x1)).

Show that the principal type of Mn has length > 2n. Conclude that the
length of the principle type of a term is at least exponential in the length of
the term.
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(ii) Show that there is a constant c2 such that for typable lambda terms M one
has for sufficiently long M

depth(pt(M)) ≤ c2(length(M)).

[Hint Use exercise 2.5.16(iii).]
(iii) Conclude that the length of the principle type of a term is also at most

exponential.

2.5.19. (Statman) In this exercise TT = TTo. LetMn =M({0, 1, 2, . . . , n}). The purpose
of this exercise is to show that this structure can be isomorphically embedded
into M(N).
(i) (Church’s δ) We add to the language λ→ constants k : o for k ≤ n and a

constant δ : o4→o. The intended interpretation of δ is the function δ defined
by

δxyuv = u if x = y;

= v else.

We define the notion of reduction δ by the contraction rules

δ i j k l →δ k if i = j;

→δ l, if i 6= j.

The resulting language of terms is called Λδ and on this we consider the
notion of reduction →βηδ.

(ii) Show that every M ∈Λδ satisfies SNβηδ(M).
(iii) Show that →βηδ is Church-Rosser.
(iv) Let M ∈Λ∅

δ(o) be a closed term of type o. Show that the normal form of M
is one of the constants 0, . . . , n.

(v) (Church’s theorem) Show that every element Φ∈Mn can be defined by a
closed term MΦ ∈Λδ. [Hint. For each A∈TT define simultaneously the map
Φ 7→ MΦ : Mn(A)→Λδ(A) and δA ∈Λδ(A→A→o→o) such that for any
closed M,N of type A one has

δAMNuv =βηδ u if [[M ]]Mn = [[N ]]Mn ;

=βηδ v else.

ForA = o takeMi = i and δo = δ. ForA = B→C, letMn(B) = {Φ1, . . . ,Φt}
and let B = B1→ . . . Bk→o. Now set

δA ≡ λxyuv.δB(xMΦ1(yMΦ1)(. . . (δA(xMΦt(yΦt))uv)..))v.

MΦ ≡ λx~y.

δBxMΦ1(MΦΦ1~y )

(δBxMΦ2(MΦΦ2~y )

(. . .

(δBxMΦt(MΦΦt~y )0)..)).
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(vi) Show that Φ 7→ [[MΦ]]M(N) is the required isomorphic embedding ofMn into
M(N).

(vii) (To be used later.) Let πn
i ≡ (λx1 . . . xn.xi) : (on→o). Define

∆n ≡ λabuv~x.a

(b(u~x)(v~x)(v~x) . . . (v~x))

(b(v~x)(u~x)(v~x) . . . (v~x))

. . .

(b(v~x)(v~x) . . . (v~x)(u~x)).

Then

∆nπn
i π

n
j π

n
kπ

n
l =βηδ πn

k , if i = j;

=βηδ πn
l , else.

Show that for i∈{1, . . . , n} one has for all M : o

M =βηδ i ⇒
M [o: = on→o][δ: = ∆n][1: = πn

1 ] . . . [n: = πn
n] =βη π

n
i .

2.5.20. (Th. Joly)
(i) LetM = 〈Q, q0, F, δ〉 be a deterministic finite automaton over the finite

alphabet Σ = {a1, . . . , an}. That is, Q is the finite set of states, q0 ∈Q
is the initial state, F ⊆ Q is the set of final states and δ : Σ × Q→Q is
the transition function. Let Lr(M) be the (regular) language consisting of
words in Σ∗ accepted by M by reading the words from right to left. Let
M =M(Q) be the model of λo

→ over Q. Show that

w∈Lr(M) ⇐⇒ [[w]]Mδa1 . . . δanq0 ∈F,

where δa(q) = δ(a, q) and w is defined in 1.3.6.
(ii) Similarly represent classes of trees (with at the nodes elements of Σ) accepted

by a frontier-to-root tree automaton, see Thatcher [1973], by the model M
at the type ⊤n = (02→0)n→0→0.
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Chapter 3

Tools

3.1. Typed lambda Models

In this chapter we work with λo
→, having one atomic type o, rather than with λ→, having

infinitely many atomic types. The reader is encouraged to investigate which results do
generalize. We will write TT = TT(λo

→).
In this section we will treat models, consistent sets of equations and their term

models. We develop the theory for λo
→, the reader being invited to see how much can

be generalized to λ→.

3.1.1. Definition. Let M = {M(A)}A∈TTo be a family of non-empty sets indexed by
types.

(i) M is called a typed structure for λo
→ if

M(A→B) ⊆M(B)M(A).

(ii) LetM be provided with application operators

(M, ·) = ({M(A)}A∈TTo , {·A,B}A,B ∈TTo)

with ·A,B :M(A→B) ×M(A) →M(B). Such a structure we call an applicative typed
structure if the following property of extensionality holds:

∀f, g ∈M(A→B) [[∀a∈M(A) f ·A,B a = g ·A,B a] ⇒ f = g].

(iii) M is called trivial ifM(o) is a singleton.

3.1.2. Notation. For applicative typed structures we use the infix notation f ·A,B x for
·A,B(f, x). Often we will be even more brief, extensionality becoming

∀f, g ∈M(A→B) [[∀a∈MA fa = ga] ⇒ f = g]

or simply (if A,B are implicitly known)

∀f, g ∈M [[∀a fa = ga] ⇒ f = g].

85
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3.1.3. Proposition. The notions of typed structure and applicative typed structure are
equivalent.

Proof. In a typed structureM define f ·a = f(a); extensionality is obious. Conversely,
let 〈M, ·〉 be an applicative typed structure. Define the typed structure M′ and ΦA :
M(A)→M′(A) as follows.

M′(o) = M(o);

Φo(a) = a;

M′(A→B) = {ΦA→B(f)∈M′(B)M
′(A) | f ∈M(A→B)};

ΦA→B(f)(ΦA(a)) = ΦB(f · a).

By definition Φ is surjective. By extensionality of the applicative typed structure it is also
injective. Hence ΦA→B(f) is well defined. Clearly one hasM′(A→B) ⊆M′(B)M

′(A).

3.1.4. Definition. Let M,N be two applicative typed structures. F is a morphism iff
F = {FA}A∈TTo such that for each A,B ∈TTo one has

FA :M(A)→N (A);
FA→B(f) · FA(a) = FB(f · a).

From now on we will not make a distinction between the notions of type and applicative
typed structure.

3.1.5. Proposition. Let M be a typed structure. Then

M is trivial ⇐⇒ ∀A∈TTo.M(A) is a singleton.

Proof. (⇐) By definition. (⇒) We will show this for A = 1 = o→o. If M(o) is
a singleton, then for all f, g ∈M(1) one has ∀x : M(o).(fx) = (gx), hence f = g.
Therefore M(o) is a singleton.

3.1.6. Example. (i) The full typed structure MX = {X(A)}A∈TTo over a non-empty
set X, see definition 2.4.18, is an applicative typed structure.

(ii) Let (X,≤) be a non-empty partially ordered set. Let D(o) = X and D(A→B)
consist of the monotone elements of D(B)D(A), where we order this set pointwise: for
f, g ∈D(A→B) define

f ≤ g ⇐⇒ ∀a∈D(A) fa ≤ ga.
The elements of the applicative typed structure DX = {D(A)}A∈TTo are called the
hereditarily monotonic functions, see the chapter by Howard in Troelstra [1973].

(iii) Let M be an applicative typed structure. A layered non-empty subfamily of M
is a family ∆ = {∆(A)}A∈TTo of sets, such that the following hold

∀A∈TTo.∅ 6= ∆(A) ⊆M(A)
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∆ is called closed under application if

f ∈∆(A→B), g ∈∆(A) ⇒ fg ∈∆(B).

∆ is called extensional if

∀A,B ∈TTo∀f, g ∈∆(A→B).[[∀a∈∆(A).fa = ga] ⇒ f = g].

If ∆ satisfies all these conditions, thenM↾∆ = (∆, ·↾∆) is an applicative typed structure.

3.1.7. Definition. (i) LetM be an applicative type structure. Then a (partial) valuation
in M is a family of (partial) maps ρ = {ρA}A∈TTo such that ρA : Var(A)→M(A).

(ii) Given an applicative typed structureM and a partial valuation ρ inM one can
define for M ∈Λo(A) the partial semantics [[M ]]Mρ ∈M(A) as follows

[[xA]]
M
ρ = ρA(x);

[[PQ]]Mρ = [[P ]]Mρ [[Q]]Mρ ;

[[λx.P ]]Mρ = λλd.[[P ]]Mρ[x:=d].

We often write [[M ]]ρ for [[M ]]Mρ . The expression [[M ]]ρ may not always be defined, even if

ρ is total. The problem arises with [[λx.P ]]ρ. Although the function λλd∈A.[[P ]]ρ[x:=d] ∈M(B)M(A)

is uniquely determined by [[λx.P ]]ρd = [[P ]]ρ[x:=d], it may fail to be an element of

M(A→B) which is only a subset of M(B)M(A). We write [[M ]]ρ↓ if [[M ]]ρ ∈M(A)

is well defined. We will write [[M ]]ρ = [[M ]]Mρ if there is little danger of confusion.

3.1.8. Definition. (i) A typed structure M is called a λo
→-model or simply a (type)

model if for every partial valuation ρ = {ρA}A and every A∈TTo and M ∈Λo(A) such
that FV(M) ⊆ dom(ρ) one has [[M ]]ρ↓.

(ii) LetM be a model and ρ a partial evaluation. Then we define

M, ρ |= M = N ⇐⇒ [[M ]]Mρ = [[N ]]Mρ .

Here and later we assume implicitly that M and N have the same type.
(iii) LetM be a model. Then we say that M satisfies M = N , notation

M |= M = N

iff for all partial ρ with FV(MN) ⊆ dom(ρ) one has M, ρ |= M = N.
(iv) LetM be a model. The theory of M is

Th(M) = {M = N |M,N ∈Λø
o &M |= M = N}.

3.1.9. Notation. Let E1, E2 be partial (i.e. possibly undefined) expressions.

(i) Write E1→ E2 iff E1↓ ⇒ [E2↓ & E1 = E2].
(ii) Write E1 ≃ E2 iff E1→ E2 & E2→ E1.
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3.1.10. Lemma. (i) Let M ∈Λo(A) and N be a subterm of M . Then

[[M ]]ρ↓ ⇒ [[N ]]ρ↓.

(ii) Let M ∈Λo(A). Then

[[M ]]ρ ≃ [[M ]]ρ↾FV(M).

(iii) Let M ∈Λo(A) and ρ1, ρ2 be such that ρ1 ↾ FV(M) = ρ2 ↾ FV(M). Then

[[M ]]ρ1
≃ [[M ]]ρ2

.

Proof. (i) By induction on the structure of M .

(ii) Similarly.

(iii) By (ii).

3.1.11. Lemma. Let M be an applicative structure. Then

(i) For M ∈Λo(A), x,N ∈Λo(B) one has

[[M [x:=N ]]]Mρ ≃ [[M ]]M
ρ[x:=[[N ]]Mρ ]

.

(ii) For M,N ∈Λo(A) one has

M →→βη N ⇒ [[M ]]Mρ → [[N ]]Mρ .

Proof. (i) By induction on the structure of M . Write M• ≡ M [x: = N ]. We only
treat the case M ≡ λy.P . By the variable convention we may assume that y /∈ FV(N).
We have

[[(λy.P )•]]ρ ≃ [[λy.P •]]ρ
≃ λλd.[[P •]]ρ[y:=d]

≃ λλd.[[P ]]ρ[y:=d][x:=[[N ]]ρ[y:=d]]
, by the IH,

≃ λλd.[[P ]]ρ[y:=d][x:=[[N ]]ρ], by Lemma 3.1.10,

≃ λλd.[[P ]]ρ[x:=[[N ]]ρ][y:=d]

≃ [[λy.P ]]ρ[x:=[[N ]]ρ].

(ii) By induction on the generation of M →→βη N .
Case M ≡ (λx.P )Q and N ≡ P [x: = Q]. Then

[[(λx.P )Q]]ρ → (λλd.[[P ]]ρ[x:=d])([[Q]]ρ)

→ [[P ]]ρ[x:=[[Q]]ρ]

≃ [[P [x: = Q]]]ρ, by (i).
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Case M ≡ λx.Nx, with x /∈ FV(N). Then

[[λx.Nx]]ρ → λλd.[[N ]]ρ(d)

≃ [[N ]]ρ.

Cases M →→βη N is PZ →→βη QZ, ZP →→βη ZQ or λx.P →→βη λx.Q, and follows
directly from P →→βη Q, then the result follows from the IH.

The cases where M →→βη N follows via reflexivity or transitivity are easy to treat.

3.1.12. Definition. LetM,N be typed lambda models and let A∈TTo.
(i) M and N are elementary equivalent at A, notationM≡A N , iff

∀M,N ∈Λø
o(A).[M |= M = N ⇐⇒ N |= M = N ].

(ii) M and N are elementary equivalent, notationM≡ N , iff

∀A∈TTo.M≡A N .

3.1.13. Proposition. Let M be typed lambda model. Then

M is non-trivial ⇐⇒ ∀A∈TTo.M(A) is not a singleton.

Proof. (⇐) By definition. (⇒) We will show this for A = 1 = o→o. Let c1, c2 be
distinct elements ofM(o). Consider M ≡ λxo.yo ∈Λø

o(1). Let ρi be the partial valuation
with ρi(y

o) = ci. Then [[M ]]ρi
↓ and [[M ]]ρ1

c1 = c1, [[M ]]ρ2
c1 = c2. Therefore [[M ]]ρ1

, [[M ]]ρ2

are different elements of M(1).

3.1.14. Proposition. LetM,N be models and F :M→N a surjective morphism. Then
the following hold.

(i) F ([[M ]]Mρ ) = [[M ]]NF◦ρ, for all M ∈Λo(A).

(ii) F ([[M ]]M) = [[M ]]N , for all M ∈Λø
o(A).

Proof. (i) By induction on the structure of M .
(ii) By (i).

3.1.15. Proposition. Let M be a typed lambda model.
(i) M |= (λx.M)N = M [x := N ].
(ii) M |= λx.Mx = M , if x /∈ FV(M).

Proof. (i) [[(λx.M)N ]]ρ = [[λx.M ]]ρ[[N ]]ρ
= [[M ]]ρ[x:=[[N ]]ρ

, by Lemma 3.1.11,

= [[M [x := N ]]]ρ.

(ii) [[λx.Mx]]ρd = [[Mx]]ρ[x:=d]

= [[M ]]ρ[x:=d]d

= [[M ]]ρd, as x /∈ FV(M).

Therefore by extensionality [[λx.Mx]]ρ = [[M ]]ρ.
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3.1.16. Lemma. Let M be a typed lambda model. Then

M |= M = N ⇐⇒ M |= λx.M = λx.N.

Proof. M |= M = N ⇐⇒ ∀ρ. [[M ]]ρ = [[N ]]ρ
⇐⇒ ∀ρ, d. [[M ]]ρ[x:=d] = [[N ]]ρ[x:=d]

⇐⇒ ∀ρ, d. [[λx.M ]]ρd = [[λx.N ]]ρd

⇐⇒ ∀ρ. [[λx.M ]]ρ = [[λx.N ]]ρ
⇐⇒ M |= λx.M = λx.N.

3.1.17. Proposition. (i) For every non-empty set X the typed structure MX is a λo
→-

model.

(ii) Let X be a poset. Then DX is a λo
→-model.

(iii) LetM be an applicative typed structure. Assume that [[KA,B]]M↓ and [[SA,B,C ]]M↓.
Then M is a λo

→-model.

(iv) Let ∆ be a layered non-empty subfamily of an applicative structure M that is
extensional and closed under application. Suppose [[KA,B]], [[SA,B,C ]] are defined and in
∆. Then M↾∆, see Example 3.1.6(iii), is a λo

→-model.

Proof. (i) SinceMX is the full typed structure, [[M ]]ρ always exists.

(ii) By induction on M one can show that λλd.[[M ]]ρ(x:=d) is monotonic. It then follows
by induction on M that [[M ]]ρ ∈DX .

(iii) For every λ-term M there exists a typed applicative expression P consisting only
of Ks and Ss such that P →→βη M . Now apply Lemma 3.1.11.

(iv) By (iii).

Operations on models

Now we will introduce two operations on models: M,N 7→ M × N , the cartesian
product, and M 7→ M∗, the polynomial model. The relationship between M and M∗

is similar to that of a ring R and its ring of multivariate polynomials R[~x].

Cartesian products

3.1.18. Definition. If M,N are applicative structures, then M×N is the structure
defined by

(M×N )(A) = M(A)×N (A)

(M1,M2)(N1, N2) = (M1N1,M2N2).

3.1.19. Proposition. Let M,N be models. For a partial valuation ρ in M×N write
ρ(x) = (ρ1(x), ρ2(x)).

(i) [[M ]]M×N
ρ = ([[M ]]Mρ1

, [[M ]]Nρ2
).

(ii) M×N is a model.
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(iii) Th(M×N ) = Th(M) ∩ Th(N ).

Proof. (i) By induction on M .
(ii) By (i).
(iii) M×N , ρ |= M = N ⇐⇒ [[M ]]ρ = [[N ]]ρ

⇐⇒ ([[M ]]Mρ1
, [[M ]]Nρ2

) = ([[N ]]Mρ1
, [[N ]]Nρ2

)

⇐⇒ [[M ]]Mρ1
= [[N ]]Mρ1

& [[M ]]Mρ2
= [[N ]]Mρ2

⇐⇒ M, ρ |= M = N & N , ρ |= M = N,
by (i). Hence for closed terms M,N

M×N |= M = N ⇐⇒ M |= M = N & N |= M = N.

Polynomial models

3.1.20. Definition. (i) We introduce a new constant cm for each m∈M and we letM
be the set of all typed applicative combinations of variables and constants cm.

(ii) For each valuation ρ : Var→M define the interpretation ((−))ρ :M→M by

((x))ρ = ρ(x);

((cm))ρ = m;

((PQ))ρ = ((P ))ρ((Q))ρ.

(iii) Write

P ∼M Q ⇐⇒ ∀ρ ((P ))ρ = ((Q))ρ,

where ρ ranges over valuations inM.

3.1.21. Lemma. (i) ∼M is an equivalence relation satisfying cd · ce ∼M cde.
(ii) For all P,Q∈M one has

P1 ∼M P2 ⇐⇒ ∀Q1, Q2 ∈M [Q1 ∼M Q2 ⇒ P1Q1 ∼M P2Q2].

Proof. Easy.

3.1.22. Definition. LetM be an applicative structure. The polynomial structure over
M is M∗ = (|M∗|, app) defined by

|M∗| =M/∼M = {[P ]∼M
| P ∈M},

app [P ]∼M
[Q]∼M

= [PQ]∼M
.

By lemma 3.1.21(ii) this is well defined.

3.1.23. Proposition. (i) M⊆M∗ by the embedding morphism d 7→ cd.
(ii) M∗ ∼=M∗∗.
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Proof. (i) Define i(dA) = [cdA ]. Then i :M(A)→M∗(A) and

i(d ·M e) = [cd·Me]

= [cd ·M ce], by definition of ∼M,

= [cd] ·M∗ [ce], by definition of app

= i(d) ·M∗ i(e).

We will not always be so explicit about where application is taken.
(ii) Adding twice an infinite set of variables is the same as adding one infinite set,

since 2.ℵ0 = ℵ0.

Working with M∗ it is often convenient to use as elements those of M and reason
about them modulo ∼M.

3.1.24. Definition. Let P ∈M and let x be a variable. We say that

P does not depend on x

if whenever ρ1, ρ2 satisfy ρ1(y) = ρ2(y) for y 6≡ x, we have [[P ]]ρ1
= [[P ]]ρ2

.

3.1.25. Lemma. If P does not depend on x, then P ∼M P [x:=Q] for all Q∈M.

Proof. First show that ((P [x := Q]))ρ = [[P ]]ρ[x:=((Q))ρ], in analogy to Lemma 3.1.11(i).
Now suppose P does not depend on x. Then

((P [x:=Q]))ρ = [[P ]]ρ[x:=((Q))ρ]

= ((P ))ρ, as P does not depend on x.

3.1.26. Proposition. Let M be an applicative structure. Then
(i) M is a model ⇐⇒ for each P ∈M∗ and variable x there exists an

F ∈M∗ not depending on x such that Fx = P .
(ii) M is a model ⇒ M∗ is a model.

Proof. (i) It suffices to show that
M is a model ⇔ for each P ∈M and variable x there exists an

F ∈M not depending on x such that Fx∼M P .
(⇒) Let M be a model and let P be given. We treat an illustrative example, e.g.

P ≡ cfxoyo, with f ∈M(12). We take F ≡ c[[λyzf .zf xy]]ycf . Then

((Fx))ρ = [[λyzf .zfxy]]ρ(y)fρ(x) = fρ(x)ρ(y) = ((cfxy))ρ,

hence indeed Fx ∼M cfxy. In general for each constant cd in P we take a variable zd
and define F ≡ [[λ~y ~zdx.P ]]~y ~cf .

(⇐) We show by induction on M that ∀M ∈Λo∃PM ∈M∀ρ.[[M ]]ρ = ((PM ))ρ. For M
being a variable, constant or application this is trivial. For M = λx.N , we know by the
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induction hypothesis that [[N ]]ρ = ((PN ))ρ for all ρ. By assumption there is an F not
depending on x such that Fx∼M PN . Then

((F ))ρd = ((Fx))ρ[x:=d] = ((PN ))ρ[x:=d] =IH [[N ]]ρ[x:=d].

Hence [[λx.N ]]ρ↓ = ((F ))ρ. It follows thatM is a model.

(ii) By (i) M∗ is a model if a certain property holds for M∗∗. But M∗∗ ∼=M∗ and
the property does hold here, since M is a model. [To make matters concrete, one has
to show for example that for all M ∈M∗∗ there is an N not depending on y such that
Ny ∼M∗ M . Writing M ≡ M [x1, x2][y] one can obtain N by rewriting the y in M
obtaining M ′ ≡M [x1, x2][x]∈M∗ and using the fact that M is a model: M ′ = Nx, so
Ny = M ].

3.1.27. Proposition. If M is a model, then Th(M∗) = Th(M).

Proof. Do exercise 3.6.2.

3.1.28. Remark. In general for typed structures M∗ × N ∗ 6∼= (M × N )∗, but the
isomorphism holds in caseM,N are typed lambda models.

3.2. Lambda Theories and Term Models

3.2.1. Definition. (i) A constant (of type A) is a variable (of the same type) that we
promise not to bind by a λ. Rather than x, y, z, . . . we write constants as c, d, e, . . .. The
letters C,D, . . . range over sets of constants (of varying types).

(ii) Let D = {cA1
1 , . . . , cAn

n } be a set of constants with types in TTo. Write Λo[D](A)
for the set of open terms of type A, possibly containing the constants in D. Moreover
Λo[D] = ∪A∈TTΛo[D](A).

(iii) Similarly Λø
o[D](A) and Λø

o[D] consist of closed terms possibly containing the
constants in D.

(iv) An equation over D is of the form M = N with M,N ∈Λø
o[D] of the same type.

In this subsection we will consider sets of equations over D. When writing M = N , we
implicitly assume that M,N have the same type.

3.2.2. Definition. Let E be a set of equations over the constants. D.

(i) P = Q is derivable from E , notation E ⊢ P = Q if P = Q can be proved in the
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equational theory axiomatized as follows

(λx.M)N = M [x := N ] (β)

(λx.Mx = M), x /∈ FV(M) (η)

{M = N | (M = N)∈E}
M = M (reflexivity)

M = N

N = M
(symmetry)

M = N N = L

M = L
(transitivity)

M = N

MZ = NZ
(R-congruence)

M = N

ZM = ZN
(L-congruence)

M = N

λx.M = λx.N
(ξ-rule)

We write M =E N for E ⊢M = N .

(ii) E is consistent, if not all equations are derivable from it.

(iii) E is a typed lambda theory iff E is consistent and closed under derivability.

3.2.3. Notation. (i) E+ = {M = N | E ⊢M = N}.
(ii) For A∈TTo write E(A) = {M = N | (M = N)∈E & M,N are of type A}.
(iii) Eβη = ∅+.

3.2.4. Proposition. If Mx =E Nx, with x /∈ FV(M) ∪ FV(N), then M =E N .

Proof. Use (ξ) and (η).

3.2.5. Definition. LetM be a type model and E a set of equations.

(i) We say thatM satisfies (or is a model of) E , notationM |= E , iff

∀(M=N)∈E .M |= M = N.

(ii) We say that E satisfies M = N , notation E |= M = N , iff

∀M.[M |= E ⇒ M |= M = N ].

3.2.6. Proposition. (Soundness) E ⊢M = N ⇒ E |= M = N.
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Proof. By induction on the derivation of E ⊢ M = N . Assume that M |= E for a
model M towards M |= M = N . If M = N ∈E , then the conclusion follows from
the assumption. The cases that M = N falls under the axioms β or η follow from
Proposition 3.1.15. The rules reflexivity, symmetry, transitivity and L,R-congruence are
trivial to treat. The case falling under the ξ-rule follows from Lemma 3.1.16.

From non-trivial models one can obtain typed lambda theories.

3.2.7. Proposition. Let M be a non-trivial model.
(i) M |= E ⇒ E is consistent.
(ii) Th(M) is a lambda theory.

Proof. (i) Suppose E ⊢ λxy.x = λxy.y. Then M |= λxy.x = λxy.y. It follows that
d = (λxy.x)de = (λxy.y)de for arbitrary d, e. Hence M is trivial.

(ii) Clearly M |= Th(M). Hence by (i) Th(M) is consistent. If Th(M) ⊢ M = N ,
then by soundnessM |= M = N , and therefore (M = N)∈Th(M).

The full type model over a finite set yields an interesting λ-theory.

3.2.8. Exercise. Let Mn = M{1,...,n}. Write ci = λfx.f ix for i∈N, the Church
numerals of type 1→o→o.

(i) Show that for i, j ∈N one has

Mn |= ci = cj ⇐⇒ i = j ∨ [i, j ≥ n−1 & ∀k1≤k≤n.i ≡ j(mod k)].

[Hint. For a∈Mn(o), f ∈Mn(1) define the trace of a under f as {f i(a) | i∈N}, directed
by Gf = {(a, b) | f(a) = b}, which by the pigeonhole principle is ‘lasso-shaped’. Consider
the traces of 1 under the functions fn, gm with 1 ≤ m ≤ n
fn(k) = k + 1, if k < n,

= n, if k = n,
and gm(k) = k + 1, if k < m,

= 1, if k = m,
= k, else.]

Conclude that e.g.M5 |=

c4 = c64,M6 6|= c4 = c64 andM6 |= c5 = c65.
(ii) Conclude thatMn ≡1→o→o Mm ⇐⇒ n = m.
(iii) Show that

⋂
n Th(Mn)(1) = Eβη(1).

It will be shown in the section 3.4 that
⋂

n Th(Mn) = Eβη and by contrast Th(MN) =
Eβη.

Term Models

3.2.9. Definition. Let D be a set of constants and let E be a set of closed equations
between closed terms with constants from D. Define the applicative structureME by

ME(A) = {[M ]E |M ∈Λo[D](A)},
where [M ]E is the equivalence class modulo the congruence relation =E , with

[M ]E [N ]E = [MN ]E

as application operator. This is well-defined, because =E is a congruence.
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3.2.10. Proposition. (i) ME is an applicative type structure.
(ii) The semantic interpretation of M in ME is determined by

[[M ]]ρ = [M [~x:= ~N ]]E ,

where the ~N are determined by ρ(xi) = [Ni]E .
(iii) ME is a type model, called the open term model.

Proof. (i) We need to verify extensionality.

∀d∈ME .[M ]d = [N ]d ⇒ [M ][x] = [N ][x], for a fresh x,

⇒ [Mx] = [Nx]

⇒ Mx =E Nx

⇒ M =E N

⇒ [M ] = [N ].

(ii) We show that [[M ]]ρ satisfies the conditions in definition 3.1.8(ii).

[[x]]ρ = [x[x:=N ]]E , with ρ(x) = [N ]E ,

= [N ]E

= ρ(x);

[[PQ]]ρ = [(PQ)[~x:= ~N ]]E

= [P [~x:= ~N ]Q[~x:= ~N ]]E

= [P [~x:= ~N ]]E [[Q[~x:= ~N ]]E

= [[P ]]ρ[[Q]]ρ;

[[λy.P ]]ρ[Q]E = [(λy.P )[~x:= ~N ]]E [Q]E

= [λy.P [~x:= ~N ]]E [Q]E

= [P [~x:= ~N ][y:=Q]]E

= [P [~x, y:= ~N,Q]]E , because y /∈ FV( ~N) by the

variable convention,

= [[P ]]ρ(y:=[Q]E )

= [[P ]]ρ(y:=[Q]E ).

(iii) As [[M ]]ρ is always defined by (ii).

3.2.11. Corollary. (i) ME |= M = N ⇐⇒ M =E N .
(ii) ME |= E.

Proof. (i) (⇒) Suppose ME |= M = N . Then [[M ]]ρ = [[N ]]ρ for all ρ. Choosing
ρ(x) = [x]E one obtains [[M ]]ρ = [M [~x := ~x]]E = [M ]E , and similarly for N , hence
[M ]E = [N ]E and therefore M =E N .
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(⇐) M =E N ⇒ M [~x := ~P ] =E N [~x := ~P ]

⇒ [M [~x := ~P ]]E = [N [~x := ~P ]]E
⇒ [[M ]]ρ = [[N ]]ρ
⇒ ME |= M = N.

(ii) If M = N ∈E , then M =E N , hence M |= M = N , by (i).

Using this Corollary we obatin completeness in a simple way.

3.2.12. Theorem (Completeness). E ⊢M = N ⇐⇒ E |= M = N .

Proof. (⇒) By soundness, Proposition 3.2.6.
(⇐) E |= M = N ⇒ ME |= M = N, as ME |= E ,

⇒ M =E N
⇒ E ⊢M = N.

3.2.13. Corollary. Let E be a set of equations. Then

E has a non-trivial model ⇐⇒ E is consistent.

Proof. (⇒) By Proposition 3.2.7. (⇐) Suppose that E 6⊢ xo = yo. Then by the
Theorem one has E 6|= xo = yo. Then for some modelM one hasM |= E andM 6|= x = y.
It follows thatM is non-trivial.

IfD contains enough constants, then one can similarly define the applicative structure
Mø

E[D] by restrictingME to closed terms. See section 3.3.

Constructing Theories

The following result is due to Jacopini [1975].

3.2.14. Proposition. Let E be a set of equations between closed terms in Λø
o[D]. Then

E ⊢M = N iff if for some n∈N and terms F1, . . . , Fn and equations P1 = Q1, . . . , Pn =
Qn ∈E one has

M =βη F1P1Q1

F1Q1P1 =βη F2P2Q2

. . .
Fn−1Qn−1Pn−1 =βη FnPnQn

FnQnPn =βη N.





(1)

This scheme (1) is called a Jacopini tableau and the sequence F1, . . . ,Fn is called the list
of witnesses.

Proof. (⇐) Obvious, since clearly E ⊢ FPQ = FQP if P = Q∈E .
(⇒) By induction on the derivation of M = N from the axioms. If M = N is a βη-

axiom or the axiom of reflexivity, then we can take as witnesses the empty list. If M = N
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is an axiom in E , then we can take the singleton list K. If M = N follows from M = L
and L = N , then we can concatenate the lists that exist by the induction hypothesis.
If M = N is PZ = QZ (respectively ZP = ZQ) and follows from P = Q with list
F1, . . . ,Fn, then the list for M = N is F1

′, . . . , Fn
′ with Fi

′ ≡ λab.FiabZ (respectively
Fi

′ ≡ λab.Z(Fiab). If M = N follows from N = M , then we have to reverse the list. If
M = N is λx.P = λx.Q and follows from P = Q with list F1, . . . ,Fn, then the new list
is F1

′, . . . , Fn
′ with Fi

′ ≡ λpqx.Fipq. Here we use that the equations in E are between
closed terms.

Remember that true ≡ λxy.x, false ≡ λxy.y both having type 12 = o→o→o.

3.2.15. Lemma. Let E be a set of equations over D. Then

E is consistent ⇐⇒ E 6⊢ true = false.

Proof. (⇐) By definition. (⇒) Suppose E ⊢ λxy.x = λxy.y. Then E ⊢ P = Q
for arbitrary P,Q∈Λo(o). But then for arbitrary terms M,N of the same type A =
A1→ . . .→An→o one has E ⊢ M~z = N ~Z for for fresh ~z = z1, . . . ,zn of the right type,
hence E ⊢M = N , by Proposition 3.2.4.

3.2.16. Definition. Let M,N ∈Λø
o[D](A) be closed terms of type A.

(i) M is inconsistent with N , notation M //=N , if

{M = N} ⊢ true = false.

(ii) M is separable from N , notation M ⊥N , iff for some F ∈Λø
o[D](A→12)

FM = true & FN = false.

The following result is not true for the untyped lambda calculus: the equation K =
YK is inconsistent, but K and YK are not separable, as follows from the genericity
lemma, see Barendregt [1984].

3.2.17. Proposition. Let M,N ∈Λø
o[D](A) be closed terms of type A. Then

M //=N ⇐⇒ M ⊥N.

Proof. (⇐) Trivially separability implies inconsistency.
(⇒) Suppose {M = N} ⊢ true = false. Then also {M = N} ⊢ x = y. Hence by

proposition 3.2.14 one has

x =βη F1MN

F1NM =βη F2MN

. . .

FnNM =βη y.
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Let n be minimal for which this is possible. We can assume that FV(Fi) ⊆ {x, y}. The
normal form of F1NM must be either x or y. Hence by the minimality of n it must be
y, otherwise there is a shorter list of witnesses. Now consider F1MM . Its normal form
must be either x or y.

Case 1: F1MM =βη x. Then set F ≡ λaxy.F1aM and we have FM =βη true and
FN =βη false.

Case 2: F1MM =βη y. Then set F ≡ λaxy.F1Ma and we have FM =βη false and
FN =βη true.

3.2.18. Corollary. Let E be a set of equations over D. If E is inconsistent, then for
some equation M=N ∈E the terms M and N are separable.

Proof. By the same reasoning.

3.2.19. Theorem. Let

Emax = {M=N |M,N ∈Λø
o[D] and M,N are not separable}.

Then this is the unique maximally consistent set of equations.

Proof. By the corollary this set is consistent. By Proposition 3.2.17 it contains all
consistent equations. Therefore the set is maximally consistent. Moreover it is the
unique such set.

It will be shown in Chapter 4 that Emax is decidable.

3.3. Syntactic and Semantic logical relations

In this section we will introduce the well-known method of logical relations in two ways:
one on the terms and one on elements of a model. Applications of the method will be
given and it will be shown how the two methods are related.

Syntactic Logical Relations

3.3.1. Definition. Let n be a fixed natural number and let ~D = D1, . . . ,Dn be sets of
constants.

(i) R is called an (n-ary) family of relations (or sometimes just a relation) on Λo[ ~D],
if R = {RA}A∈TT and for A∈TT

RA ⊆ Λo[D1](A)× . . .× Λo[Dn](A).

If we want to make the sets of constants explicit, we say that R is a relation on terms
from D1, . . . ,Dn.
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(ii) Such anR is called a logical relation if for allA,B ∈TT and for allM1 ∈Λo[D1](A→B), . . . ,Mn ∈Λo

one has

RA→B(M1, . . . ,Mn) ⇐⇒ ∀N1 ∈Λo[D1](A) . . . Nn ∈Λo[Dn](A)
[RA(N1, . . . , Nn) ⇒ RB(M1N1, . . . ,MnNn)].

(iii) R is called empty if R(o) = ∅.

Obviously, a logical family {RA} is completely determined by Ro; the higher RA do
depend on the choice of the Di.

3.3.2. Lemma. If R is a non-empty logical relation, then ∀A∈TTo.RA 6= ∅.

Proof. (For R unary.) By induction on A. Case A = o. By assumption. Case
A = B→C. Then RB→C(M) ⇐⇒ ∀P ∈Λo(B).[RB(P ) ⇒ RC(MP )]. By the
induction hypothesis one has RC(N). Then M ≡ λp.N ∈Λo(B→C) is in RA.

Even the empty logical relation is interesting.

3.3.3. Proposition. Let n = 1,D1 = ∅ and R let be the logical relation determined by
Ro = ∅. Then

RA = Λo(A) if Λø
o(A) 6= ∅;

= ∅ else.

Proof. By induction on A. If A = o, then we are done, as Ro = ∅ and Λø
o(o) = ∅. If

A = A1, . . . ,An→o, then

RA(M) ⇐⇒ ∀Pi ∈RAi
.Ro(M ~P )

⇐⇒ ∀Pi ∈RAi
.⊥,

seeing R both as a relation and as a set. This last statement either is always the case,
namely iff

∃i.RAi
= ∅ ⇐⇒ ∃i.Λø

o(Ai) = ∅ by the induction hypothesis ,

⇐⇒ Λø
o(A) 6= ∅, by proposition 2.4.4.

Or else, namely iff Λø
o(A) = ∅, it is never the case, by the same reasoning.

3.3.4. Example. Let n = 2 and set Ro(M,N) ⇐⇒ M =βη N . Let R be the logical
relation determined by Ro. The it is easily seen that for all A and M,N ∈Λo[D](A) one
has RA(M,N) ⇐⇒ M =βη N .

3.3.5. Definition. (i) Let M,N be lambda terms. Then M is a weak head expansion
of N , notation M →wh N , if M ≡ (λx.P )Q~R and N ≡ P [x: = Q]~R.
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(ii) A family R on Λo[D] is called expansive if Ro is closed under coordinatewise weak
head expansion, i.e. if Mi

′ →wh Mi for 1 ≤ i ≤ n, then

Ro(M1, . . . ,Mn) ⇒ Ro(M1
′, . . . ,Mn

′).

3.3.6. Lemma. If R is logical and expansive, then each RA is closed under coordinatewise
weak head expansion.

Proof. Immediate by induction on the type A and the fact that

M ′ →wh M ⇒ M ′N →wh MN.

3.3.7. Example. (i) Let M be a term. We say that βη confluence holds from M ,
notation ↓βηM , if whenever N1 βη←←M →→βη N2, then there exists a term L such that
N1 →→βη L βη←← N2. Define Ro by

Ro(M) ⇐⇒ βη confluence holds from M.

ThenRo determines a logicalR which is expansive by the permutability of head contractions
with internal ones.

(ii) Let R be the logical relation generated from

Ro(M) ⇐⇒ ↓βηM.

Then for arbitrary type A∈TT one has

RA(M) ⇒ ↓βηM.

[Hint. Write M ↓βη N if ∃Z [M →→βη Z βη ←← N ]. First show that for arbitrary variable
of some type B one has RB(x). Show also that if x is fresh, then by distinguishing cases
whether x gets eaten or not

N1x ↓βη N2x ⇒ N1 ↓βη N2.

Then use induction on A.]

3.3.8. Definition. LetR be n-ary and ∗1, . . . , ∗n be substitutors satisfying ∗i : Var(A)→Λo[Di](A).

(i) Write R(∗1, . . . , ∗n) if RA(x∗1 , . . . , x∗n) for each variable x of type A.

(ii) Define R∗ by

R∗
A(M1, . . . ,Mn) ⇐⇒ ∀ ∗1 . . . ∗n [R(∗1, . . . , ∗n) ⇒ RA(M∗1

1 , . . . ,M∗1
n )].

(iii) R is called substitutive if R = R∗.
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3.3.9. Lemma. (i) Let R be logical and M1 ∈Λ∅
o[D1], . . . ,Mn ∈Λ∅

o[Dn] be arbitrary closed
terms. Then one has

R(M1, . . . ,Mn) ⇐⇒ R∗(M1, . . . ,Mn).

(ii) For a substitutive R one has for arbitrary open M1, . . . ,Mn, N1, . . . , Nn

R(M1, . . . ,Mn) & R(N1, . . . , Nn) ⇒ R(M1[x:=N1], . . . ,Mn[x:=Nn]).

Proof. (i) Clearly one has R(M1, . . . ,Mn) ⇒ R∗(M1, . . . ,Mn). For the converse, note
that R∗(M1, . . . ,Mn) ⇒ R(M1, . . . ,Mn) in case Ro 6= ∅. But for Ro = ∅ the result
follows from example 3.3.4.

(ii) Since R is substitutive we have R∗(M1, . . . ,Mn). Let ∗i = [x:=Ni]. Then
R(∗1, . . . , ∗n) and hence R(M1[x:=N1], . . . ,Mn[x:=Nn]).

3.3.10. Exercise. Let R be the logical relation generated by Ro(M) iff ↓βηM . Show
by induction on M that R∗(M) for all M . [Hint. Use that R is expansive.] Conclude
that for closed M one has R(M) and hence ↓βηM . The same holds for arbitrary open
terms N : let {~x} = FV(M), then

λ~x.N is closed ⇒ R(λ~x.N)

⇒ R((λ~x.N)~x), since R(xi),

⇒ R(N), since R is closed under →→β,

⇒ ↓βηN.

Thus the Church-Rosser property holds for →→βη.

3.3.11. Proposition. Let R be an arbitrary n-ary family on Λo[D]. Then

(i) R∗(x, . . . , x) for all variables.

(ii) If R is logical, then so is R∗.

(iii) If R is expansive, then so is R∗.

(iv) R∗∗ = R∗, so R∗ is substitutive.

(v) If R is logical and expansive, then

R∗(M1, . . . ,Mn) ⇒ R∗(λx.M1, . . . , λx.Mn).

Proof. For notational simplicity we assume n = 1.

(i) If R(∗), then by definition R(x∗). Therfore R∗(x).

(ii) We have to prove

R∗(M) ⇐⇒ ∀N ∈Λo[D][R∗(M) ⇒ R∗(MN)].
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(⇒) Assume R∗(M) & R∗N) in order to show R∗(MN). Let ∗ be a substitutor such
that R(∗). Then

R∗(M) & R∗(N) ⇒ R(M∗) & R(N∗)

⇒ R(M∗N∗) ≡ R((MN)∗)

⇒ R∗(MN).

(⇐) By the assumption and (i) we have

R∗(Mx), (1)

where we choose x to be fresh. In order to prove R∗(M) we have to show R(M∗),
whenever R(∗). In order to do this it suffices to assume R(N) and show R(M∗N).
Choose ∗′ = ∗(x:=N), then also R(∗′). Hence by (1) and the freshness of x we have
R((Mx)∗

′

) ≡ R(M∗N) and we are done.
(iii) First observe that weak head reductions permute with substitution:

((λx.P )Q~R)∗ ≡ (P [x:=Q]~R)∗.

Now let M →wh M
w be a weak head reduction step. Then

R∗(Mw) ⇒ R(Mw∗) ≡ R(M∗w)

⇒ R(M∗)

⇒ R∗(M).

(iv) For substitutors ∗1, ∗2 write ∗1∗2 for ∗2 ◦ ∗1. This is convenient since

M∗1∗2 ≡M∗2◦∗1 ≡ (M∗1)∗2 .

Assume R∗∗(M). Let ∗1(x) = x for all x. Then R∗(∗1), by (i), and hence R∗(M∗1) ≡
R∗(M). Conversely, assume R∗(M), i.e.

∀ ∗ [R(∗) ⇒ R(M∗)], (2)

in order to show ∀ ∗1 [R∗(∗1) ⇒ R(M∗1)]. Now

R∗(∗1) ⇐⇒ ∀ ∗2 [R(∗2) ⇒ R(∗1∗2)],
R∗(M∗1)) ⇐⇒ ∀ ∗2 [R(∗2) ⇒ R(M∗1∗2)].

Therefore by (2) applied to ∗1∗2 we are done.
(v) Let R be logical and expansive. Assume R∗(M). Then

R∗(N) ⇒ R∗(M [x:=N ]), since R∗ is substitutive,

⇒ R∗((λx.M)N), since R∗ is expansive.

Therefore R∗(λx.M) since R∗ is logical.
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3.3.12. Theorem (Fundamental theorem for syntactic logical relations). Let R be logical,
expansive and substitutive. Then for all A∈TT and all pure terms M ∈Λo(A) one has

RA(M, . . . ,M).

Proof. By induction on M we show that RA(M, . . . ,M).

CaseM ≡ x. Then the statement follows from the assumptionR = R∗ (substitutivity)
and propoition 3.3.11 (i).

Case M ≡ PQ. By the induction hypothesis and the assumption that R is logical.

Case M ≡ λx.P . By the induction hypothesis and proposition 3.3.11 (v).

3.3.13. Corollary. Let R be an n-ary expansive logical relation. Then for all closed
M ∈Λø

o[D] one has R(M, . . . ,M).

Proof. By the theorem applied to R∗ and lemma 3.3.9.

The proof in exercise 3.3.10 was in fact an application of this corollary.

3.3.14. Example. Let R be the logical relation determined by

Ro(M) ⇐⇒ M is normalizable.

Then R is expansive. Note that if RA(M), then M is normalizable. [Hint. Use RB(x) for
arbitrary B and x and the fact that if M~x is normalizable, then so is M .] It follows from
corollary 3.3.13 that each closed term is normalizable. By taking closures it follows that
all terms are normalizable. This is the proof of weak normalization in Prawitz [1965].
For strong normalization a similar proof brakes down. The correspnding R is not
expansive.

3.3.15. Example. A family of relations SA ⊆ Λ∅
o[D1](A)×. . .×Λ∅

o[Dn](A) which satisfies

SA→B(M1, . . . ,Mn) ⇐⇒ ∀N1 ∈Λ∅
o[D1](A) . . . Nn ∈Λ∅

o[Dn](A)

[SA(N1, . . . , Nn) ⇒ SB(M1N1, . . . ,MnNn)]

can be lifted to a substitutive logical relation S∗ on Λo[D1] × . . . × Λo[Dn] as follows.
Define for substitutors ∗i : Var(A)→Λ∅

o[Di](A)

SA(∗1, . . . , ∗n) ⇐⇒ ∀x:A SA(x∗1 , . . . , x∗n).

Now define S∗ as follows: for Mi ∈Λo[Di](A)

S∗
A(M1, . . . ,Mn) ⇐⇒ ∀ ∗1 . . . ∗n [SA(∗1, . . . , ∗n) ⇒ SA(M∗1

1 , . . . ,M∗n
n )].

Show that if S is closed under coordinatewise weak head expansions, then S∗ is expansive.
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The following definition is needed on order to relate the syntactic and the semantic
notions of logical relation.

3.3.16. Definition. Let R be an n+ 1-ary family. The projection of R, notation ∃R, is
the n-ary family defined by

∃R(M1, . . . ,Mn) ⇐⇒ ∃Mn+1 ∈Λo[Dn+1] R(M1, . . . ,Mn+1).

3.3.17. Proposition. (i) The universal n-ary relation is defined by

RA = Λo[D1](A)× . . .× Λo[Dn](A).

This relation is logical, expansive and substitutive.

(ii) Let R ⊆M1 × . . .×Mn and S ⊆ N1 × . . .×Nm be non-empty logical relations.
Then R×S ⊆M1, . . . ,Mn,N1, . . . ,Nm is a non-empty logical relation. If moreover both
R and S are substitutive, then so is R× S.

(iii) If R is an n-ary family and π is a permutation of {1, . . . , n}, then Rπ defined by

Rπ(M1, . . . ,Mn) ⇐⇒ R(Mπ(1), . . . ,Mπ(n))

is logical if R is logical, is expansive if R is expansive and is substitutive if R is substitutive.

(iv) Let R be an n-ary susbstitutive logical relation on terms from D1, . . . ,Dn and let
D ⊆ ∩iDi. Then the diagonal of R, notation R∆, defined by

R∆(M) ⇐⇒ R(M, . . . ,M)

is a substitutive logical (unary) relation on terms from D, which is expansive if R is
expansive.

(v) If R is a class of n-ary substitutive logical relations, then ∩R is an n-ary substitutive
logical relation, which is expansive if each member of R is expansive.

(vi) If R is an n-ary substitutive, expansive and logical relation, then ∃R is a substitutive,
expansive and logical relation.

Proof. (i) Trivial.

(ii) Suppose that R,S are logical. We show for n = m = 1 that R× S is logical.

(R× S)A→B(M,N) ⇐⇒ RA→B(M) & SA→B(N)

⇐⇒ [∀P.RA(P )⇒ RB(MP )] &

[∀Q.RA(Q)⇒ RB(NQ)]

⇐⇒ ∀(P,Q).(R× S)A(P,Q) ⇒ (R× S)B(MP,NQ).

For the last (⇐) one needs that the R,S are non-empty, and Lemma 3.3.2. If both R,S
are expansive, then trivially so is R× S.

(iii) Trivial.
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(iv) We have

R∆(M) ⇐⇒ R(M,M)
⇐⇒ ∀N1, N2.R(N1, N2) ⇒ R(MN1,MN2)

and must show that the chain of equivalences continuous
⇐⇒ ∀N.R(N,N) ⇒ R(MN,MN). (1)

Now (⇒) is trivial. As to (⇐), suppose (1) andR(N1, N2), in order to showR(MN1,MN2).
By Lemma 3.3.11(i) one has R(x, x). Hence R(Mx,Mx) by (1). Therefore R∗(Mx,Mx),
as R is substitutive. Now taking ∗i = [x := Ni], one obtains R(MN1,MN2).

(v) Trivial.
(vi) Like in (iv) it suffices to show that

∀P.[∃R(P ) ⇒ ∃R(MP )] (2)

implies ∃N∀P,Q.[R(P,Q) ⇒ R(MP,NQ)]. Again we haveR(x, x). Therefore ∃N1.R
∗(Mx,N1)

by (2). Writing N ≡ λx.N1, we get R∗(Mx,Nx). Then R(P,Q) implies as in (iv) that
R(MP,NQ).

The following property R states that an M essentially does not contain the constants
from D. A term M ∈Λo[D] is called pure iff M ∈Λo. The property R(M) states that M
is convertible to a pure term.

3.3.18. Proposition. Define for M ∈Λo[D](A)

RA(M) ⇐⇒ ∃N ∈Λo(A)M =βη N.

Then
(i) R is logical.
(ii) R is expansive.
(iii) R is substitutive.

Proof. (i) IfR(M) andR(N), then clearlyR(MN). Conversely, suppose ∀N [R(N) ⇒
R(MN)]. Since obviously R(x) it follows that R(Mx) for fresh x. Hence there exists a
pure L =βη Mx. But then λx.L =βη M , hence R(M).

(ii) Trivial as P →wh Q ⇒ P =βη Q.
(iii) We must show R = R∗. Suppose R(M) and R(∗). Then M = N , with N pure

and hence M∗ = N∗ is pure, so R∗(M). Conversely, suppose R∗(M). Then for ∗ with
x∗ = x one has R(∗). Hence R(M∗). But this is R(M).

3.3.19. Proposition. Let S be an n-ary logical, expansive and substitutive relation on
terms from D1, . . . ,Dn. Define the restriction to pure terms S ↾ Λ, again a relation on
terms from D1, . . . ,Dn, by

(S↾Λ)A(M1, . . . ,Mn) ⇐⇒ R(M1) & . . . & R(Mn) & SA(M1, . . . ,Mn),

where R is as in proposition 3.3.18. Then S↾Λ is logical, expansive and substitutive.
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Proof. Intersection of relations preserves the notion logical, expansive and substitutive.

3.3.20. Proposition. Given E, define R = RE by

R(M,N) ⇐⇒ E ⊢M = N.

Then
(i) R is logical.
(ii) R is expansive.
(iii) R is substitutive.
(iv) R is a congruence relation.

Proof. (i) This is proved in several steps.
(1) If R(M,N) with witness list F1, . . . , Fn, then also F1, . . . , Fn,K(KN) is a witness

list of this fact.
(2) If R(M1,M2) with witness list F1, . . . , Fn and R(N1, N2) with list G1, . . . , Gm,

then we may suppose by (1) that n = m. But thenR(M1N1,M2N2) with list λxy.F1xy(G1xy), . . . , Fnxy(Gnxy).
(3) R(x, x) holds with witness list K(Kx).
(4) Suppose that whenever we have R(N1, N2) we also have R(M1N1,M2N2). Then

for fresh z by (3) we have R(M1z,M2z) with witnesses list, say, F1, . . . , Fn. Then
R(M1,M2) with list λxyz.F1xy, . . . , λxyz.Fnxy.

(ii) Obvious, since provability from E is closed under β-conversion, hence a fortiori
under weak head expansion.

(iii) Assume that R(M,N) in order to show R∗(M,N). So suppose R(x∗1 , x∗2). We
must show R(M∗1 , N∗2). Now going back to the definition of R this means that we
have E ⊢ M = N and E ⊢ x∗1 = x∗2 and we must show E ⊢ M∗1 = N∗2 . Now if
FV(MN) ⊆ {~x}, then

M∗1 =β (λ~x.M)~x∗1

=E (λ~x.N)~x∗2

=β N∗2 .

(iv) Obvious.

Semantic Logical Relations

3.3.21. Definition. LetM1, . . . ,Mn be applicative typed structures.
(i) R is an n-ary family of relations or just a relation on M1 × . . . ×Mn iff R =

{RA}A∈TT and for all A
RA ⊆M1(A)× . . .×Mn(A).

(ii) R is a logical relation iff

RA→B(d1, . . . , dn) ⇐⇒ ∀e1 ∈M1(A) . . . en ∈Mn(A)
[RA(e1, . . . , en) ⇒ RB(d1e1, . . . , dnen)].

for all A,B and all d1 ∈M1(A→B), . . . , dn ∈Mn(A→B).
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Note that R is an n-ary relation onM1× . . .×Mn iff R is a unary relation on the single
structureM1 × . . .×Mn.

3.3.22. Example. Define R on M×M by R(d1, d2) ⇐⇒ d1 = d2. Then R is logical.

3.3.23. Example. Let M be a model and let π = πo be a permutation of M(o) which
happens to be an element ofM(o→o). Then π can be lifted to higher types by defining

πA→B(d) = λλe∈M(A).πB(d(π−1
A (e))).

Now define Rπ (the graph of π)

Rπ(d1, d2) ⇐⇒ π(d1) = d2.

Then R is logical.

3.3.24. Example. (Friedman [1975]) LetM,N be typed structures. A partial surjective
homomorphism is a family h = {hA}A∈ of surjections

hA :M(A)→N (A)

such that ho is a surjection and

hA→B(d) = e ⇐⇒ e∈N (A→B) is the unique element (if it exists)

such that ∀f ∈ dom(hA) e(hA(f)) = hB(d · f).

This implies that, if all elements involved exist, then

hA→B(d)hA(f) = hB(df).

Note that h(d) can fail to be defined if one of the following conditions hold

1. for some f ∈ dom(hA) one has df /∈ dom(hB);

2. the correspondence hA(f) 7→ hB(df) fails to be single valued;

3. the map hA(f) 7→ hB(df) fails to be in NA→B.

Of course, 3 is the basic reason for partiality, whereas 1 and 2 are derived reasons.
A partial surjective homomorphism h is completely determined by its ho. If we take
M =MX and ho is any surjectionX→No, then hA is, although partial, indeed surjective
for all A. Define RA(d, e) ⇐⇒ hA(d) = e, the graph of h. Then R is logical. Conversely,
if Ro is the graph of a partial surjective map ho :M(o)→N (o), and the logical relation
R induced by this Ro satisfies

∀e∈N (B)∃d∈M(A) RB(d, e),

then R is the graph of a partial homomorphism fromM to N .
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3.3.25. Definition. LetM1, . . . ,Mn be typed structures.
(i) Let R be an n-ary relation on M1, . . . ,Mn. For valuations ρ1, . . . ,ρn with ρi :

Var→Mi we define

R(ρ1, . . . ,ρn) ⇐⇒ R(ρ1(x), . . . , ρn(x)), for all variables x.

(ii) Let R be an n-ary relation onM1 × . . .×Mn. The lifting of R toM∗
1, . . . ,M∗

n,
notation R∗, is defined by

R∗(d1, . . . ,dn) ⇐⇒ ∀ρ1, . . . ρn [R(ρ1, . . . ,ρn) ⇒ R([[d1]]ρ1
, . . . , [[dn]]ρn

)].

Here the ρi range over valuations inMi.
(iii) Let now R be an n-ary relation onM∗

1, . . . ,M∗
n. We say that R is substitutive iff

R = R∗.

3.3.26. Example. (i) Let R be the equality relation onM×M. Then R∗ is the equality
relation onM∗ ×M∗.

(ii) If R is the graph of a surjective homomorphism, then R∗ is the graph of a partial
surjective homomorphism whose restriction toM isR and which fixes each indeterminate
x. [[Restriction in the literal sense, not the analogue of 3.3.19.]]

3.3.27. Theorem. (Fundamental Theorem for semantic logical relations) LetM1, . . . ,Mn

be models and let R be a logical relation onM1, . . . ,Mn. Then for each closed and pure
term M ∈Λø

o one has
R([[M ]]M1, . . . , [[M ]]Mn).

Proof. We treat the case n = 1. Let R ⊆M be logical. We claim that for all M ∈Λo

and all partial valuations ρ such that dom(ρ) ⊆ FV(M) one has

R(ρ) ⇒ R([[M ]]ρ).

This follows by an easy induction onM . In caseM ≡ λx.N one should show R([[λx.N ]]ρ),
assumingR(ρ). This means that for all d of the right type withR(d) one hasR([[λx.N ]]ρd).
This is the same as R([[N ]]ρ[x:=d]), which holds by the induction hypothesis.

The statement now follows immediately from the claim, by taking as ρ the empty
function.

Relating syntactic and semantic logical relations

One may wonder whether the Fundamental Theorem for semantic logical relations follows
from the syntactic version. This indeed is the case. The notionM∗ for a modelM will
be useful for expressing the relation between syntactic and semantic logical relations.

3.3.28. Proposition. (i) The universal relation R =M∗
1× . . .×M∗

n is substitutive and
logical on M∗

1, . . . ,M∗
n.
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(ii) If R and S are respectively an n-ary relation on M1, . . . ,Mn and an m-ary
relation on N1, . . . ,Nm and are both non-empty logical, then R × S is a n + m-ary
non-empty logical relation on M1, . . . ,Mn,N1, . . . ,Nm. If moreover both R and S are
substitutive, then so is R× S.

(iii) If R is an n-ary logical relation on Mn and π is a permutation of {1, . . . , n},
then Rπ defined by

Rπ(d1, . . . ,dn) ⇐⇒ R(dπ(1), . . . , dπ(n))

is a logical relation. If moreover R is substitutive, then so is Rπ.
(iv) If R is an n-ary substitutive logical relation onM∗× . . .×M∗, then the diagonal

R∆ defined by
R∆(d) ⇐⇒ R(d, . . . , d)

is a unary substitutive logical relation on M∗.
(v) If R is a class of n-ary substitutive logical relations, then ∩R is a substitutive

logical relation.
(vi) If R is an (n + 1)-ary substitutive logical relation on M∗

1, . . . ,M∗
n+1 and M∗

n+1

is a model, then ∃R defined by

∃R(d1, . . . ,dn) ⇐⇒ ∃dn+1 R(d1, . . . ,dn+1)

is an n-ary substitutive logical relation.
(vii) If R is an n-ary substitutive logical relation onM1, . . . ,Mn, then R∗ is an n-ary

substitutive logical relation on M∗ × . . .×M∗.
(viii) If R is an n-ary substitutive logical relation on M1, . . . ,Mn and each Mi is a

model, then
R∗(d1, . . . ,dn) ⇐⇒ R(λ~x.d1, . . . ,λ~x.dn),

where the variables on which the ~d depend are included in the list ~x.

Proof. All items are easy. As an example we do the last one for n = 1.

R∗(d) ⇐⇒ ∀ρ.[R(ρ) ⇒ R([[d]]ρ)]

⇐⇒ ∀ρ.[R(ρ) ⇒ R([[(λ~x.d)~x]]ρ)]

⇐⇒ ∀~e.[R(e1) ⇒ . . . ⇒ R(en) ⇒ R((λ~x.d)e1 . . . en)]

⇐⇒ R(λ~x.d).

3.3.29. Example. Consider MN and define

Ro(n,m) ⇐⇒ n ≤ m,

where ≤ is the usual ordering on N. Then R∗ ∩=∗ is [[related to]] the set of hereditarily
monotone functionals. Moreover ∃(R∗) is [[related to]] the set of hereditarily majorizable
functionals, see the section by Howard in Troelstra [1973].

Now we want to link the notions of syntactical and semantical logical relation.
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3.3.30. Notation. LetM be an applicative structure. Write

Λo[M] = Λo[{cd | d∈M}].

3.3.31. Definition. Define the binary relation D ⊆MΛ ×M by

D(M,d) ⇐⇒ ∀ρ [[Mβη]]ρ = d,

where Mβη is the βη-nf of M .

3.3.32. Proposition. D is a substitutive logical relation.

Proof. Substitutivity is easy. Moreover, we have

[[Mβη]] = d ⇒ ∀N, e.[[Nβη]] = e ⇒ [[(MN)βη]] = [[Mβη]][[Nβη]] = de

⇒ [[(Mx)βη]] = dx, with x fresh,

⇒ [[Mβη]] = d.

Therefore

DA→B(M,d) ⇐⇒ [[M be]] = d

⇐⇒ ∀N, e.[[Nβη]] = e ⇒ [[(MN)βη]] = de

⇐⇒ ∀N, e.DA(N, e) ⇒ DB(MN, de).

D is the connection between the two notions of logical relation.

3.3.33. Definition. LetM1, . . . ,Mn be typed structures.

(i) LetR be a logical relation onM1, . . . ,Mn. LetR∧ be the relation on Λ[M1], . . . ,Λ[Mn]
defined by

R∧(M1, . . . ,Mn) ⇐⇒ ∃d1 ∈M1 . . . dn ∈Mn

[D∗(M1, d1) & . . . D∗(Mn, dn) & R∗(d1, . . . ,dn)].

(ii) Let S be a logical relation on Λ[M1], . . . ,Λ[Mn]. Let S∨ be the relation on
M1, . . . ,Mn defined by

S∨(d1, . . . ,dn) ⇐⇒ ∃M1 ∈Λ[M1] . . .Mn ∈Λ[Mn]

[D∗(M1, d1) & . . . D∗(Mn, dn) & S∗(M1, . . . ,Mn)].

3.3.34. Lemma. (i) If R on M1, . . . ,Mn is logical, then on Λ(M1), . . . ,Λ(Mn) the
relation R∧ is expansive and logical.

(ii) If S on Λ(M1), . . . ,Λ(Mn) is expansive and logical, then S∨ is logical.
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Proof. (i) First we show that R∧ is logical. For notational simplicity we take n = 1.
We must show

R∧(M) ⇐⇒ ∀N.[R∧(N) ⇒ R∧(MN)]
i.e.

∀ρ.R([[Mβη]]ρ) ⇐⇒ ∀N.[(∀ρ.R([[Nβη]]ρ)) ⇒ (∀ρ.R([[(MN)βη]]ρ))].

Now (⇒) is trivial. As to (⇐), suppose that [[M ]]ρ = d and that for all e with R(e) one
has R(de) in order to show R(d). Take N = e. Then R([[Me]]ρ), hence R(de). Therefore
R(d), as R is logical. This shows that R∧ is logical. This relation is expansive by the fact
that in the definition of D one takes the βη-nf. [[Make notation cd vs d consistent.]]

3.3.35. Proposition. Let M1, . . . ,Mn be models. Let R on M1, . . . ,Mn be logical and
let S on Λ[M]1, . . . ,Λ[M]n be expansive and logical. Then

(i) R∧ is a substitutive logical relation.
(ii) R∧∨ = R∗.
(iii) S∨∧ = S∗.

Proof. (i) In order to show that R∧ is substitutive, assume R∧(M), R∧( ~N) towards
R∧(M [~x: = ~N ]). Now R∧(M) means that R([[Mβη]]ρ), where [[Mβη]]ρ is independent of

ρ. Since the ~M are models we can leave out the βη. Therefore

[[M [~x: = ~N ]]]ρ = [[M ]]
ρ[~x:=[[ ~N ]]ρ] = [[M ]],

hence R∧(M [~x: = ~N ]).
(ii) Write T = R∧. Then (taking n = 1)

T∨(d) ⇐⇒ ∃M ∈Λ[M].D∗(M,d) & T (M),

⇐⇒ ∃M ∈Λ[M].D∗(M,d) & ∃d′.D∗(M,d′) & R∗(d′),

⇐⇒ ∃M,d′.[[M ]] = d & [[M ]] = d′ & R∗(d′),

⇐⇒ R∗(d).

(iii) Similarly.

Using this result, the Fundamental Theorem for syntactical logical relations can be
derived from the syntactic version.

We give two applications.

3.3.36. Example. Let R be the graph of a partial surjective homomorphism h :M→N .
The fundamental theorem just shown implies that for closed pure terms one has h(M) =
M , which is lemma 15 of Friedman [1975]. From this it is derived in this paper that for
infinite X one has

MX |= M = N ⇐⇒ M =βη N.

We have derived this in another way.
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3.3.37. Example. LetM be a typed structure. Let ∆ ⊆M. Write ∆(A) = ∆∩M(A).
Assume that ∆(A) 6= ∅ for all A∈ and

d∈∆(A→B), e∈∆(A) ⇒ de∈∆(B).

Then ∆ may fail to be a typed structure because it is not extensional. Equality as
binary relation Eo on ∆(o) × ∆(o) induces a binary logical relation E on ∆ × ∆. Let
∆E = {d∈∆ | E(d, d)}. Then the restriction of E to ∆E is an applicative congruence
and the equivalence classes form a structure. In particular, ifM is a model, then write

∆+ = {d∈M | ∃MΛø
o∃d1 . . . dn [[M ]]d1 . . . dn = d}

for the applicative closure of ∆. The Gandy hull of ∆ in M is the set ∆+E . From the
fundamental theorem for logical relations it can be derived that

M∆ = ∆+E/E

is a model. This model will be also called the Gandy hull of ∆ inM.

3.4. Type reducibility

Remember that a type A is reducible to type B, notation A ≤βη B if for some closed
term Φ:A→B one has for all closed M1,M2:A

M1 =βη M2 ⇐⇒ ΦM1 =βη ΦM2.

3.4.1. Definition. Write A ∼βη B iff A ≤βη B & B ≤βη A.

The reducibility theorem, Statman [1980a], states that there is one type to which all
types of TT(λ→) can be reduced. At first this may seem impossible. Indeed, in a full
typed structureM the cardinality of the sets of higher type increase arbitrarily. So one
cannot always have an injection MA→MB. But reducibility means that one restricts
oneself to definable elements (modulo =βη) and then the injections are possible. The
proof will occupy 3.4.2-3.4.7. There are four main steps. In order to show that ΦM1 =βη

ΦM2 ⇒ M1 =βη M2 in all cases a (pseudo) inverse Φ−1 is used. Pseudo means that
sometimes the inverse is not lambda definable, but this is no problem for the implication.
Sometimes Φ−1 is definable, but the property Φ−1(ΦM) = M only holds in an extension
of the theory; because the extension will be conservative over =βη the reducibility follows.
Next the type hierarchy theorem, also due to Statman [1980a], will be given. Rather
unexpectedly it turns out that under ≤βη types form a well-ordering of length ω + 3.
Finally some consequences of the reducibility theorem will be given, including the 1-
section and finite completeness theorems.

In the first step towards the reducibility theorem it will be shown that every type is
reducible to one of rank ≤ 3. The proof is rather syntactic. In order to show that the
definable function Φ is 1-1, a non-definable inverse is needed. A warmup exercise for
this is 3.6.4.
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3.4.2. Proposition. For every type A there is a type B such that rank(B) ≤ 3 and
A ≤βη B.

Proof. [The intuition behind the construction of the the term Φ responsible for the
reducibility is as follows. If M is a term with Böhmtree (see Barendregt [1984])

λx1:A1 . . . xa:Aa.xi
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Now let UM be a term with “Böhmtree” of the form

λx1:o . . . xa:o.uxi
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where all the typed variables are pushed down to type o and the variables u (each
occurrence possibly different) takes care that the new term remains typable. From this
description it is clear that the u can be chosen in such way that the result has rank ≤ 1.
Also that M can be reconstructed from UM so that U is injective. ΦM is just UM with
the auxiliary variables bound. This makes it of type with rank ≤ 3. What is less clear
is that U and hence Φ are lambda-definable.]

Define inductively for any type A the types A♯ and A♭.

o♯ = o;

o♭ = o;

(A1→ . . .→Aa→o)♯ = o→A♭
1→ . . .→A♭

a→o;
(A1→ . . .→Aa→o)♭ = (oa→o).

Notice that rank(A♯) ≤ 2.

In the potentially infinite context

{uA:A♯ |A∈TT}
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define inductively for any type A terms VA : o→A,UA : A→A♭.

Uo = λx:o.x;

Vo = λx:o.x;

UA1→...→Aa→o = λz:Aλx1, . . . , xa:o.z(VA1x1) . . . (VAaxa);

VA1→...→Aa→o = λx:oλy1:A1 . . . ya:Aa.uAx(UA1y1) . . . (UAaya),

where A = A1→ . . .→Aa→o.
Notice that for a closed term M of type A = A1→ . . .→Aa→o one can write

M = λy1:A1 . . . ya:Aa.yi(M1y1 . . . ya) . . . (Mny1 . . . ya).

Now verify that

UAM = λx1, . . . , xa:o.M(VA1x1) . . . (VAaxa)

= λ~x.(VAi
xi)(M1(VA1x1) . . . (VAaxa)) . . . (Mn(VA1x1) . . . (VAaxa))

= λ~x.uAi
xi(UA1(M1(VA1x1) . . . (VAaxa))) . . .

= λ~x.uAi
xi(UA1→...→Aa→B1M1~x) . . . ,

where Bj is the type of Mj . Hence we have that if UAM =βη UAN , then for 1 ≤ j ≤ n

UA1→...→Aa→Bj
Mj =βη UA1→...→Aa→Bj

Nj .

Therefore it follows by induction on the complexity of M that if UAM =βη UAN , then
M =βη N .

Now take as term for the reducibility Φ ≡ λm:AλuB1 . . . uBk
.UAm, where the ~u are

all the ones occurring in the construction of UA. It follows that

A ≤βη B
♯
1→ . . .→B♯

k→A♯.

Since rank(B♯
1→ . . .→B♯

k→A♯) ≤ 3, we are done.

For an alternative proof, see Exercise 3.6.9.
In the following proposition it will be proved that we can further reduce types to

one particular type of rank 3. First do exercise 3.6.5 to get some intuition. We need the
following notation.

3.4.3. Notation. (i) For k ≥ 0 write

1k = ok→o,

where in general A0→o = o and Ak+1→o = A→(Ak→o).
(ii) For k1, . . . , kn ≥ 0 write

(k1, . . . , kn) = 1k1→ . . .→1kn→o.
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(iii) For k11, . . . , k1n1 , . . . , km1, . . . , kmnm ≥ 0 write



k11 . . . k1n1

. .

. .
km1 . . . kmnm


 = (k11, . . . , k1n1)→ . . .→(km1, . . . , kmnm)→o.

Note the “matrix” has a dented right side (the ni are unequal in general).

3.4.4. Proposition. Every type A of rank ≤ 3 is reducible to

12→1→1→2→o.

Proof. Let A be a type of rank ≤ 3. It is not difficult to see that A is of the form

A =




k11 . . . k1n1

. .

. .
km1 . . . kmnm




We will first reduce A to type 3 = 2→o using a term Φ containing free variables of type
12, 1, 1 respectively acting as a ‘pairing’. Consider the context

{p:12, p1:1, p2:1}.

Consider the notion of reduction p defined by the contraction rules

pi(pM1M2)→pM1.

[There now is a choice how to proceed: if you like syntax, then proceed; if you prefer
models omit paragraphs starting with ♣ and jump to those starting with ♠.]
♣ This notion of reduction satisfies the subject reduction property. Moreover βηp

is Church-Rosser, see Pottinger [1981]. This can be used later in the proof. [Extending
the notion of reduction by adding

p(p1M)(p2M)→sM

preserves the CR property. In the untyped calculus this is not the case, see Klop [1980]
or Barendregt [1984], ch. 14.] Goto ♠.
♠ Given the pairing p, p1, p2 one can extend it as follows. Write

p1 = λx:o.x;

pk+1 = λx1 . . . xnxn+1:o.p(p
kx1 . . . xn)xn+1;

p1
1 = λx:o.x;

pk+1
k+1 = p2;

pk+1
i = λz:o.pk

i (p1z), for i ≤ k;
P k = λf1 . . . fk:1λz:o.p

k(f1z) . . . (fkz);

P k
i = λg:1λz:o.pk

i (gz), for i ≤ k.
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We have that pk acts as a coding for k-tuples of elements of type o with projections pk
i .

The P k, P k
i do the same for type 1. In context containing {f :1k, g:1} write

fk→1 = λz:o.f(pk
1z) . . . (p

k
kz);

g1→k = λz1 . . . zk:o.f(pkz1 . . . zk).

Then fk→1 is f moved to type 1 and g1→k is g moved to type 1k.

Using βηp-convertibility one can show

pk
i (p

kz1 . . . zk) = zi;

P k
i (P kf1 . . . fk) = fi;

fk→1,1→k = f.

For g1→k,k→1 = g one needs s, the surjectivity of the pairing.

In order to define the term required for the reducibility start with the term Ψ:A→3
(containing p, p1, p2 as only free variables). We need an auxiliary term Ψ−1, acting as
an inverse for Ψ in the presence of a “true pairing”.

Ψ ≡ λMλF :2.M

[λf11:1k11 . . . f1n1 :1k1n1
.p1(F (Pn1fk11→1

11 . . . f
k1n1→1
1n1

)] . . .

[λfm1:1km1 . . . fmnm :1kmnm
.pm(F (Pnmfkm1→1

m1 . . . fkmnm→1
mnm

)];

Ψ−1 ≡ λN :(2→o)λK1:(k11, . . . , k1n1) . . . λKm:(km1, . . . , kmnm).

N(λf :1.pm[K1(P
n1
1 f)1→k11 . . . (Pn1

n1
f)1→k1n1 ] . . .

[Km(Pnm
1 f)1→km1 . . . (Pnm

nm
f)1→k1nm ]).

Claim. For closed terms M1,M2 of type A we have

M1 =βη M2 ⇐⇒ ΨM1 =βη ΨM2.

It then follows that for the reduction A ≤βη 12→1→1→3 we can take

Φ = λM :A.λp:12λp1, p2:1.ΨM.

It remains to show the claim. The only interesting direction is (⇐). This follows in
two ways. We first show that

Ψ−1(ΨM) =βηp M. (1)

We will write down the computation for the “matrix”

(
k11

k21 k22

)
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which is perfectly general.

ΨM =β λF :2.M [λf11:1k11 .p1(F (P 1fk11→1
11 ))]

[λf21:1k21λf22:1k22 .p2(F (P 2fk21→1
21 fk22→1

22 ))];
Ψ−1(ΨM) =β λK1:(k11)λK2:(k21, k22).

ΨM(λf :1.p1[K1(P
1
1 f)1→k11 [K2(P

2
1 f)1→k21(P 2

2 f)1→k22 ])
≡ λK1:(k11)λK2:(k21, k22).ΨMH, say,

=β λK1K2.M [λf11.p1(H(P 1fk11→1
11 ))]

[λf21λf22.p2(H(P 2fk21→1
21 fk22→1

22 ))];
=βp λK1K2.M [λf11.p1(p

2[K1f11][..‘junk’..])]
[λf21λf22.p2(p

2[..‘junk’..][K2f21f22])];
=p λK1K2.M(λf11.K1f11)(λf21f22.K2f21f22)
=η λK1K2.MK1K2

=η M,

since

H(P 1f11) =βp p2[K1f11][..‘junk’..]

H(P 2fk21→1
21 fk22→1

22 ) =βp p2[..‘junk’..][K2f21f22].

The argument now can be finished in a model theoretic or syntactic way.
♣ If ΨM1 =βη ΨM2, then Ψ−1(ΨM1) =βη Ψ−1(ΨM2). But then by (1) M1 =βηp

M2. It follows from the Church-Rosser theorem for βηp that M1 =βη M2, since these
terms do not contain p. Goto .
♠ If ΨM1 =βη ΨM2, then

λp:12λp1p2:1.Ψ
−1(ΨM1) =βη λp:12λp1p2:1.Ψ

−1(ΨM2).

Hence
M(ω) |= λp:12λp1p2:1.Ψ

−1Ψ(M1) = λp:12λp1p2:1.Ψ
−1(ΨM2).

Let q be an actual pairing on ω with projections q1,q2. Then inM(ω)

(λp:12λp1p2:1.Ψ
−1(ΨM1))qq1q2 = λp:12λp1p2:1.Ψ

−1(ΨM2)qq1q2.

Since (M(ω),q,q1,q2) is a model of βηp conversion it follows from (1) that

M(ω) |= M1 = M2.

But then M1 =βη M2, by a result of Friedman [1975].

We will see below, corollary 3.4.23 (i), that Friedman’s result will follow from the
reducibility theorem. Therefore the syntactic approach is preferable.

The proof of the next proposition is again syntactic. A warmup is exercise 3.6.7.

3.4.5. Proposition. Let A be a type of rank ≤ 2. Then

2→A ≤βη 1→1→o→A.
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Proof. Let A ≡ (1k1 , . . . , 1kn) = 1k1→ . . . 1kn→o. The term that will perform the
reduction is relatively simple

Φ ≡ λM :2λb1:1k1 . . . λbn:1kn .[λf, g:1λz:o.M(λh:1.f(h(g(hz))))].

In order to show that for all M1,M2:2→A one has

ΦM1 =βη ΦM2 ⇒ M1 =βη M2,

we may assume w.l.o.g. that A = 12→o. A typical element of 2→12→o is

M ≡ λF :2λb:12.F (λx.F (λy.byx)).

Note that its translation has the following long βη-nf

ΦM = λb:12λf, g:1λz:o.f(Nx[x: = g(Nx[x: = z]])),

where Nx ≡ f(b(g(bzx))x),

≡ λb:12λf, g:1λz:o.f(f(b(g(bz[g(f(b(g(bzz))z))]))[g(f(b(g(bzz))z))]).

This term M and its translation have the following trees.

BT(M) λFb.F

λx.

F

λy.

b

JJJJJJJJJJJJ

tttttttttttt

y x

and
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BT(ΦM) λfgbz.f
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Note that if we can ‘read back’ M from its translation ΦM , then we are done. Let
Cutg→z be a syntactic operation on terms that replaces maximal subterms of the form
gP by z. For example (omitting the abstraction prefix)

Cutg→z(ΦM) = f(f(bzz)).

Note that this gives us back the ‘skeleton’ of the term M , by reading f as F (λ⊙. The
remaining problem is how to reconstruct the binding effect of each occurrence of the λ⊙.
Using the idea of counting upwards lambda’s, see de Bruijn [1972], this is accomplished
by a realizing that the occurrence z coming from g(P ) should be bound at the position
f just above where Cutg→z(P ) matches in Cutg→z(ΦM) above that z. For a precise
inductive argument for this fact, see Statman [1980a], Lemma 5, or do exercise 3.6.10.

The following simple proposition brings almost to an end the chain of reducibility of
types.

3.4.6. Proposition.
14→12→o→o ≤βη 12→o→o.
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Proof. As it is equally simple, let us prove instead

1→12→o→o ≤βη 12→o→o.

Define Φ : (1→12→o→o)→12→o→o by

Φ ≡ λM :(1→12→o→o)λb:12λc:o.λf :1λb:12λc:o.M(f+)(b+)c,

where

f+ = λt:o.b(#f)t;

b+ = λt1, t2:o.b(#b)(bt1t2);

#f = bcc;

#b = bc(bcc).

The terms #f,#b serve as recognizers (“Gödel numbers”). Notice that M of type
1→12→o→o has a closed long βη-nf of the form

Mnf ≡ λf :1λb:12λc:o.t

with t an element of the set T generated by the grammar

T :: = c | fT | b T T.

Then for such M one has ΦM =βη Φ(Mnf) ≡M+ with

M+ ≡ λf :1λb:12λc:o.t
+,

where t+ is inductively defined by

c+ = c;

(ft)+ = b(#f)t+;

(bt1t2)
+ = b(#b)(bt+1 t

+
2 ).

It is clear that Mnf can be constructed back from M+. Therefore

ΦM1 =βη ΦM2 ⇒ M+
1 =βη M

+
2

⇒ M+
1 ≡M+

2

⇒ Mnf
1 ≡Mnf

2

⇒ M1 =βη M2.

By the same method one can show that any type of rank ≤ 2 is reducible to ⊤, do
exercise 3.6.12

Combining propositions 3.4.2-3.4.6 we can complete the proof of the reducibility
theorem.
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3.4.7. Theorem (Reducibility theorem, Statman [1980a]). Let

⊤ = 12→o→o.

Then
∀A∈TT A ≤βη ⊤.

Proof. Let A be any type. Harvesting the results we obtain

A ≤βη B, with rank(B) ≤ 3, by 3.4.2,

≤βη 12→12→2→o, by 3.4.4,

≤βη 2→12→12→o, by simply permuting arguments,

≤βη 12→o→12→12→o, by 3.4.5,

≤βη 12→o→o, by an other permutation and 3.4.6

Now we turn attention to the type hierarchy, Statman [1980a].

3.4.8. Definition. For the ordinals α ≤ ω + 3 define the type Aα ∈TT(λo
→) as follows.

A0 = o;

A1 = o→o;
. . .

Ak = ok→o;
. . .

Aω = 1→o→o;
Aω+1 = 1→1→o→o;
Aω+2 = 3→o→o;
Aω+3 = 12→o→o.

3.4.9. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇒ Aα ≤βη Aβ.

Proof. For all finite k one has Ak ≤βη Ak+1 via the map

Φk,k+1 ≡ λm:Akλzx1 . . . xk:o.mx1 . . . xk =βη λm:Ak.Km.

Moreover, Ak ≤βη Aω via

Φk, ω ≡ λm:Akλf :1λx:o.m(c1fx) . . . (ckfx).

Then Aω ≤βη Aω+1 via

Φω, ω+1 ≡ λm:Aωλf, g:1λx:o.mfx.
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Now Aω+1 ≤βη Aω+2 via

Φω+1, ω+2 ≡ λm:Aω+1λH:3λx:o.H(λf :1.H(λg:1.mfgx)).

Finally, Aω+2 ≤βη Aω+3 = ⊤ because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term Φω+2, ω+3.

3.4.10. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ.

Proof. This will be proved in 3.5.32.

3.4.11. Corollary. For α,β ≤ ω + 3 one has

Aα ≤βη Aβ ⇐⇒ α ≤ β.

For a proof that these types {Aα}α≤ω+3 are a good representation of the reducibility
classes we need some syntactic notions.

3.4.12. Definition. A type A∈TT(λo
→) is called large if it has a negative subterm

occurrence of the form B1→ . . .→Bn→o, with n ≥ 2; A is small otherwise.

3.4.13. Example. 12→o→o is large; (12→o)→o and 3→o→o are small.

Now we will partition the types TT = TT(λo
→) in the following classes.

3.4.14. Definition. Define the following sets of types.

TT−1 = {A | A has no closed inhabitant};
TT0 = {o→o};
TT1 = {ok→o | k > 1};
TT2 = {1→oq→o | q > 0} ∪ {(1p→o)→oq→o | p > 0, q ≥ 0};
TT3 = {A | A is small, rank(A)∈{2, 3} and A /∈ TT2};
TT4 = {A | A is small and rank(A) > 3};
TT5 = {A | A is large}.

It is clear that the TTi form a partition of TT. A typical element of TT−1 is o. This class
we will not consider much.

3.4.15. Theorem (Hierarchy theorem, Statman [1980a]).

A∈TT5 ⇐⇒ A ∼βη 12→o→o;
A∈TT4 ⇐⇒ A ∼βη 3→o→o;
A∈TT3 ⇐⇒ A ∼βη 1→1→o→o;
A∈TT2 ⇐⇒ A ∼βη 1→o→o;
A∈TT1 ⇐⇒ A ∼βη o

k→o, for some k > 1;
A∈TT0 ⇐⇒ A ∼βη o→o;
A∈TT−1 ⇐⇒ A ∼βη o.
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Proof. Since the TTi form a partition, it is sufficient to show just the ⇒’s.

As to TT5, it is enough to show that 12→o→o ≤βη A, for every large type A, since
we know already the converse. For this see Statman [1980a], lemma 7. As a warmup
exercise do 3.6.20.

As to TT4, it is shown in Statman [1980a], proposition 2, that if A is small, then
A ≤βη 3→o→o. It remains to show that for any small type A of rank > 3 one has
3→o→o ≤βη A. Do exercise 3.6.27.

As to TT3, the implication is shown in Statman [1980a], lemma 12. The condition
about the type in that lemma is equivalent to belonging to TT3.

As to TT2, do exercise 3.6.22(ii).

As to TTi, with i = 1, 0,−1, notice that Λø(ok→o) contains exactly k closed terms for
k ≥ 0. This is sufficient.

For an application in the next section we need a refinement of the hierarchy theorem.

3.4.16. Definition. Let A,B be types.

(i) A is head-redicible to B, notation A ≤h B, iff for some closed term Φ∈Λø(A→B)
one has

∀M1,M2:A [M1 =βη M2 ⇐⇒ ΦM1 =βη ΦM2],

and moreover Φ is of the form

Φ = λm:Aλx1 . . . xb:B.mP1 . . . Pa, (+)

with m /∈ FV(P1, . . . , Pa).

(ii) A is multi head-reducible to B, notation A ≤h+ B, iff there are closed terms
Φ1, . . . ,Φm ∈Λø(A→B) each of the form (+) such that

∀M1,M2:A [M1 =βη M2 ⇐⇒ Φ1M1 =βη Φ1M2 & . . .& ΦmM1 =βη ΦmM2.

(iii) Write A ∼h B iff A ≤h B ≤h A and similarly
A ∼h+ B iff A ≤h+ B ≤h+ A.

3.4.17. Proposition. (i) A ≤h B ⇒ A ≤βη B.

(ii) Let A,B ∈TTi, with i 6= 2. Then A ∼h B.

(iii) Let A,B ∈TT2. Then A ∼h+ B.

(iv) A ≤βη B ⇒ A ≤h+ B.

Proof. (i) Trivial.

(ii) Suppose A ≤βη B. By inspection of the proof of the hierarchy theorem in all
cases except for A∈TT2 one obtains A ≤h B. Do exercise 3.6.24.

(iii) In the exceptional case one obtains A ≤h+ B, see exercise 3.6.23.

(iv) By (ii) and (iii), using the hierarchy theorem.
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3.4.18. Corollary (Hierarchy theorem (revisited), Statman [1980b]).

A∈TT5 ⇐⇒ A ∼h 12→o→o;
A∈TT4 ⇐⇒ A ∼h 3→o→o;
A∈TT3 ⇐⇒ A ∼h 1→1→o→o;
A∈TT2 ⇐⇒ A ∼h+ 1→o→o;
A∈TT1 ⇐⇒ A ∼h+ o2→o;
A∈TT0 ⇐⇒ A ∼h o→o;
A∈TT−1 ⇐⇒ A ∼h o.

Proof. The only extra fact to verify is that ok→o ≤h+ o2→o.

Applications of the reducibility theorem

The reducibility theorem has several consequences.

3.4.19. Definition. Let C be a class of λ→ models. C is called complete iff

∀M,N ∈Λø[C |= M = N ⇐⇒ M =βη N ].

3.4.20. Definition. (i) T = Tb,c is the algebraic structure of trees inductively defined
as follows.

T = c | b T T
(ii) For a λ→ model M we say that T can be embedded into M, notation T →֒M ,

iff there exist b0 ∈M(o→o→o), c0 ∈M(o) such that

∀t, s∈T [t 6= s ⇒ M |= tclb0c0 6= sclb0c0],

where ucl = λb:o→o→oλc:o.u, is the closure of u∈T .

The elements of T are binary trees with c on the leaves and b on the connecting nodes.
Typical examples are c, bcc, bc(bcc) and b(bcc)c. The existence of an embeding using
b0, c0 implies for example that b0c0(b0c0c0), b0c0c0 and c0 are mutually different inM.

Note that T 6֒→ M(2). To see this, write gx = bxx. One has g2(c) 6= g4(c), but
M(2) |= ∀g:o→o∀c:o.g2(c) = g4(c), do exercise 3.6.13.

3.4.21. Lemma. (i) Πi∈ IMi |= M = N ⇐⇒ ∀i∈ I.Mi |= M = N.
(ii) M ∈Λø(⊤) ⇐⇒ ∃s∈T .M =βη s

cl.

Proof. (i) Since [[M ]]Πi ∈ IMi = λλi∈ I.[[M ]]Mi .
(ii) By an analysis of the possible shape of the normal forms of terms of type ⊤ =

12→o→o.

3.4.22. Theorem (1-section theorem, Statman [1985]). C is complete iff there is an (at
most countable) family {Mi}i∈ I of structurs in C such that

T →֒ Πi∈ IMi.
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Proof. (⇒) Suppose C is complete. Let t, s∈T . Then

t 6= s ⇒ tcl 6=βη s
cl

⇒ C 6|= tcl = scl, by completeness,

⇒ Mts |= tcl 6= scl, for some Mst ∈C,
⇒ Mts |= tclbtscts 6= sclbtscts,

for some bts ∈M(o→o→o), cts ∈M(o) by extensionality. Note that in the third implication
the axiom of (countable) choice is used.

It now follows by lemma 3.4.21(i) that

Πt6=sMts |= tcl 6= scl,

since they differ on the pair b0c0 with b0(ts) = bts and similarly for c0.

(⇐) Suppose T →֒ Πi∈ IMi with Mi ∈C. Let M,N be closed terms of some type
A. By soundness one has

M =βη N ⇒ C |= M = N.

For the converse, let by the reducibility theorem F : A→⊤ be such that

M =βη N ⇐⇒ FM =βη FN,

for all M,N ∈Λø. Then

C |= M = N ⇒ Πi∈ IMi |= M = N, by the lemma,

⇒ Πi∈ IMi |= FM = FN,

⇒ Πi∈ IMi |= tcl = scl,

where t, s are such that

FM =βη t
cl, FN =βη s

cl, (∗)
noting that every closed term of type ⊤ is βη-convertible to some ucl with u∈T . Now
the chain of arguments continues as follows

⇒ t ≡ s, by the embedding property,

⇒ FM =βη FN, by (*),

⇒ M =βη N, by reducibility.

3.4.23. Corollary. (i) [Friedman [1975]] {MN} is complete.

(ii) [Plotkin [1985?]] {Mn}n∈N is complete.

(iii) {MN⊥
} is complete.

(iv) {MD}D a finite cpo, is complete.

Proof. Immediate from the theorem.
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The completeness of the collection {Mn}n∈N essentially states that for every pair of
terms M,N of a given type A there is a number n = nM,N such thatMn |= M = N ⇒
M =βη N . Actually one can do better, by showing that n only depends on M .

3.4.24. Proposition (Finite completeness theorem, Statman [1982]). For every type A∈TT(λo
→)

and every closed term M of type A there is a number n = nM such that for all closed
terms N of type A one has

Mn |= M = N ⇐⇒ M =βη N.

Proof. By the reduction theorem 3.4.7 it suffices to show this for A = ⊤. Let M a
closed term of type ⊤ be given. Each closed term N of type ⊤ has as long βη-nf

N = λb:12λc:o.sN ,

where sN ∈T . Let p : N→N→N be an injective pairing on the integers such that
p(k1, k2) > ki. Take

nM = [[M ]]Mωp 0 + 1.

Define p′:X2
n+1→Xn+1, where Xn+1 = {0, . . . , n+ 1}, by

p′(k1, k2) = p(k1, k2), if k1, k2 ≤ np(k1, k2) ≤ n;

= n+ 1 else.

Suppose Mn |= M = N . Then [[M ]]Mnp′ 0 = [[N ]]Mnp′ 0. By the choice of n it follows
that [[M ]]Mnp 0 = [[N ]]Mnp 0 and hence sM = sN . Therefore M =βη N .

3.4.25. Definition (Reducibility Hierarchy, Statman [1980a]). For the ordinals α ≤ ω+
3 define the type Aα ∈TT(λo

→) as follows.

A0 = o;

A1 = o→o;
. . .

Ak = ok→o;
. . .

Aω = 1→o→o;
Aω+1 = 1→1→o;
Aω+2 = 3→o→o;
Aω+3 = 12→o→o.

3.4.26. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇒ Aα ≤βη Aβ.
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Proof. For all finite k one has Ak ≤βη Ak+1 via the map

Φk,k+1 ≡ λm:Akλzx1 . . . xk:o.mx1 . . . xk =βη λm:Ak.Km.

Moreover, Ak ≤βη Aω via

Φk, ω ≡ λm:Akλf :1λx:o.m(c1fx) . . . (ckfx).

Then Aω ≤βη Aω+1 via

Φω, ω+1 ≡ λm:Aωλf, g:1λx:o.mfx.

Now Aω+1 ≤βη Aω+2 via

Φω+1, ω+2 ≡ λm:Aω+1λH:3λx:o.H(λf :1.H(λg:1.mfgx)).

Finally, Aω+2 ≤βη Aω+3 = ⊤ because of the reducibility theorem 3.4.7. See also exercise
4.1.9 for a concrete term Φω+2, ω+3.

3.4.27. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ.

Proof. This will be proved in 3.5.32.

3.4.28. Corollary. For α,β ≤ ω + 3 one has

Aα ≤βη Aβ ⇐⇒ α ≤ β.

3.5. The five canonical term-models

The open terms of λo
→ form an extensional model, the term-model MΛo . One may

wonder whether there are also closed term-models, like in the untyped lambda calculus.
If no constants are present, then this is not the case, since there are e.g. no closed terms
of ground type o. In the presence of constants matters change. We will first show how
a set of constants D gives rise to an extensional equivalence relation on Λø

o[D], the set
of closed terms with constants from D. Then we define canonical sets of constants and
prove that for these the resulting equivalence relation is also a congruence, i.e. determines
a term-model. After that it will be shown that for all sets D of constants with enough
closed terms the extensional equivalence determines a term-model. Up to elementary
equivalence (satisfying the same set of equations between closed pure terms, i.e. closed
terms without any constants) all models, for which the equality on type o coincides with
=βη, can be obtained in this way. From now on D will range over sets of constants such
that there are closed terms for every type A (i.e. in Λø

o[D](A)).

3.5.1. Definition. Let M,N ∈Λø
o[D](A) with A = A1→ . . .→Aa→o.
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(i) M is D-extensionally equivalent with N , notation M ≈ext

D N , iff

∀t1 ∈Λø
o[D](A1) . . . ta ∈Λø

o[D](Aa).M~t =βη N~t.

[If a = 0, then M,N ∈Λø
o[D](o); in this case M ≈ext

D N ⇐⇒ M =βη N .]
(ii) M is D-observationally equivalent with N , notation M ≈obs

D N , iff

∀F ∈Λø
o[D](A→o)FM =βη FN.

3.5.2. Remark. Note that if M ≈obs

D N , then for all F ∈Λø
o[D](A→B) one has FM ≈obs

D

FN . Similarly, ifM≈ext

D N of type A→B, then for all Z ∈Λø
o[D](A) one has MZ≈ext

D NZ
of type B.

We will show that for all D and M,N ∈Λø
o[D] one has

M ≈ext

D N ⇐⇒ M ≈obs

D N.

Therefore, as soon as this is proved, we can write simply M ≈D N .
Note that in the definition of extensional equivalence the ~t range over closed terms

(containing possibly constants). So this notion is not the same as βη-convertibility: M
and N may act differently on different variables, even if they act the same on all those
closed terms. The relation ≈ext

D is related to what is called in the untyped calculus the
ω-rule, see Barendregt [1984], §17.3.

The intuition behind observational equivalence is that for M,N of higher type A one
cannot ‘see’ that they are equal, unlike for terms of type o. But one can do ‘experiments’
with M and N , the outcome of which is observational, i.e. of type o, by putting these
terms in a context C[−] resulting in two terms of type o. For closed terms it amounts
to the same to consider just FM and FN for all F ∈Λø

o[D](A→o).

3.5.3. Lemma. Let S be an n-ary logical relation on Λø
o[D], that is closed under =βη. If

S(d, . . . ,d) holds for all d∈D, then

S(M, . . . ,M)

holds for all M ∈Λø
o[D].

Proof. Let D = {dA1
1 , . . . ,dAn

n }. M can be written as

M ≡M [~d ] =βη (λ~x.M [~x])~d ≡M+~d,

with M+ a closed and pure term (i.e. without variables or constants). Then

S(M+, . . . ,M+), by the fundamental theorem

for logical relations

⇒ S(M+~d, . . . ,M+~d), since S is logical and ∀d∈D.S(~d),

⇒ S(M, . . . ,M), since S is =βη closed.
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3.5.4. Lemma. Let S = SD = {SA}A∈TT(λo
→) be the logical relation on Λø

o[D](o) determined
by

So(M,N) ⇐⇒ M =βη N,

for M,N ∈Λø
o[D](o).

(i) Suppose that for all d∈D one has S(d,d). Then ≈ext

D is logical.
(ii) Let d∈D be a constant of type A→o with A = A1→· · ·→Am→o. Suppose

• ∀F,G∈Λø
o[D](A)[F ≈ext

D G ⇒ F =βη G];

• ∀ti ∈Λø
o[D](Ai) S(ti, ti), 1 ≤ i ≤ m.

Then S(d,d).

Proof. (i) By the assumption and the fact that S is =βη closed (since So is), lemma
3.5.3 implies that

S(M,M) (0)

for all M ∈Λø
o[D]. Hence S is an equivalence relation on Λø

o[D]. Claim.

SA(F,G) ⇐⇒ F ≈ext

D G,

for all F,G∈Λø
o[D](A). This is proved by induction on the structure of A. If A = o,

then this is trivial. If A = B→C, then we proceed as follows.

(⇒) SB→C(F,G) ⇒ SC(Ft,Gt), for all t∈Λø
o[D](B).SB(t, t)

by the IH, since t≈ext

D t and hence SB(t, t),

⇒ Ft≈ext

D Gt, for all t∈Λø
o[D],by the IH,

⇒ F ≈ext

D G, by definition.

(⇐) F ≈ext

D G ⇒ Ft≈ext

D Gt, for all t∈Λø
o[D],

⇒ SC(Ft,Gt) (1)

by the induction hypothesis. Now in order to prove SB→C(F,G), assume SB(t, s) trying
to show SC(Ft,Gs). Well, since also SB→C(G,G), by (0), we have

SC(Gt,Gs). (2)

It follows from (1) and (2) and the transitivity of S (being by the IH on this type the
same as ≈ext

D ) that SC(Ft,Gs) indeed.
So we have proved the claim. Since ≈ext

D is S and S is logical, it follows that ≈ext

D is
logical.

(ii) Let d be given. Then

S(F,G) ⇒ F~t =βη G~t, since ∀~t∈Λø
o[D] S(ti, ti),

⇒ F ≈ext

D G,

⇒ F =βη G, by assumption,

⇒ dF =βη dG.

Therefore we have by definition S(d,d).
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3.5.5. Lemma. Suppose that ≈ext

D is logical. Then

∀M,N ∈Λø
o[D] [M ≈ext

D N ⇐⇒ M ≈obs

D N ].

Proof. (⇐) Assume M ≈obs

D N . Then M ≈ext

D N by taking F ≡ λm:B.m~t.
(⇒) Assume M ≈ext

D N . Let F ∈Λø
o[D](A→o). Then and

F ≈ext

D F,
⇒ FM ≈ext

D FN, as by assumption ≈ext

D is logical,
⇒ FM =βη FN, because the type is o.

Therefore M ≈obs

D N .

In order to show that for arbitraryD extensional equivalence is the same as observational
equivalence first this wil be done for the following six sets of constants.

3.5.6. Definition. The following sets of constants will play a crucial role in this section.

C0 = {co};
C1 = {co,do};
C2 = {f1, co};
C3 = {f1, g1, co};
C4 = {Φ3, co};
C5 = {b12

, co}.

From now on in this section C ranges over the canonical sets of constants {C0, . . . , C5}
and D over an arbitrary set of constants.

3.5.7. Definition. (i) We say that a type A = A1→ . . .→Aa→o is represented in D iff
there are distinct constants di of type Ai in D.

(ii) Let C be one of the canonical sets of constants. Define the characteristic type of
C, notation ∇(C), as follows.

∇(C0) = o→o;
∇(C1) = o→o→o;
∇(C2) = 1→o→o;
∇(C3) = 1→1→o→o;
∇(C4) = 3→o→o;
∇(C5) = 12→o→o.

In other words, ∇(Ci) is intuitively type of λλ~ci.c
o, where Ci = {~ci} (the order of the

abstractions is immaterial). Note that ∇(Ci) is represented in Ci. Also one has

i ≤ j ⇐⇒ ∇(Ci) ≤βη ∇(Cj),

as follows form the theory of type reducibility.
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(iii) The class of D is

max{i | ∇(Ci) ≤βη D for some type D represented in D}.

(iv) The characteristic type of D is ∇(Ci), where i is the class of D.

3.5.8. Lemma. Let A be represented in D. Then for M,N ∈Λø
o(A) pure closed terms of

type A, one has

M ≈ext

D N ⇐⇒ M =βη N.

Proof. The (⇐) direction is trivial. As to (⇒)

M ≈ext

D N ⇐⇒ ∀~T ∈Λø
o[D].M ~T =βη N ~T

⇒ M~d =βη N~d, for some d∈D since

A is represented in D,

⇒ M~x =βη N~x, since a constant may be replaced

by a variable if M,N are pure,

⇒ M =η λ~x.M~x =βη λ~x.N~x =η N.

We will need the following combinatorial lemma about ≈C4 .

3.5.9. Lemma. For every F,G∈Λ[C4](2) one has

F ≈C4 G ⇒ F =βη G.

Proof. We must show

[∀h∈Λ[C4](1).Fh =βη Gh] ⇒ F =βη G. (1)

In order to do this, a classification has to be given for the elements of Λ[C4](2). Define
for A∈TT(λo

→)

A∆ = {M ∈Λ[C4](A) |∆ ⊢M : A & M in βη-nf}.

It is easy to show that o∆ and 2∆ are generated by the following ‘two-level’ grammar,
see van Wijngaarden et al. [1976].

2∆ = λf :1.o∆,f :1

o∆ = c | Φ 2∆ | ∆.1 o∆,

where ∆.A consists of {v | vA ∈∆}.
It follows that a typical element of 2∅ is

λf1:1.Φ(λf2:1.f1(f2(Φ(λf3:1.f3(f2(f1(f3 c))))))).
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Hence a general element can be represented by a list of words

〈w1, . . . , wn〉,

with wi ∈Σ∗
i and Σi = {f1, . . . , fi}, the representation of the typical element above being

〈ǫ, f1f2, f3f2f1f3〉.

Let hm = λzo.Φ(λg:1.gm(z)); then hn ∈ 1∅. We claim that for some m we have

Fhm =βη Ghm ⇒ F =βη G.

For a given F ∈Λ[C4](2) one can find a representation of the βη-nf of Fhm from the
representation of the βη-nf F nf ∈ 2∅ of F . It will turn out that if m is large enough,
then F nf can be determined (‘read back’) from the βη-nf of Fhm.

In order to see this, let F nf be represented by the list of words 〈w1, . . . , wn〉, as above.
The occurences of f1 can be made explicit and we write

wi = wi0f1wi1f1wi2 . . . f1wiki
.

Some of the wij will be empty (in any case the w1j) and wij ∈Σ−∗
i with Σ−

i = {f2, . . . , fi}.
Then F nf can be written as (using for application—contrary to the usual convention—
association to the right)

F nf ≡ λf1.w10f1w11 . . . f1w1k1

Φ(λf2.w20f1w21 . . . f1w2k2

. . .

Φ(λfn.wn0f1wn1 . . . f1wnkn

c)..).
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Now we have

(Fhm)nf ≡ w10

Φ(λg.gmw11

. . .

Φ(λg.gmw1k1

Φ(λf2.w20

Φ(λg.gmw21

. . .

Φ(λg.gmw2k2

Φ(λf3.w30

Φ(λg.gmw31

. . .

Φ(λg.gmw3k3

. . .

. . .

Φ(λfn.wn0

Φ(λg.gmwn1

. . .

Φ(λg.gmwnkn

c)..))..)..)))..)))..).

So if m > maxij{length(wij)} we can read back the wij and hence F nf from (Fhm)nf.
Therefore using an m large enough (1) can be shown as follows:

∀h∈Λ[C4](1).Fh =βη Gh ⇒ Fhm =βη Ghm

⇒ (Fhm)nf ≡ (Ghm)nf

⇒ F nf ≡ Gnf

⇒ F =βη F
nf ≡ Gnf =βη G.

3.5.10. Proposition. The relations ≈Ci
are logical, for 1 ≤ i ≤ 5.

Proof. Let S be the logical relation determined by =βη on type o. By lemma 3.5.4
(i) we have to check S(c, c) for all constants c in Ci. For i 6= 4 this is easy (trivial for
constants of type o and almost trivial for the ones of type 1 and 12; in fact for all terms
h∈Λø

o[C] of these types one has S(h, h)).
For i = 4 it suffices by lemma 3.5.4 (ii) to show that

F ≈C4 G ⇒ F =βη G

for all F,G∈Λø
o[C4](2). This has been done in lemma 3.5.9.



3.5. THE FIVE CANONICAL TERM-MODELS 135

It follows that for the canonical sets C observational equivalence is the same as extensional
equivalence.

3.5.11. Theorem. Let C be one of the canonical classes of constants. Then

∀M,N ∈Λø
o[C][M ≈obs

C N ⇐⇒ M ≈ext

C N ].

Proof. By the proposition and lemma 3.5.5.

3.5.12. Definition. Let D be an arbitrary set of constants. Define

MD = Λø
o[D]/≈ext

D ,

with application defined by
[F ]D[M ]D = [FM ]D.

Here [−]D denotes an equivalence class modulo ≈D.

3.5.13. Theorem. Let C be one of the canonical sets of constants.
(i) Application in MC is a well-defined.
(ii) For all M,N ∈Λø

o[C] on has

MC |= M = N ⇐⇒ M ≈C N.

(iii) MC is an extensional term-model.

Proof. (i) Using theorem 3.5.11 one can show that the definition of the application
operator is independent of the choice of representatives:

F ≈C F
′ & M ≈C M

′ ⇒
F ≈ext

C F ′ & M ≈obs

C M ′ ⇒
FM ≈ext

C F ′M ≈obs

C F ′M ′ ⇒
FM ≈C F

′M ′.

(ii) Show by induction on M that

[[M ]]ρ = [M [~x: = ρ(x1), . . . , ρ(xn)],

the ≈C equivalence class, satisfies the semantic requirements.
(iii) Use (ii) and the fact that ≈ext

C the model is extensional.

3.5.14. Definition. (i) If M is a model of λo
→[C], then for a type A its A-section is

simplyMA.
(ii) We say thatM is A-complete (respectively A-complete for pure terms) iff for all

closed terms (respectively pure closed terms) M,N of type A one has

M |= M = N ⇐⇒ M =βη N.
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(iii) M is complete (for pure terms) if for all types A∈Λo it is A-complete (for pure
terms).

(iv) A model M is called fully abstract if observational equivalence is the same as
equality inM.

Using this terminology lemma 3.5.8 states that if A is represented in C, then MC is
A-complete for pure terms.

3.5.15. Corollary. Let C one of the canonical classes of constants and let A be its
characteristic type. Then MC has the following properties.

(i) MC is an extensional term-model.
(ii) MC is fully abstract.
(iii) MC is 0-complete.
(iv) MC is ∇(C)-complete for pure terms.

Proof. (i) By theorem 3.5.11 the definition of application is well-defined. That extensionality
holds follows from the definition of ≈D. Because all combinators [KAB]C , [SABC ]C are in
MC the structure is a model.

(ii) Again by theorem 3.5.11MC is fully abstract.
(iii) Since on type o the relation ≈C is just =βη, the model is o-complete.
(iv) By lemma 3.5.8.

3.5.16. Proposition. (i) Let i ≤ j. Then for pure closed terms M,N ∈Λø
o

MCj
|= M = N ⇒ MCi

|= M = N.

(ii) Th(MC5) ⊆ . . . ⊆ Th(MC1).

Proof. (i) MCi
6|= M = N ⇒ M 6≈Ci

N

⇒ M~t [~d] 6=βη N~t [~d], for some ~t [~d],

⇒ λ~d.M~t [~d] 6=βη λ~d.N~t [~d]

⇒ Ψ(λ~d.M~t [~d]) 6=βη Ψ(λ~d.N~t [~d]),
since ∇(Ci) ≤βη ∇(Cj) via some Ψ,

⇒ Ψ(λ~d.M~t [~d]) 6≈Cj
Ψ(λ~d.N~t [~d])

⇒ MCj
6|= Ψ(λ~d.M~t [~d]) = Ψ(λ~d.N~t [~d])

⇒ MCj
6|= M = N since MCi

is a model.
(ii) By (i).

It is known that the inclusions Th(MC1) ⊇ Th(MC2), Th(MC2) ⊇ Th(MC3) and Th(MC4) ⊇
Th(MC5) are proper, do exercise3.6.28. It is not known whether Th(MC3) = Th(MC4)
holds.

3.5.17. Lemma. Let A,B be types such that A ≤βη B. Suppose MD is B-complete for
pure terms. Then MD is A-complete for pure terms.
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Proof. Assume Φ : A ≤βη B. Then we have for M,N ∈Λø
o(A)

MD |= M = N ⇐ M =βη N

⇓ ⇑

MD |= ΦM = ΦN ⇒ ΦM =βη ΦN

by the definition of reducibility.

3.5.18. Corollary. MC5 is complete for pure terms. In other words, for M,N ∈Λø
o

MC5 |= M = N ⇐⇒ M =βη N.

Proof. By lemma 3.5.17 and the reducibility theorem 3.4.7.

So Th(MC5), the smallest theory, is actually just βη-convertibility, which is decidable.
At the other end something dual happens.

3.5.19. Definition. Mmin = MC1 is called the minimal model of λ→ since it equates
most terms.

3.5.20. Proposition. Let A∈TTo be of the form A = A1→ . . . An→o and let M,N
∈Λø

o(A) be pure closed terms. Then the following statements are equivalent.

1. M = N is inconsistent.

2. For all models M of λ→ one has M 6|= M = N .

3. Mmin 6|= M = N .

4. ∃P1 ∈Λx,y:o(A1) . . . Pn ∈Λx,y:o(An).M ~P = x & N ~P = y.

5. ∃F ∈Λx,y:o(A→o).FM = x & FN = y.

6. ∃G∈Λø(A→o2→o).FM = λxy.x & FN = λxy.y.

Proof. (1) ⇒ (2) By soundness. (2) ⇒ (3) Trivial. (3) ⇒ (4 Since Mmin consists of
Λx,y:o/ ≈C1 . (4) ⇒ (5) By taking F ≡ λm.m~P . (5) ⇒ (6) By taking G ≡ λmxy.Fm.
(6)⇒ (1) Trivial.

3.5.21. Corollary. Th(Mmin) is the unique maximally consistent extension of λo
→.

Proof. By taking in the proposition the negations one has M = N is consistent iff
Mmin |= M = N . Hence Th(Mmin) contains all consistent equations. Moreover this
theory is consistent. Therefore the statement follows.
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In Section 4.4 it will be proved that Th(MC1) is decidable. MC0 is the degenerate model
consisting of one element at each type, since

∀M,N ∈Λø
o[C0](o) M = x = N.

Therefore its theory is inconsistent and hence decidable. For the other theories, Th(MC2),
Th(MC3) and Th(MC4) it is not known whether they are decidable.

Now we turn attention again to arbitrary sets of constants D. It will turn out that
the results can be proved for arbitrary sets of constants D.

3.5.22. Definition. The set of types TTi is called resource conscious iff for someA1→A2→ . . .→Aa ∈TTi

one has A1→A1→A2→ . . .→Aa /∈ TTi.

Note that only TT2 and TT0 are resource conscious.

3.5.23. Lemma. Let D have class i with TTi not resource conscious and let C = Ci. Let
B = B1→ . . .→Bb→o and P,Q:Λø

o[D](B). Then
(i) ∀~t∈Λø

o[D]P~t =βη Q~t (: o) ⇒ ∀~t∈Λø
o[D ∪ C]P~t =βη Q~t.

(ii) P~c 6=βη Q~c ⇒ PU [~d] 6=βη QU [~d], for some U [~d]∈Λø
o[D].

Proof. (i) Suppose P~t 6=βη Q~t for some ~t∈Λ[D∪C], in order to show that P~s 6=βη Q~s

for some ~s∈Λø
o[D]. Write ~t [~c, ~d ], displaying explicitly the constants from C and D.

Then

P~t [~c, ~d ] 6=βη Q~t [~c, ~d ] : o,

⇒ P~t [~c, ~d ] 6=βη Q~t [~c, ~d ] : o,
using variables ~c corresponding to ~c (same number and types),

⇒ λ~c.P~t [~c, ~d ] 6=βη λ~c.Q~t [~c, ~d ] : C = ∇(C)∈TTi,

⇒ λ~d~c.P~t [~c, ~d ] 6=βη λ~d~c.Q~t [~d, ~d ] : C ′ ∈TTi,
since TTi is not resource conscious,

⇒ Φk(λ~d~c.P~t [~c, ~d ]) 6=βη Φk(λ~d~c.Q~t [~c, ~d ]), : D,
for some D represented in D with C ′ ≤h+ D via Φ1, . . . ,Φm,

⇒ (λ~d~c.P~t [~c, ~d ]) ~M 6=βη (λ~d~c.Q~t [~c, ~d ]) ~M : D,

⇒ (λ~d~c.P~t [~c, ~d ]) ~M~d 6=βη (λ~d~c.Q~t [~c, ~d ]) ~M~d : o,

⇒ P~s [~d ] 6=βη Q~s [~d ] : o.

(ii) By (i).

In exercise 3.6.25 it is shown that this lemma is false for D of class 0 and 2.

3.5.24. Proposition. Let D be of class i with TTi not resource conscious and canonical
set C = Ci. Let A be an arbitrary type.

(i) For all P [~d ], Q[~d ]∈Λø
o[D](A), one has

P [~d]≈ext

D Q[~d] ⇐⇒ λ~x.P [~x]≈C λ~x.Q[~x]
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(ii) In particular, for pure closed terms P,Q∈Λø
o(A) one has

P ≈ext

D Q ⇐⇒ P ≈C Q.

Proof. (i) Although the proof is given in contrapositive form, it nevertheless can be
made constructive.

(⇐) We will show P [~d ] 6≈ext

D Q[~d ] ⇒ λ~x.P [~x ] 6≈Cλ~x.Q[~x ]. Indeed

P [~d ] 6≈ext

D Q[~d ] ⇒ P [~d ]~T [~d,~e ] 6=βη Q[~d ]~T [~d,~e ], for some

~T [~d,~e ]∈Λø
o[D], each Ti[~d,~e ] of the form Ti

~d~e with

the Ti pure and closed and the ~d,~e all distinct,

⇒ P [~x ]~T [~x, ~y ] 6=βη Q[~x ]~T [~x, ~y ] (: o),

⇒ λ~x.P [~x ] 6≈Cλ~x.Q[~x ], applying theorem 3.5.11 to

P ≡ λz~x~y.z~x~T [~x, ~y ].

(⇒) Again we show the contrapositive.

λ~x.P [~x ] 6≈ext

C λ~x.Q[~x ] ⇒ P [~V [~c ]] ~W [~c ] 6=βη Q[~V [~c ]] ~W [~c ],

where ~V [~ ]c, ~W [~ ]c∈Λø
o[C],

⇒ P [~x ] ~W [~c ] 6=βη Q[~x ] ~W [~c ],

otherwise one could substitute for the ~x,

⇒ P [~d ] ~W [~c ] 6=βη Q[~d ] ~W [~c ],

with ~d∈D,
⇒ P [~d ] ~W [~U [d ]] 6=βη Q[~d ] ~W [~U [d ]],

by lemma 3.5.23(ii),

⇒ P [~d ] 6≈ext

D Q[~d ].

(ii) By (i).

3.5.25. Corollary. Let D be a class that is not resource conscious.

(i) The relation ≈ext

D is logical.
(ii) The relations ≈ext

D and ≈obs

D on Λø
o[D] coincide.

Proof. (i) We have to show for all F,G∈Λø
o[D](A→B) that F ≈ext

D G ⇐⇒

∀M,N ∈Λø
o[D](A)[M ≈ext

D N ⇒ FM ≈ext

D GN ]. (1)

(⇒) Assume F [~d ] ≈ext

D G[~d ] and M [~d ] ≈ext

D N [~d ], with F,G∈Λø
o[D](B→C) and

M,N ∈Λø
o[D](B). By the proposition one has λ~x.F [~x ] ≈C λ~x.G[~x ] and λ~x.M [~x ] ≈C

λ~x.N [~x ]. Consider the pure closed term

H ≡ λf :(B→C)λm:Bλ~x.f~x(m~x).
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Then H ≈C H, since ≈C is logical. It follows that

λ~x.F [~x ]M [~x ] =βη H(λ~x.F [~x ])(λ~x.M [~x ])

≈C H(λ~x.F [~x ])(λ~x.M [~x ])

=βη λ~x.G[~x ]N [~x ].

But then again by the proposition

F [~d ]M [~d ]≈ext

D G[~d ]N [~d ].

(⇐) Assume F [~d ] 6≈ext

D G[~d ]. Then by the proposition

λ~x.F [~x ] 6≈Cλ~x.G[~x ],

⇒ F [~T [~c ]]S[~c ] 6=βη G[~T [~c ]]S[~c ],

⇒ F [~d ]S[~c ] 6=βη G[~d ]S[~c ],

otherwise one could substitute the ~T [~c ] for the ~d,

⇒ F [~d ]S[~U [~d ]] 6=βη G[~d ]S[~U [~d ]],

by lemma 3.5.23(ii),

contradicting (1), since of course S[~U [~d ]]≈ext

D S[~U [~d ]].
(ii) That ≈ext

D is ≈obs

D on Λø
o[D] follows by lemma 3.5.5.

3.5.26. Lemma. Let D be of class 2. Then one of the following cases holds.

D = {F :2,x1 . . . ,xn:o}, n ≥ 0;

D = {f :1,x1 . . . ,xn:o}, n ≥ 1.

Proof. Do exercise 3.6.19.

3.5.27. Proposition. Let D be of class 2. Then the following hold.
(i) The relation ≈ext

D is logical.
(ii) The relations ≈ext

D and ≈obs

D on Λø
o[D] coincide.

(iii) ∀M,N ∈Λø
o [M ≈D N ⇐⇒ M≈C2N ].

Proof. (i) Assume that D = {F ,x1, . . . ,xn} (the other possibility according lemma
3.5.26 is more easy). By proposition 3.5.4 (i) it suffices to show that for d∈D one has
S(d,d). This is easy for the ones of type o. For F :2 we must show f ≈ext

D g ⇒ f =βη g
for f, g ∈Λø

o[D](1). Now elements of Λø
o[D](1) are of the form

λx1.F (λx2.F (. . . (λxm−1.F (λxm.c))..)),

where c ≡ xi or c ≡ xj . Therefore if f 6=βη g, then inspecting the various possibilities
(e.g. one has

f ≡ λx1.F (λx2.F (. . . (λxm−1.F (λxm.xn))..)) ≡ KA

g ≡ λx1.F (λx2.F (. . . (λxm−1.F (λxm.x1))..)),

do exercise 3.6.18) one has f(F f) 6=βη g(F f) or f(F g) 6=βη g(F g), hence f 6≈ext

D g.
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(ii) By (i) and lemma 3.5.5.

(iii) Let M,N ∈Λø
o. Then, using exercise 3.6.21 (iii),

M 6≈ext

D N ⇐⇒
⇐⇒ Mt1[~d ] . . . tn[~d ] 6=βη Nt1[~d ] . . . tn[~d ]

for some t1[~d ] . . . tn[~d ]∈Λø
o[D]

⇐⇒ λ~d.Mt1[~d ] . . . tn[~d ] 6=βη λ~d.Nt1[~d ] . . . tn[~d ],

⇒ λfx.(λ~d.Mt1[~d ] . . . tn[~d ])(Ofx)(O1fx) . . . (Onfx) 6=βη

λfx.(λ~d.Nt1[~d ] . . . tn[~d ])(Ofx)(O1fx) . . . (Onfx)
⇒ Mt1[OFx, O1Fx, . . .] . . . tn[OFx, O1Fx, . . .] 6=βη

Nt1[OFx, O1Fx, . . .] . . . tn[OFx, O1Fx, . . .]
⇒ M 6≈ext

C N.

The converse can be proved similarly, using exercise 3.6.21 (iv).

3.5.28. Proposition. Let D be of class 0. Then the following hold.

(i) ≈ext

D is a logical relation, hence ≈ext

D is ≈obs

D on Λø
o[D].

(ii) ∀M,N ∈Λø
o [M ≈D N ⇐⇒ M≈C0N ⇐⇒ I =βη I].

Proof. It is not hard to see that D is of class 0 iff Λø
o[D](o) is a singleton. Therefore

for these D the statements hold trivially.

Harvesting the results we obtain the following.

3.5.29. Theorem. [Statman [1980b]] Let D be a set of constants such that there are
enough closed terms. Then we have the following.

(i) ≈ext

D is logical.

(ii) ≈ext

D is ≈obs

D .

(iii) MD is a well defined extensional term-model.

(iv) MD is fully abstract and o-complete.
Moreover, if D is of class i, then

(v) MD ≡MCi
, i.e. ∀M,N ∈Λø

o[M ≈D N ⇐⇒ M ≈Ci
N ].

(vi) MD is ∇(Ci)-complete for pure terms.

Proof. (i), (ii) By corollary 3.5.25 and propositions 3.5.27 and 3.5.28.

(iii), (iv) As in theorem 3.5.13 and corollary 3.5.15.

(v) By proposition 3.5.27 (ii).

(vi) By (v) and corollary 3.5.15.

3.5.30. Remark. So there are at most five canonical term-models that are not elemantary
equivalent (plus the degenerate term-model that does not count).

Applications
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3.5.31. Lemma. Let A∈TT(λo
→) and suppose MD is A-complete for pure terms. Then

for M,N ∈Λø
o(B) one has

[MD |= M = N & M 6=βη N ] ⇒ B 6≤βη A.

Proof. Suppose B ≤βη A via F :B→A. Then

M 6=βη N ⇒ FM 6=βη FN

⇒ MD 6|= FM = FN, because of A-completeness,

⇒ MD 6|= M = N,

a contradiction.

In the previous section the types Aα were introduced. The next proposition is needed
to prove that they form a hierarchy.

3.5.32. Proposition. For α,β ≤ ω + 3 one has

α ≤ β ⇐ Aα ≤βη Aβ.

Proof. Notice that for α ≤ ω the cardinality of Λø
o(Aα) equals α: For example Λø

o(A2) =
{λxy:o.x, λxy:o.y} and Λø

o(Aω = {λf :1λx:o.fkx | k∈N}. Therefore for α, α′ ≤ ω one
has Aα ≤βη Aα′ ⇒ α = α′.

It remains to show that Aω+1 6≤βη Aω, Aω+2 6≤βη Aω+1, Aω+3 6≤βη Aω+2.

As to Aω+1 6≤βη Aω, consider

M ≡ λf, g:1λx:o.f(g(f(gx))),

N ≡ λf, g:1λx:o.f(g(g(fx)).

Then M,N ∈Λø
o(Aω+1), and M 6=βη N . Note thatMC2 is Aω-complete. It is not diffiult

to show that MC2 |= M = N , by analyzing the elements of Λø
o[C2](1). Therefore, by

lemma 3.5.31, the conclusion follows.

As to Aω+2 6≤βη Aω+1, this is proved in Dekkers [1988].

As to Aω+3 6≤βη Aω+2, consider

M ≡ λh:12λx:o.h(hx(hxx))(hxx),

N ≡ λh:12λx:o.h(hxx)(h(hxx)x).

Then M,N ∈Λø
o(Aω+3), and M 6=βη N . Note that MC4 is Aω+2-complete. It is not

diffiult to show thatMC4 |= M = N , by analyzing the elements of Λø
o[C4](12). Therefore,

by lemma 3.5.31, the conclusion follows.



3.6. EXERCISES 143

3.6. Exercises

3.6.1. The iterated exponential function 2n is

20 = 1,

2n+1 = 22n .

One has 2n = 2n(1), according to the definition before Exercise 2.5.16. Define
s(A) to be the number of occurrences of atoms in the type A, i.e.

s(o) = 1

s(A→ B) = s(A) + s(B).

Write #X for the cardinality of the set X. Show the following.

(i) 2n ≤ 2n+p.

(ii) 2
2p+1

n+2 ≤ 2n+p+3.

(iii) 2
2p
n ≤ 2n+p.

(iv) If X = {0, 1}, then ∀A∈TT.#(X(A)) ≤ 2s(A).

(v) For which types A do we have = in (iv)?

3.6.2. Show that if M is a type model, then for the corresponding polynomial type
model M∗ one has Th(M∗) = Th(M).

3.6.3. Show that

A1→ . . .→An→o ≤βη Aπ1→ . . .→Aπn→o,
for any prmutation π ∈Sn

3.6.4. Let A = (2→2→o)→2→o and
B = (o→12→o)→12→(o→1→o)→o2→o. Show that

A ≤βη B.

[Hint. Use the term λz:Aλu1:(o→12→o)λu2:12λu3:(o→2)λx1x2:o.
z[λy1, y2:2.u1x1(λw:o.y1(u2w))(λw:o.y2(u2w))][u3x2].]

3.6.5. Let A = (12→o)→o. Show that

A ≤βη 12→2→o.

[Hint. Use the term
λM :(A→o)λp:12λF :2.M(λf, g:1.F (λz:o.p(fz)(gz))).]

3.6.6. (i) Show that (
2
3 4

)
≤βη 1→1→

(
2
3 3

)
.
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(ii) Show that (
2
3 3

)
≤βη 1→1→

(
2
3

)
.

(iii) ∗ Show that (
2 2
3 2

)
≤βη 12→

(
2
3 2

)
.

[Hint. Use Φ = λMλp:12λH
′
1H2.M

[λf11, f12:12.H
′
1(λxy:o.p(f12xy,H2f11)]

[λf21:13λf22:12.H2f21f22].]

3.6.7. Show that 2→o ≤βη 1→1→o→o. [Hint. Use

Φ ≡ λM :2λf, g:1λz:o.M(λh:1.f(h(g(hz)))).

Typical elements of type 3 are Mi ≡ λF :2.F (λx1.F (λx2.xi)). Show that Φ acts
injectively (modulo βη) on these.]

3.6.8. Give example of F,G∈Λ[C4] such that Fh2 =βη Gh2, but F 6=βη G, where
h2 ≡ λz:o.Φ(λg:1.g(gz)).

3.6.9. (Joly [2001], Lemma 2, p. 981, based on an idea of Dana Scott) Show that any
type A is reducible to

12→2→o = (o→(o→o))→((o→o)→o)→o.

[Hint. We regard each closed term of type A as an untyped lambda term and then
we retype all the variables as type o replacing applictions XY by fXY (=: X •Y )
and abstractions λx.X by g(λx.X)(=: λ•x.X) where f : 12, g : 2. Scott thinks
of f and g as a retract pair satisfying g ◦ f = I (of course in our context they
are just variables which we abstract at the end). The exercise is to define terms
which ‘do the retyping’ and insert the f and g, and to prove that they work. For
A = A1→ . . .→As→0 define terms UA : A→0 and VA : 0→A as follows. If s = 0,
i.e. A = o, then

Uo := λx:o.x; Vo := λx:o.x.

If s>0, then

UA := λu.λ•x1 . . . λ
•xs.u(VA1x1) . . . (VAsxs)

VA := λvλy1 . . . ys.v • (UA1y1) • . . . • (UAsys).

Let Ai = Ai1→ . . . Airi
→0 and suppose that M : A is in long βη-nf

M = λu1 . . . us.uiY1 . . . Yri
.

Then
UM → λ•x1 . . . λ

•xs.M(V1x1) . . . (Vsxs)
→ λ•x1 . . . λ

•xs.Vixi(@Y1) . . . (@Yri
)

→→ λ•x1 . . . λ
•xs.xi • (U1@Y1) • . . . • (Us@Ys).



3.6. EXERCISES 145

where @Y = [. . . uj := Vjxj . . .]Y . Show that for all closed X,Y

UAX =βη UAY ⇒ X =βη Y,

by making an appropriate induction hypothesis for open terms. Conclude that
A ≤βη 12→2→o via Φ ≡ λbfg.UAb.]

3.6.10. In this exercise the combinatorics of the argument needed in the proof of 3.4.5
is analyzed. Let (λF :2.M) : 3. Define M+ to be the long βη nf of M [F : = H],
where

H = (λh:1.f(h(g(hz))))∈Λ{f,g:1,z:o}
→ (2).

Write cutg→z(P ) = P [g: = Kz].
(i) Show by induction on M that if g(P ) ⊆ M+ is maximal (i.e. g(P ) is not a

proper subterm of a g(P ′) ⊆ M+), then cutg→z(P ) is a proper subterm of
cutg→z(M

+).
(ii) Let M ≡ F (λx:o.N). Then we know

M+ =βη f(N+[x: = g(N+[x: = z])]).

Show that if g(P ) ⊆M+ is maximal and length(cutg→z(P ))+1 = length(cutg→z(M
+)),

then g(P ) is ≡ g(N+[x: = z]) being substituted for an occurrence of x in
N+.

(iii) Show that the occurrences of g(P ) in M+ that are maximal and satisfy
length(cutg→z(P ))+1 = length(cutg→z(M

+)) are exactly those that were
substituted for the occurrences of x in N+.

(iv) Show that (up to =βη) M can be reconstructed from M+.

3.6.11. Show directly that (without the reducibility theorem)

3→o→o ≤βη 12→o→o = ⊤.

3.6.12. Show directly the following.
(i) 13→12→o ≤βη ⊤.
(ii) For any type A of rank ≤ 2 one has A ≤βη ⊤.

3.6.13. Show that all elements g ∈M2(o→o) satisfy g2 = g4. Conclude that T 6֒→ M2.

3.6.14. Show thatMn →֒ Mω, for n∈ω.

3.6.15. A model M is called finite iff M(A) is finite for all types A. Find out which of
the five canonical termmodels is finite.

3.6.16. LetM =Mmin.
(i) Determine inM(1→o→o) which of the three Church’s numerals c0, c10 and

c100 are equal and which not.
(ii) Determine the elements in M(12→o→o).

3.6.17. Let M be a model and let |M0| ≤ κ. By Example 3.3.24 there exists a partial
surjective homomorphism h :Mκ→M.
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(i) Show that h−1(M) ⊆Mκ is closed under λ-definability. [Hint. Use Example
3.3.36.]

(ii) Show that as in Example 3.3.37 one has h−1(M)E = h−1(M).
(iii) Show that the Gandy Hull h−1(M)/E is isomorphic toM.
(iv) For the 5 canonical modelsM construct h−1(M) directly without reference

to M.
(v) (Plotkin) Do the same as (iii) for the free open term model.

3.6.18. Let D = {F :2,x1, . . . ,xn}.
(i) Give a characterisation of the elements of Λø

o[D](1).
(ii) For f, g ∈Λø

o[D](1) show that f 6=βη g ⇒ f 6≈D g by applying both f, g to
F f or F g.

3.6.19. Let D be of class 2. Show that either one of the following cases holds.

D = {F :2,x1 . . . ,xn:o}, n ≥ 0;

D = {f :1,x1 . . . ,xn:o}, n ≥ 1.

3.6.20. Prove the following.

12→o→o ≤βη ((12→o)→o)→o→o, via

λmλF :((12→o)→o)λx:o.F (λh:12.mhx) or via

λmλF :((12→o)→o)λx:o.m(λpq:o.F (λh:12.hpq))x.

12→o→o ≤βη (1→1→o)→o→o
via λmHx.m(λab.H(Ka)(Kb))x.

3.6.21. (i) Prove 2→on→o ≤βη 1→o→o. [Construct first three terms O1, O2, O3 such
that if M,N ∈Λø(2→on→o) and M 6=βη N , then one of the inequalities
M(Oifx) 6=βη N(Oifx) holds. Complete the construction by taking as
reducing term

Φ ≡ λmfx.P3(m(O1fx))(m(O2fx))(m(O3fx)),

where P3 is a polynomially definable coding of N
3→N.]

(ii) Prove 1→o→o ≤βη 2→on→o using Φ ≡ λmFx1 . . . xn.m(F I).
(iii) Let M,N ∈Λø(2→on→o). Show, using (i), that if M 6=βη N , then for some

O∈Λø one has

λfx.M(Ofx)(O1fx) . . . (Onfx) 6=βη λfx.N(Ofx)(O1fx) . . . (Onfx).

(iv) Let M,N ∈Λø(1→o→o). Show, using (ii), that if M 6=βη N , then for some
O∈Λø one has

λFx1 . . . xn.M(OFx1 . . . xn) 6=βη λFx1 . . . xn.N(OFx1 . . . xn).

3.6.22. (i) Using exercise 3.6.21 prove that for p > 0, q ≥ 0 one has

1→o→o∼∇(1p→o)→oq→o.
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(ii) Prove that for q > 0 one has 1→o→o∼∇1→oq→o.
3.6.23. Show that for all A,B ∈TT2 one has A ∼h+ B.

3.6.24. Show that for all A,B /∈ TT2 one has A ∼h B.

3.6.25. (i) Show that lemma 3.5.23 is false for D = {g1,do} and C2 = {f2, co}. [Hint.
Consider P ≡ λfgc.f(g(fc)) and Q ≡ λfgc.f(f(gc)).]

(ii) Show that that lemma is also false for D = {do} and C = {co}.
3.6.26. Show that if M ∈Λø(3→o→o), then M is of the form

λΦ:3λc o. Φ(λf1:1.wf1

Φ(λf1, f2:1.wf1,f2

. . .
Φ(λf1, . . . , fn:1.wf1,...,fn

c)..)),

where wf1,...,fn stands for a “word” over the alphabet Σ = {f1, . . . , fn} in the
sense that e.g. f1f2f1 is to be interpreted as f1 ◦ f2 ◦ f1. [Hint. See the proof of
lemma 3.5.9.]

3.6.27. Let A be an inhabited small type of rank > 3. Show that

3→o→o ≤m A.

[Hint. For small B of rank ≥ 2 one has B ≡ B1→ . . . Bb→o with Bi ≡ Bi1→o for
all i and rank(Bi01) = rank(B)− 2 for some io. Define for such B the term

XB ∈Λø[F 2](B),

where F 2 is a variable of type 2.

XB ≡ λx1 . . . xb.F
2xi0 , if rank(B) = 2;

≡ λx1 . . . xb.F
2(λy:0.xi0(λy1 . . . yk.y)), if rank(B) = 3 and

where Bi0 having

rank 1 is ok→o;
≡ λx1 . . . xb.xi0X

Bi01 , if rank(B) > 3.

(Here XBi01 is well-defined since Bi01 is also small.) As A is inhabited, take
λx1 . . . xb.N ∈Λø(A). Define Ψ : (3→o→o)→A by

Ψ(M) = λx1 . . . xb.M(λF 2.xiX
Ai1)N,

where i is such that Ai1 has rank ≥ 2. Show that Ψ works.]

3.6.28. Consider

1. λf :1λx:o.fx = λf :1λx:o.f(fx);

2. λf, g:1λx:o.f(g(g(fx))) = λf, g:1λx:o.f(g(f(gx)));
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3. λh:12λx:o.h(hx(hxx))(hxx) = λh:12λx:o.h(hxx)(h(hxx)x).

(i) Show that 1 holds inMC1 , but not inMC2 .

(ii) Show that 2 holds inMC2 , but not inMC3 .

(iii) Show that 3 holds inMC3 andMC4 , but not inMC5 .

3.6.29. Construct as much as possible (6 at most) pure closed terms to show that the five
canonical theories are maximally different. I.e. we want terms M1, . . . ,M6 such
that in Th(MC5) theM1, . . . ,M6 are mutually different; M1 = M2 in Th(MC4), but
different from M3, . . . ,M6; M2 = M3 in Th(MC3), but different from M4, . . . ,M6;
M3 = M4 in Th(MC2), but different from M5,M6; M4 = M5 in Th(MC1), but
different from M6. [Hint. Use the previous exercise and a polynomially defined
pairing operator. A complicating factor is that it is an open question whether the
theories ofMC3 andMC4 are different.]

3.6.30. (Finite generation, Joly [2002]) Let A be a type. Then A is said to be finitely
generated if there exist types A1, . . . , At and termsM1 : A1, . . . , At : Mt such that
for any M : A, M is βη convertible to an applicative combination of M1, . . . ,Mt.
Example. 1→o→o is finitely generated by c0 ≡ (λfx.x) : 1→1 and S = λnfx.f(nfx) :
(1→o→o)→(1→o→o).
A slantwise enumerates a type B if there exists a type substitution @ and F :
@A→B such that for each N : B there exists M : A such that F@M =βη N (F
is surjective).
A type A is said to be poor if every beta-eta normal form of type A can be written
with the same finite number of bound variables. Otherwise A is said to be rich.
Example. Let A = (1→o)→o→o is poor. A typical βη-nf of type A has the
shape λFλx(F (λx(. . . (F (λy(F (λy . . . x . . .)))..))). One allows the term to violate
the variable convention (to have different bound variables). The monster type
3→1 is rich.
The goal of this exercise is to prove that the following are equivalent.

1. A slantwise enumerates the monster type M

2. The lambda definability problem for A is undecidable.

3. A is not finitely generated

4. A is rich.

However, we will not ask the reader to prove (4) ⇒ (1) since this involves more
knowledge of and practice with slantwise enumerations than one can get from
this book. For that proof we refer the reader to Joly’s paper. We have already
shown that the lambda definability problem for the monster M is undecidable.
In addition, we make the following steps.

(i) Show A is rich iff A has rank >3 or A is large of rank 3 (for A inhabited;
especially for ⇒). Use this to show

¬(4) ⇒ ¬(3) and ¬(3) ⇒ ¬(2).



3.6. EXERCISES 149

(ii) (Alternative to show ¬(4) ⇒ ¬(3).) Suppose that every closed term of
type A beta eta converts to a special one built up from a fixed finite set
of variables.Show that it suffices to bound the length of the lambda prefix
of any subterm of such a special term in order to conclude finite generation.
Suppose that we consider only terms X built up only from the variables
v1:A1, . . . , vm:Am both free and bound .We shall transform X using a fixed
set of new variables. First we assume the set of Ai is closed under subtype.
(a) Show that we can assume that X is fully expanded. For example, if X
has the form

λx1 . . . xt.(λx.X0)X1 . . . Xs

then (λx.X0)X1 . . . Xs has one of the Ai as a type (just normalize and
consider the type of the head variable). Thus we can eta expand

λx1 . . . xt.(λx.X0)X1 . . . Xs

and repeat recursively. We need only double the set of variable to do this.
We do this keeping the same notation. (b) Thus given

X = λx1 . . . xt.(λx.X0)X1 . . . Xs

we have X0 = λy1 . . . yr.Y , where Y : o. Now if r>m, each multiple
occurrence of vi in the prefix λy1 . . . yr is dummy and those that occur in
the initial segment λy1 . . . ys can be removed with the corresponding Xj .
The remaining variables will be labelled z1, . . . , zk. The remaining Xj will
be labelled Z1, . . . , Zl. Note that r − s+ t < m+ 1. Thus

X = λx1 . . . xt.(λz1 . . . zkY )Z1 . . . Zl,

where k < 2m + 1. We can now repeat this analysis recursively on Y , and
Z1, . . . , Zl observing that the types of these terms must be among the Ai.
We have bounded the length of a prefix.

(iii) As to (1) ⇒ (2). We have already shown that the lambda definability
problem for the monster M is undecidable. Suppose (1) and ¬(2) towards a
contradiction. Fix a type B and let B(n) be the cardinality of B in P (n).
Show that for any closed terms M,N : C

P (B(n)) |= M = N ⇒ P (n) |= [o := B]M = [o := B]N.

Conclude from this that lambda definability for M is decidable, which is not
the case.
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Chapter 4

Definability, Unification and

Matching

4.1. Undecidability of lambda definability

The finite standard models

Recall that the full type structure over a set X, notation MX , is defined in Definition
2.4.18 as follows.

X(o) = X,

X(A→B) = X(B)X(A);

MX = {X(A)}A∈TT.

Remark that if X is finite then all the X(A) are finite. In that case we can represent
each elemement of MX by a finite piece of data and hence (through Gödel numbering)
by a natural number. For instance for X = {0, 1} we can represent the four elements of
X(o→o) as follows.

0 0
1 0

0 1
1 1

0 0
1 1

0 1
1 0

Any element of the model can be expressed in a similar way, for instance the following
table represents an element of X((o→ o)→ o).

0 0
1 0

0

0 1
1 1

0

0 0
1 1

0

0 1
1 0

1

151
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We know that I ≡ λx.x is the only closed βη-nf of type o→ o. It is easy to prove from
this that identity is the only function of X(o→ o) that is denoted by a closed term.

4.1.1. Definition. Let M be a type structure and let d∈M(A). Then d is called
λ-definable iff ∃M ∈Λø(A).d = [[M ]]M.

The main result in this section is the undecidability of λ-definability in MX , for X of
cardinality >6. This means that there is no algorithm deciding whether a table describes
a λ-definable element in this model. This result is due to Loader [2001b], and was already
proved by him in 1993.

The proof proceeds by reducing the two-letter word rewriting problem, a well-known
undecidable problem, to the λ-definability problem. It follows that if the λ-definability
problem were decidable, then this also would be the case for the two-letter word rewriting
problem, quod non.

4.1.2. Definition (Word rewriting problem). Let Σ = {A,B} be a two letter alphabet.

(i) A word is a finite sequence of letters w = w1 . . . wn with wi ∈Σ. The set of words
over Σ is denoted by Σ∗.

(ii) If w = w1 . . . wn, then lth(w) = n is called the length of w. If lthw = 0, then w
is called the empty word and is denoted by ǫ.

(iii) A rewrite rule is a pair of non empty words v, w denoted as v →֒ w.
(iv) Given a word u and a finite set R = {R1, . . . , Rr} of rewrite rules Ri = vi →֒ wi.

Then a derivation of a word s is a finite sequence of words starting by u finishing by s
and such that each word is obtained from the previous by replacing a subword vi by wi

for some rule vi →֒ wi ∈R.
(v) A word s is said to be derivable from u if it has a derivation. In this case we write

u ⊢R s.

4.1.3. Example. Consider the word AB and the rule AB →֒ AABB. Then AB ⊢
AAABBB, but AB 6⊢ AAB.

We will need the following well known result, see e.g. Post [1947].

4.1.4. Theorem. There is a word u0 ∈Σ∗ and a finite set of rewrite rules v1 →֒ w1, . . . , vr →֒
wr such that {u∈Σ∗ | u0 ⊢ u} is undecidable.

4.1.5. Definition. Given the alphabet Σ = {A,B}, define the set

X = XΣ = {∗, A,B, L,R, Y,N}.

The objects L and R are suggested to be read left and right and Y and N yes and no.
We will consider the standard modelM =MX built over the set X.

4.1.6. Definition (Word encoding). Remember 1n = on→o and MN∼n ≡ MN . . .N ,
with n times the same term N . Let w = (w1 . . . wn)∈Σ∗ be a non empty word of length
n.
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(i) The word w is encoded as the object w∈M(1n) defined as follows.

w ∗∼(i−1) wi∗∼(n−i) = Y ;

w ∗∼(i−1) LR∗∼(n−i−1) = Y ;

wx1 . . . xn = N, otherwise.

(ii) The word w is weakly encoded by an object h∈M(1n) iff

h ∗∼(i−1) wi∗∼(n−i) = Y ;

h ∗∼(i−1) LR∗∼(n−i−1) = Y.

4.1.7. Definition. (Encoding of a rule) In order to define the encoding of a rule we use
the notation (a1 . . . ak 7→ Y ) to denote the element h∈M(1k) defined by

h(a1 . . . ak) = Y ;

h(x1 . . . xk) = N, otherwise.

Now a rule v →֒ w where lthv = m and lthw = n is encoded as the object v →֒ w∈M(1m→1n)
defined as follows.

v →֒ w(v) = w;

v →֒ w(∗∼m 7→ Y ) = (∗∼n 7→ Y );

v →֒ w(R∗∼(m−1) 7→ Y ) = (R∗∼(n−1) 7→ Y );

v →֒ w(∗∼(m−1)L 7→ Y ) = (∗∼(n−1)L 7→ Y );

v →֒ w(h) = λλx1 . . . xn.N, otherwise.

As usual we identify a term M ∈Λ(A) with its denotation [[M ]]∈X(A).

4.1.8. Lemma. Let s, u be two words over Σ and let v →֒ w be a rule. Then svu ⊢ swu
and

swu~s ~w ~u = v →֒ w (λ~v.svu~s~v ~u )~w, (1)

where the ~s, ~u,~v, ~w are sequences of elements in X with lengths equal the lengths of the
words s, u, v, w, say p, q,m, n, respectively.

Proof. The RHS of (1) is obviously either Y or N . Now RHS= Y

iff one of the following holds

• λ~v.svu~s~v ~u = v and ~w = ∗∼(i−1)wi∗∼(n−i)

• λ~v.svu~s~v ~u = v and ~w = ∗∼(i−1)LR∗∼(n−i−1)

• λ~v.svu~s~v ~u = (∗∼m 7→ Y ) and ~w = ∗∼n

• λ~v.svu~s~v ~u = (R∗∼(m−1) 7→ Y ) and ~w = R∗∼(n−1)
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• λ~v.svu~s~v ~u = (∗∼(m−1)L 7→ Y ) and ~w = ∗∼(n−1)L

iff one of the following holds

• ~s = ∗∼p, ~u = ∗∼q and ~w = ∗∼(i−1)wi∗∼(n−i)

• ~s = ∗∼p, ~u = ∗∼q and ~w = ∗∼(i−1)LR∗∼(n−i−1)

• ~s = ∗∼(i−1)si∗∼(p−i), ~u = ∗∼q and ~w = ∗∼n

• ~s = ∗∼(i−1)LR∗∼(p−i−1), ~u = ∗∼q and ~w = ∗∼n

• ~s = ∗∼p, ~u = ∗∼(i−1)ui∗∼(q−i) and ~w = ∗∼n

• ~s = ∗∼p, ~u = ∗∼(i−1)LR∗∼(q−i−1) and ~w = ∗∼n

• ~s = ∗∼p, ~u = R∗∼(q−1) and and ~w = ∗∼(n−1)L

• ~s = ∗∼(p−1)L, ~u = ∗∼q and ~w = R∗∼(n−1)

iff one of the following holds

• ~s ~w ~u = ∗∼(i−1)ai∗∼(p+n+q−i) and ai is the i-th letter of swu

• ~s ~w ~u = ∗ . . . ∗ LR ∗ . . . ∗

iff swu~s ~w ~u = Y .

4.1.9. Proposition. Let R = {R1, . . . , Rr} be a set of rules. Then

s ⊢R u ⇒ ∃F ∈Λø u = Fs R1 . . . Rr.

In other words, (the code of) a word s that can be produced from u and some rules is
definable from the (codes) of u and the rules.

Proof. By induction on the length of the derivation of u, using the previous lemma.

We now want to prove the converse of this result. We shall prove a stronger result,
namely that if a word has a definable weak encoding then it is derivable.

4.1.10. Convention. For the rest of this subsection we consider a fixed word W and
set of rewrite rules R = {R1, . . . , Rk} with Ri = Vi →֒Wi. Moreover we let w, r1, . . . , rk
be variables of the thypes of W,R1, . . . , Rk respectively. Finally ρ is a valuation such
that ρ(w) = W , ρ(ri) = Ri and ρ(xo) = ∗ for all variables of type o.

The first lemma classifies the long normal terms whose free variables are among W ,
F1, . . . , Fr and that denote a word weak encoding.
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4.1.11. Lemma. Let M be a long normal form with FV(M) ⊆ {w, r1, . . . , rk}. Suppose
[[M ]]ρ = V for some word V ∈Σ∗. Then M has one of the two following forms

M ≡ λ~x.w~x1,

M ≡ λ~x.ri(λ~y.N)~x1,

where ~x, ~x1, ~y are type o variables and the ~x1 are distinct elements of the ~x.

Proof. Since [[M ]]ρ is a weak encoding for V , the term M is of type 1n and hence has
a long normal form M = λ~x.P , with P of type o. The head variable of P is either w,
some ri or a bound variable xi. It cannot be a bound variable, because then the term
M would have the form

M = λ~x.xi,

which does not denote a word weak encoding.
If the head variable of P is w then

M = λ~x.w ~P .

The terms ~P must all be among the ~x. This is so because otherwise some Pj would have
one of the w,~r as head variable; for all valuations this term Pj would denote Y or N ,

the term w~P would then denote N and consequently M would not denote a weak word
encoding. Moreover these variables must be distinct, as otherwise M would not denote
a word weak encoding.

If the head variable of M is some ri then

M = λ~x.ri(λ~y.N)~P .

By the same reasoning as before it follows that the terms ~P must all be among ~x and
different.

In the next four lemmas, we focus on the terms of the form

M = λ~x.ri(λ~y.N)~x1.

We prove that if such a term denotes a weak word encoding, then

• the variables ~x1 do not occur in λ~y.N ,

• [[λ~y.N ]]ρ = vi.

• and none of the variables ~x1 is the variable xk.

4.1.12. Lemma. Let t be a long normal term of type o that is not a variable and whose
free variables are among W , F1, . . . , Fr and x1, . . . , xk of type o. If x1 is free in t and
there is a valuation ϕ such that ϕ(x1) = A or ϕ(x1) = B and |t|ϕ = Y then ϕ takes the
value ∗ for all other variables of type o free in t.
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Proof. By induction over the structure of t.

• If the head variable of t is W then

t = (Wt1 . . . tn)

The terms t1, . . . , tn must all be variables otherwise, some tj would have W,F1, . . .
or Fr as head variable, |tj |ϕ would be Y or N and the term |t|ϕ would then denote
N . The variable x1 is among these variables and if some other variable free in this
term were not associated to a ∗, it would not denote Y .

• If the head variable of t is some Fi then

t = (Fi(λ~w.t
′)~t

As above, the terms ~t must all be variables.

If x1 is equal to some tj then |λ~w.t′|ϕ is the word vi, t
′ is not a variable and

all the other variables in ~t denote ∗. Let l be the first letter of vi. We have
|λ~w.t′|ϕl ∗ . . . ∗ = Y and hence

|t′|ϕ+〈w1,l〉,〈w2,∗〉,...,〈wm,∗〉 = Y

hence by induction hypothesis ϕ+ 〈w1, l〉, 〈w2, ∗〉, . . . , 〈wm, ∗〉 takes the value ∗ on
all free variables of t′ but w1. Hence ϕ takes the value ∗ on all free variables of
λ~w.t′. Therefore ϕ takes the value ∗ on all free variables of t except x1.

If x1 is not among ~t then it is free in λ~w.t′. Since |(Fi(λ~w.t
′)~t)|ϕ = Y it follows that

|λ~w.t′|ϕ is not the constant function equal to N hence there are objects a1, . . . , am

such that |λ~w.t′|ϕ(a1) . . . (am) = Y . Therefore

|t′|ϕ+〈w1,a1〉,...,〈wm,am〉 = Y

and by induction hypothesis ϕ+ 〈w1, a1〉, . . . , 〈wm, am〉 takes the value ∗ on all the
variables free in t′ but x1. So ϕ takes the value ∗ on all the variables free in λ~wt′

but x1. Moreover a1 = . . . = am = ∗, and thus |λ~w.t′|ϕ ∗ . . . ∗ = Y . Therefore
the function |λ~w.t′|ϕ can only be the function mapping ∗ . . . ∗ to Y and the other
values to N . Hence |Fi(λ~w.t

′)|ϕ is the function mapping ∗ . . . ∗ to Y and the other
values to N and ϕ takes the value ∗ on ~t. Therefore ϕ takes the value ∗ on all free
variables of t except x1.

4.1.13. Lemma. If the term t = λ~x(Fi(λ~wt
′)~y) denotes a word weak encoding, then the

variables ~y do not occur free in λ~w.t′ and |λ~w.t′|ϕ0 is the encoding of the word vi.

Proof. Consider a variable yj . This variable is some xj′ . Let l be the j′th letter of the
word w′, we have

|t| ∗∼(j′−1) l∗∼(k−j′) = Y
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Let ϕ = ϕ0 + 〈xj′ , l〉. We have

fi(|λ~w.t′|ϕ) ∗∼(j−1) l∗∼(m−j) = Y

Hence |λ~w.t′|ϕ is the encoding of the word vi. Let l′ be the first letter of this word,
we have

|λ~w.t′|ϕ(l′) ∗ . . . ∗ = Y

and hence
|t′|ϕ+〈w1,l′〉,〈w2,∗〉,...,〈wm,∗〉 = Y

By lemma 4.1.12, ϕ+ 〈w1, l
′〉, 〈w2, ∗〉, . . . , 〈wm, ∗〉 takes the value ∗ on all variables free

in t′ except w1. Hence yj is not free in t′ nor in λ~w.t′.
At last |λ~w.t′|ϕ is the encoding of vi and yj does not occur in it. Thus |λ~w.t′|ϕ0 is

the encoding of vi.

4.1.14. Lemma. Let t be a term of type o that is not a variable and whose free variables
are among W , F1, . . . , Fr and x1, . . . , xk of type o. Then there is a variable z such that
for all valuations ϕ(z) = L implies |t|ϕ = N or for all valuations ϕ(z) = A or ϕ(z) = B
implies |t|ϕ = N .

Proof. By induction over the structure of t.

• If the head variable of t is W then t = (W~t) the terms ~t = t1, . . . ,tn must be
variables and we take z = tn. If ϕ(z) = L then |t|ϕ = N .

• If the head variable of t is Fi then t = (Fi(λ~w.t
′)~t). By induction hypothesis, there

is a variable z′ free in t′ such that for all valuations ϕ(z′) = L implies |t|ϕ = N or
for all valuations ϕ(z′) = A or ϕ(z′) = B implies |t|ϕ = N .

If the variable z′ is not among w1, . . . , wn we take z = z′. Either for all valuations
such that ϕ(z) = L, |λ~w.t′|ϕ is the constant function equal to N and thus |t|ϕ = N ,
or for all valuations such that ϕ(z) = A or ϕ(z) = B, |λ~w.t′|ϕ is the constant
function equal to N and thus |t|ϕ = N .

If the variable z′ = wj (j ≤ m − 1) then for all valuations |λ~w.t′|ϕ is a function
taking the value N when applied to any sequence of arguments whose jth element
is L or when applied to any sequence of arguments whose jth element is A or B.
For all valuations, |λ~w.t′|ϕ is not the encoding of the word vi and hence |Fi(λ~w.t

′)|ϕ
is either the function mapping ∗ . . . ∗ to Y and other arguments to N , the function
mapping R∗ . . . ∗ to Y and other arguments to N , the function mapping ∗ . . .∗L to
Y and other arguments to N or the function mapping all arguments to N . We take
z = tn and for all valuations such that ϕ(z) = A or ϕ(z) = B we have |t|ϕ = N .

At last if z′ = wm then for all valuations |λ~w.t′|ϕ is a function taking the value
N when applied to any sequence of arguments whose mth element is L or for all
valuations |λ~w.t′|ϕ is a function taking the value N when applied to any sequence
of arguments whose mth element is A or B. In the first case, for all valuations,
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|λ~w.t′|ϕ is a not the function mapping ∗ . . . ∗ L to Y and other arguments to N .
Hence |Fi(λ~w.t

′)|ϕ is either wi or the function mapping ∗ . . . ∗ to Y and other
arguments to N the function mapping R ∗ . . . ∗ to Y and other arguments to N or
the function mapping all arguments to N . We take z = tn and for all valuations
such that ϕ(z) = A or ϕ(z) = B we have |t|ϕ = N .

In the second case, for all valuations, |λ~w.t′|ϕ is a not the encoding of the word vi.
Hence |Fi(λ~w.t

′)|ϕ is either the function mapping ∗ . . . ∗ to Y and other arguments
to N the function mapping R ∗ . . . ∗ to Y and other arguments to N , the function
mapping ∗ . . . ∗ L to Y and other arguments to N or the function mapping all
arguments to N . We take z = tn and for all valuations such that ϕ(z) = L we
have |t|ϕ = N .

4.1.15. Lemma. If the term t = λ~x.(Fi(λw1 . . . wmt
′)~y) denotes a word weak encoding,

then none of the variables ~y is the variable xk.

Proof. By the lemma 4.1.14, we know that there is a variable z such that either for all
valuations such that ϕ(z) = L we have

|(Fi(λ~w.t
′)~y)|ϕ = N

or for all valuations such that ϕ(z) = A or ϕ(z) = B we have

|(Fi(λ~w.t
′)~y)|ϕ = N.

Since t denotes a word weak encoding, the only solution is that z = xk and for all
valuations such that ϕ(xk) = L we have

|(Fi(λ~w.t
′)~y)|ϕ = N.

Then, if yj were equal to xk and yj+1 to some xj′ the object

|(Fi(λ~w.t
′)~y)|ϕ0+〈xk,L〉,〈xj′ ,R〉

wrould be equal to fi(|λ~w.t′|ϕ0) ∗ . . . ∗ LR ∗ . . . ∗ and, as |λ~w.t′|ϕ0 is the encoding of the
word vi, also to Y , a contradiction.

We are now ready to conclude the proof.

4.1.16. Proposition. If there is a long normal term t whose free variables are among
W , F1, . . . , Fr that denotes a word weak encoding w′, then w′ is derivable.

Proof. Case t = λ~x.(W~y). Then, as t denotes a word weak encoding, it depends on all
its arguments and thus all the variables x1, . . . , xk are among ~y. Since ~y are distinct, ~y is
a permutation of x1, . . . , xk. As t denotes a word weak encoding, |t|∗ . . .∗LR∗ . . . ∗ = Y .
Hence this permuation is the identity and

t = λ~x.(W~x).
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The word w′ is the word w and hence it is derivable.

Case t = λ~x.(Fi(λ~w.t
′)~y). We know that |λ~w.t′|ϕ0 is the encoding of the word vi and

thus |(Fi(λ~w.t
′))|ϕ0 is the encoding of the word wi.

Since t denotes a word weak encoding |t| ∗ . . . ∗ LR ∗ . . . ∗ = Y .

If some yj (j ≤ n − 1) is the variable xj′ then, by lemma 4.1.15, j′ 6= k and thus
|t| ∗∼(j′−1) LR∗∼(k−j′−1) = Y and yi+1 = xj′+1. Hence the variables ~y are consecutive:
~y = xp+1, . . . , xp+n. Call ~z = z1, . . . , zq the variables xp+n+1, . . . , xk. We have

t = λ~x~y~z.(Fi(λ~w.t
′)~y)

We write w′ = u1wu2 (where u1 has length p, w length n and u2 length q).

The variables ~y are not free in λ~w.t′, hence the term λ~x~w~z.t′ is closed. We verify
that it denotes a weak encoding of the word u1viu2.

• First clause.

– If l be the jth letter of u1. We have

|λ~x~y~z.(Fi(λ~w.t
′)~y)| ∗∼(j−1) l∗∼(p−j+n+q) = Y

Let ϕ = ϕ0 + 〈xj , l〉. The function |Fi(λ~w.t
′)|ϕ maps ∗ . . . ∗ to Y . Hence, the

function |λ~w.t′|ϕ maps ∗ . . . ∗ to Y and other arguments to N . Hence

|λ~x~w~z.t′| ∗∼(j−1) l∗∼(p−j+m+q) = Y

– We know that |λ~w.t′|ϕ0 is the encoding of the word vi. Hence if l is the jth

letter of the word vi then

|λ~x~w~z.t′| ∗∼(p+j−1) l∗∼(n−j+q) = Y

– In a way similar to the first case, we prove that if l is the jth letter of u2. We
have

|λ~x~w~z.t′| ∗∼(p+m+j−1) l∗∼(q−j) = Y

• Second clause.

– If j ≤ p− 1, we have

|λ~x~y~z.(Fi(λ~w.t
′)~y)| ∗∼(j−1) LR∗∼(p−j−1+m+q) = Y

Let ϕ be ϕ0 but xj to L and xj+1 to R. The function |Fi(λ~w.t
′)|ϕ maps ∗ . . . ∗

to Y . Hence, the function |λ~w.t′|ϕ maps ∗ . . . ∗ to Y and other arguments to
N and

|λ~x~w~z.t′| ∗∼(j−1) LR∗∼(p−j−1+m+q) = Y
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– We have

|λ~x~y~z.(Fi(λ~w.t
′)~y)| ∗∼(p−1) LR∗∼(n−1+q) = Y

Let ϕ be ϕ0 but xp to L. The function |Fi(λ~w.t
′)|ϕ maps R ∗ . . . ∗ to Y .

Hence, the function |λ~w.t′|ϕ maps R ∗ . . . ∗ to Y and other arguments to N
and

|λ~x~w~z.t′| ∗∼(p−1) LR∗∼(m−1+q) = Y

– We know that |λ~w.t′|ϕ0 is the encoding of the word vi. Hence if j ≤ m − 1
then

|λ~x~w~z.t′| ∗∼(p+j−1) LR∗∼(m−j−1+q) = Y

– In a way similar to the second, we prove that

|λ~x~w~z.t′| ∗∼(p+m−1) LR∗∼(q−1) = Y

– In a way similar to the first, we prove that if j ≤ q − 1, we have

|λ~x~w~z.t′| ∗∼(p+m+j−1) LR∗∼(q−j−1) = Y

Hence the term λ~x~w~z.t′ denotes a weak encoding of the word u1viu2. By induction
hypothesis, the word u1viu2 is derivable and hence u1wiu2 is derivable.

At last we prove that w = wi, i.e. that w′ = u1wiu2. We know that |Fi(λ~w.t
′)|ϕ0

is the encoding of the word wi. Hence

|λ~x~y~z.(Fi(λ~w.t
′)~y)| ∗∼(p+j−1) l∗∼(n−j+q) = Y

if and only if l is the jth letter of the word wi.

Since |λ~x~y~z.(Fi(λ~w.t
′)~y)| is a weak encoding of the word u1wu2, if l is the jth letter

of the word w, we have

|λ~x~y~z.(Fi(λ~w.t
′)~y)| ∗∼(p+j−1) l∗∼(n−j+q) = Y

and l is the jth letter of the word wi. Hence w = wi and w′ = u1wiu2 is derivable.

From proposition 4.1.9 and 4.1.16, we conclude.

4.1.17. Proposition. The word w′ is derivable if and only if there is a term whose free
variables are among W , F1, . . . , Fr that denotes the encoding of w′.

4.1.18. Corollary. Let w and w′ be two words and v1 →֒ w1, . . . , vr →֒ wr be rewrite
rules. Let h be the encoding of w, h′ be the encoding of w′, f1 be the encoding of v1 →֒ w1,
. . . , fn be the encoding of vr →֒ wr.

The word w′ is derivable from w with the rules v1 →֒ w1, . . . , vr →֒ wr if and only
if there is a definable function that maps h, f1, . . . , fn to h′.



4.1. UNDECIDABILITY OF LAMBDA DEFINABILITY 161

4.1.19. Theorem. (Loader) λ-definability is undeciable, i.e. there is no algorithm deciding
whether a table describes a λ-definable element of the model.

Proof. If there were a algorithm to decide if a function is definable or not, then a
generate and test algorithm would permit to decide if there is a definable function that
maps h, f1, . . . , fn to h′ and hence if w′ is derivable from w with the rules v1 →֒ w1, . . . ,
vr →֒ wr contradicting the undecidablity of the word rewriting problem.

Joly has extended Loader’s result in two directions as follows. LetMn =M{0,...,n−1}.
Define for n∈N, A∈TT, d∈Mn(A)

D(n,A, d) ⇐⇒ d is λ-definable inMn.

Since for a fixed n0 and A0 the set Mn0(A0) is finite, it follows that D(n0, A0, d) as
predicate in d is decidable. One has the folowing.

4.1.20. Proposition. Undecidability of λ-definability is monotonic in the following sense.

λλAd.D(n0, A, d) undecidable & n0 ≤ n1 ⇒ λλAd.D(n1, A, d) undecidable.

Proof. Use Exercise 3.6.17(i).

Loader’s proof above shows in fact that λλAd.D(7, A, d) is undecidable. It was
sharpened in Loader [2001a] showing that λλAd.D(3, A, d) is undecidable.

4.1.21. Theorem (Joly [2005]). λλAd.D(2, A, d) is undecidable.

4.1.22. Theorem (Joly [2005]). λλnd.P (n, 3→o→o, d) is undecidable.

Loosely speaking one can say that λ-definability at the monster type M = 3→1 is
undecidable. Moreover, Joly also has characterised those types A that are undecidable
in this sense.

4.1.23. Definition. A type A is called finitely generated iff there are closed terms
M1, . . . ,Mn, not necessarily of type A such that every closed term of type A is an
applicative product of the M1, . . . ,Mn.

4.1.24. Theorem (Joly [2002]). Let A∈TT. Then λλnd.D(n,A, d) is decidable iff the
closed terms of type A can be finitely generated.

For a sketch of the proof see Exercise 3.6.30.

4.1.25. Corollary. The monster type M = 3→o→o is not finitely generated.

Proof. By Theorems 4.1.24 and 4.1.22.
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4.2. Undecidability of Unification

4.2.1. Definition. (i) Let M,N ∈Λø(A→B). A pure unification problem is of the form

∃X A.MX = NX,

where one searches for anX ∈Λø(A) (and the equality is =βη). A is called the search-type
and B the output-type of the problem.

(ii) Let M ∈Λø(A→B), N ∈Λø(B). A pure matching problem is of the form

∃X A.MX = N,

where one searches for an X ∈Λø(A). Again A,B are the search- and output types,
respectively.

(iii) Often we write for a unification or matching problem (when the types are known
from the context or are not relevant) simply

MX = NX

or
MX = N.

and speak about the unification (matching) problem with unknown X.

Of course matching problems are a particular case of unification problems: solving
the matching problem MX = N amounts to solving the unification problem MX =
(λx.N)X.

4.2.2. Definition. The rank (order) of a unification or matching problem is rk(A)
(ord(A) respectively), where A is the search-type. Remember that rk(A) = ord(A) + 1.

The rank of the output-type is less relevant. Basically one may assume that it is ⊤ =
12→o→o. Indeed, if Φ : B ≤ ⊤ then

MX = NX : B ⇐⇒ (Φ ◦M)X = (Φ ◦N)X : ⊤.

One has rk(⊤) = 2. The unification and matching problems with an output type of rank
<2 are decidable, see Exercise 4.5.7.

The main results of this section are that unification in general is undecidable from a
low level onward (Goldfarb) and matching up to order 4 is decidable (Padovani). It is
an open problem wether matching in general is decidable. As a spin-off of the study of
matching problems it will be shown that the maximal theory is decidable.

4.2.3. Example. The following are two examples of pure unification problems.

(i) ∃X (1→o).λf 1.f(Xf) = X.
(ii) ∃X (1→o→o).λfa.X(Xf)a = λfa.Xf(Xfa).
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This is not in the format of the previous Definition, but we mean of course

(λx (1→o)λf 1.f(xf))X = (λx (1→o)λf 1.xf)X;

(λx : (1→o→o)λf 1λa o.x(xf)a)X = (λx : (1→o→o)λf 1λa o.xf(xfa))X.

The most understandable form is as follows (provided we remember the types)

(i) λf.f(Xf) = X;
(ii) X(Xf)a = Xf(Xfa).

The first problem has no solution, becuase there is no fixed-point combinator in λo
→.

The second one does (λfa.f(fa) and λfa.a), because n2 = 2n for n∈{2, 4}.

4.2.4. Example. The following are two pure matching problems.

(X(Xf)a = f10a X 1→o→o; f 1, a o;
f(X(Xf)a) = f10a X 1→o→o; f 1, a o.

The first problem is without a solution, because
√

10 /∈ N. The second with a solution
(X ≡ λfa.f3a), because 32 + 1 = 10.

Now the unification and matching problems will be generalized. First of all we will
consider more unknowns. Then more equations. Finally, in the general versions of
unification and matching problems one does not require that the ~M, ~N, ~X are closed but
they may contain a fixed finite number of constants (free variables). All these generalized
problems will be reducible to the pure case, but (only in the transition from non-pure
to pure problems) at the cost of possibly raising the rank (order) of the problem.

4.2.5. Definition. (i) Let M,N be closed terms of the same type. A pure unification
problem with several unknowns

M ~X=βηN ~X (1)

searches for closed terms ~X of the right type satisfying (1). The rank of a problem with
several unknowns ~X is

max{rk(Ai) | 1 ≤ i ≤ n},
where the Ai are the types of the Xi. The order is defined similarly.

(ii) A system of pure unification problems starts with termsM1, . . . ,Mn andN1, . . . ,Nn

such thatMi, Ni are of the same type for 1 ≤ i ≤ n. searching for closed terms ~X1, . . . , ~Xn

all occuring among ~X such that

M1
~X1 =βη N1

~X1

. . .

Mn
~Xn =βη Nn

~Xn

The rank (order) of such a system of problems the maximum of the ranks (orders) of
the types of the unknowns.
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(iii) In the general (non-pure) case it will also be allowed to have the M,N, ~X range
over ΛΓ rather than Λø. We call this a unification problem with constants from Γ. The
rank of a non-pure system of unknowns is defined as the maximum of the rank (orders)
of the types of the unknowns.

(iv) The same generalizations are made to the matching problems.

4.2.6. Example. A pure system of matching problem in the unknowns P, P1, P2 is the
following. It states the existence of a pairing and is solvable depending on the types
involved, see Barendregt [1974].

P1(Pxy) = x

P2(Pxy) = y.

One could add a third equation (for surjectivity of the pairing)

P (P1z)(P2z) = z,

causing this system never to have solutions, see Barendregt [1974].

4.2.7. Example. An example of a unification problem with constants from Γ = {a1, b1}
is the following. We searh for unknowns W,X, Y, Z ∈ΛΓ(1) such that

X = Y ◦W ◦ Y
b ◦W = W ◦ b

W ◦W = b ◦W ◦ b
a ◦ Y = Y ◦ a
X ◦X = Z ◦ b ◦ b ◦ a ◦ a ◦ b ◦ b ◦ Z,

where f ◦ g = λx.f(gx)) for f, g 1, having as unique solution W = b, X = a ◦ b ◦ b ◦ a,
Y = Z = a. This example will be expanded in Exercise 4.5.6.

4.2.8. Proposition. All unification (matching) problems reduce to pure ones with just
one unknown and one equation. In fact we have the following.

(i) A problem of rank k with several unkowns can be reduced to a problem with one
unknown with rank rk(A) = max{k, 2}.

(ii) Systems of problems can be reduced to one problem, without altering the rank.
The rank of the output type will be max{rk(Bi), 2}, where Bi are the output types of the
respective problems in the system.

(iii) Non-pure problems with constants from Γ can be reduced to pure problems. In
this process a problem of rank k becomes of rank

max{rk(Γ), k}.

Proof. We give the proof for unification.
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(i) In the notation of Definition 1.3.19 we have

∃ ~X.M ~X = N ~X (1)
⇐⇒ ∃X.(λx.M(x · 1) . . . (x · n))X = (λx.N(x · 1) . . . (x · n))X. (2)

Indeed, if the ~X work for (1), then X ≡ 〈 ~X〉 works for (2). Conversely, if X works for
(2), then ~X ≡ X ·1, . . . , X ·n work for (1). By Proposition 5.2 we have A = A1× . . .×An

is the type of X and rk(A) = max{rk(A1), . . . , rk(An), 2}.
(ii) Similarly for ~X1, . . . , ~Xn being subsequences of ~X one has

∃ ~X M1
~X1 = N1

~X1

. . .

Mn
~Xn = Nn

~Xn

⇐⇒ ∃ ~X (λ~x.〈M1~x1, . . . ,Mn~xn〉) ~X = (λ~x.〈N1~x1, . . . , Nn~xn〉) ~X.
(iii) Write a non-pure problem with M,N ∈ΛΓ(A→B), and dom(Γ) = {~y} as

∃X[~y]A.M [~y]X[~y] = N [~y]X[~y].

This is equivalent to the pure problem

∃X (
∧∧

Γ→A).(λx~y.M [~y](x~y))X = (λx~y.N [~y](x~y))X.

Although the ‘generalized’ unification and matching problems all can be reduced to the
pure case with one unknown and one equation, one usually should not do this if one
wants to get the right feel for the question.

Decidable case of unification

4.2.9. Proposition. Unification with unknowns of type 1 and constants of types o, 1 is
decidable.

Proof. The essential work to be done is the solvability of Markov’s problem by Makanin.
See Exercise 4.5.6 for the connection and a reference.

Undecidability of unification

The undecidability of unification was first proved by Huet. This was done before
the undecidability of Hilbert’s 10-th problem (Is it decidable whether an arbitrary
Diophantine equation over Z is solvable?) was established. Huet reduced Post’s correspondence
problem to the unification problem. The theorem by Matijasevic makes things more easy.

4.2.10. Theorem (Matijasevič). (i) There are two polynomials p1, p2 over N (of degree
7 with 13 variables1) such that

D = {~n∈N | ∃~x∈N.p1(~n, ~x) = p2(~n, ~x)}
is undecidable.

1This can be pushed to polynomials of degree 4 and 58 variables or of degree 1.6∗1045 and 9 variables,
see Jones [1982].
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(ii) There is a polynomial p(~x, ~y) over Z such that

D = {~n∈N | ∃~x∈Z.p(~n, ~x) = 0}

is undecidable. Therefore Hilbert’s 10-th problem is undecidable.

Proof. (i) This was done by coding arbitrary RE sets as Diophantine sets of the form
D. See Matijasevič [1971], Davis [1973] or Matiyasevič [1993].

(ii) Take p = p1 − p2 with the p1, p2 from (i). Using the theorem of Lagrange

∀n∈N∃a, b, c, d∈N.n = a2 + b2 + c2 + d2,

it follows that for n∈Z one has

n∈N ⇐⇒ ∃a, b, c, d∈N.n = a2 + b2 + c2 + d2.

Finally write ∃x∈N.p(x, . . .) = 0 as ∃a, b, c, d∈Z.p(a2 + b2 + c2 + d2, . . .) = 0.

4.2.11. Corollary. The solvability of pure unification problems of order 3 (rank 2) is
undecidable.

Proof. Take the two polynomials p1, p2 and D from (i) of the theorem. Find closed
termsMp1 ,Mp2 representing the polynomials, as in Corollary 1.3.5. Let U~n = {Mp1 ~n ~x =

Mp2 ~n ~x}. Using that every X ∈Λø(Nat) is a numeral, Proposition 2.1.22, it follows that
this unification problem is solvable iff ~n∈D.

The construction of Matijasevic is involved. The encoding of Post’s correspondence
problem by Huet is a more natural way to show the undecidability of unification. It has as
disadvantage that needs to use unification at variable types. There is a way out. In Davis
et al. [1960] it is proved that every RE predicate is of the form ∃~x∀y1<t1 . . .∀yn<tn.p1 =
p2. Using this result and higher types (NatA, for some non-atomic A) one can get rid of
the bounded quantifiers. The analogon of Proposition 2.1.22 (X Nat ⇒ X a numeral)
does not hold but one can filter out the ‘numerals’ by a unification (with f A→A):

f ◦ (Xf) = (Xf) ◦ f.

This yields without Matijasevic’s theorem that unification with for the unknown a fixed
type is undecidable.

4.2.12. Theorem. Unification of order 2 (rank 1) with constants is undecidable.

Proof. See Exercise 4.5.4.

This implies that pure unification of order 3 is undecidable, something we already saw
in Corollary 4.2.11. The interest in this result comes from the fact that unification over
order 2 variables plays a role in automated deduction and the undecidability of this
problem, being a subcase of a more general situation, is not implied by Corollary 4.2.11.
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4.3. Decidability of matching of rank 3

The main result will be that matching of rank 3 (which is the same as order 4) is
decidable and is due to Padovani [2000]. On the other hand Loader [2003] has proved
that general matching modulo =β is undecidable. The decidability of general matching
modulo =βη, which is the intended case, remains open.

The structure of this section is as follows. First the notion of interpolation problem
is introduced. Then by using tree automata it is shown that these problems restricted to
rank 3 are decidable. Then at rank 3 the problem of matching is reduced to interpolation
and hence solvable. At rank 1 matching with several unknowns is already NP-complete.

4.3.1. Proposition. (i) Matching with unknowns of rank 1 is NP-complete.

(ii) Pure matching of rank 2 is NP-complete.

Proof. (i) Consider A = o2→o = Boolo. Using Theorem 2.1.19, Proposition 1.2.3
and Example 1.2.8 it is easy to show that if M ∈Λø(A), then M ∈ βη{true, false} [We
should have somthing better: be able to refer to ONE result]. By Proposition 1.3.2
a Boolean function p(X1, . . . ,Xn) in the variables X1, . . . ,Xn is λ-definable by a term
Mp ∈Λø(An→A). Therefore

p is satisfiable ⇐⇒ MpX1 . . . Xn = true is solvable.

This is a matching problem of rank 1.

(ii) By (i) and Proposition 4.2.8.

In this chapter, we prove the decidability of fourth-order matching. A higher-order
matching problem is a set of equations t = u such that t contains both variables and
constants and u contains only constants. A solution of such a problem is a substitution
σ such that, for each equation, σt =βη u. A matching problem is said to be of rank n if
all the variables of t have at most rank n.

Following an idea of Statman [1982], the decidability of the matching problem can
be reduced to the existence for every term u of a logical relation ‖u on terms λo

→ such
that

• ‖u is an equivalence relation;

• for all types T the quotient TT / ‖u is finite;

• there is an algorithm that enumerates TT / ‖u, i.e. that takes in argument a type
T and returns a finite sequence of terms representing all the classes.

Indeed, if such a relation exists, then a simple generate and test algorithm permits to
solve the higher-order matching problem.

Similarly the decidability of the matching problem of rank n can be reduced to the
existence of a relation such that TT / ‖u can be enumerated up to rank n.
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The finite completeness theorem yields the existence of a standard model M such
that the relation M |= t = u meets the two first requirements, but Loader’s theorem
shows that it does not meet the third.

Padovani has proposed another relation - the relative observational equivalence - that
is enumerable up to order 4. Like in the construction of the finite completeness theorem,
the relative observational equivalence relation identifies terms of type o that are βη-
equivalent and also all terms of type o that are not subterms of u. But this relation
disregards the result of the application of a term to a non definable element.

Padovani has proved that the enumerability of this relation up to rank n can be
reduced to to the decidability of a variant of the matching problem of rank n: the dual
interpolation problem of rank n. Interpolation problems have been introduced in Dowek
[1994] as a first step toward decidability of third-order matching. The decidability of
the dual interpolation problem of order 4 has been also proved by Padovani. However,
here we shall not present the original proof, but a simpler one proposed by Comon and
Jurski Comon and Jurski [1998].

Rank 3 interpolation problems

An interpolation equation is a equation is a particular matching problem

X ~t = u,

where t1, ..., tn and u are closed terms. That is, the unknown X occurs at the head. A
solution of such an equation is a term v such that

v ~t =βη u.

An interpolation problem is a conjunction of such equations with the same unkown.
A solution of such a problem is a term v that is a solution for all the equations
simultaneously. A dual interpolation problem is a conjunction of equations and negated
equations. A solution of such a problem is a term solution of all the equations but
solution of none of the negated equations. If a dual interpolation problem has a solution
it has also a closed solution in lnf. Hence, without loss of generality, we can restrict the
search to such terms.

To prove the decidability of the fourth-order dual interpolation problem, we shall
prove that the solutions of an interpolation equation can be recognized by a finite tree
automaton. Then, the results will follow from the decidability of the non-emptiness of
a set of terms recognized by a finite tree automaton and the closure of recognizable sets
of terms by intersection and complement.

Relevant solution

In fact, it is not exactly quite so that the solutions of a fourth-order interpolation
equation can be recognized by a finite state automaton. Indeed, a solutions of an
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interpolation equation may contain an arbitrary number of variables. For instance the
equation

XK = a

where X is a variable of type (o→ 1→ o)→ o has all the solutions

λf.(fa(λz1.(fa(λz2.(fa...(λzn(fz1(λy.(fz2(λy.(fz3....(fzn(λy.a))..))))..))))))).

Moreover since each zi has z1, ..., zi−1 in its scope it is not possible to rename these
bound variables so that the variables of all these solutions are in a fixed finite set.

Thus the language of the solution cannot be a priori limited. In this example, it is
clear however that there is another solution

λf.(f a 2)

where 2 is a new constant of type o → o. Moreover all the solutions above can be
retrieved from this one by replacing the constant 2 by an appropriate term (allowing
captures in this replacement).

4.3.2. Definition. For each simple type T , we consider a constant 2T . Let t be a term
solution of an interpolation equation. A subterm occurrence of t of type T is irrelevant if
replacing it by the constant 2T yields a solution. A relevant solution is a closed solution
where all irrelevant subterm occurrences are the constant 2T .

Now we prove that relevant solutions of an interpolation equations can be recognized
by a finite tree automaton.

An example

Consider the problem
Xc1 = ha

where X is a variable of type (1 → o → o) → o and a and h are constants of type o
and 12. A relevant solution of this equation substitutes X by the term λf.v where v is
a relevant solution of the equation v[f := c1] = ha.

Let Qha be the set of the relevant solutions v of the equation v[f := c1] = ha. More
generally, let Qw be the set of relevant solutions v of the equation v[f := c1] = w.

Notice that terms in Qw can only contain the constants and the free variables that
occur in w, plus the variable f and the constants 2T . We can determine membership of
such a set (and in particular to Qha) by induction over the structure of a term.

• analysis of membership to Qha

A term is in Qha if it has either the form (hv1) and v1 is in Qa or the form (fv1v2)
and (v1[f := c1]v2[f := c1]) = ha. This means that there are terms v′1 and v′2 such
that v1[f := c1] = v′1, v2[f := c1] = v′2 and (v′1v

′
2) = ha, in other words there are

terms v′1 and v′2 such that v1 is in Qv′
1
, v2 is in Qv′

2
and (v′1v

′
2) = ha. As (v′1v

′
2) = ha
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there are three possibilities for v′1 and v′2: v
′
1 = I and v′2 = ha, v′1 = λz.hz and

v′2 = a and v′1 = λz.ha and v′2 = 2o. Hence (fv1v2) is in Qha if either v1 is in QI

and v2 in Qha or v1 is in Qλz.hz and v2 in Qa or v1 is in Qλz.ha and v2 = 2o.

Hence, we have to analyze membership to Qa, QI, Qλz.hz, Qλz.ha.

• analysis of membership to Qa

A term is in Qa if it has either the form a or the form (fv1v2) and v1 is in QI and
v2 is in Qa or v1 in Qλz.a and v2 = 2o.

Hence, we have to analyze membership to Qλz.a,

• analysis of membership to QI

A term is in QI if it has the form λz.v1 and v1 is in Qz

Hence, we have to analyze membership to Qz.

• analysis of membership to Qλz.hz

A term is in Qλz.hz if it has the form λz.v1 and v1 is in Qhz

Hence, we have to analyze membership to Qhz.

• analysis of membership to Qλz.ha

A term is in Qλz.ha if it has the form λz.v1 and v1 is in Qha.

• analysis of membership to Qλz.a

A term is in Qλz.a if it has the form λz.v1 and v1 is in Qa.

• analysis of membership to Qz

A term is in Qz if it has the form z or the form (fv1v2) and either v1 is in QI and
v2 is in Qz or v1 is in Qλz′.z and v2 = 2o.

Hence, we have to analyze membership to Qλz′.z.

• analysis of membership to Qhz

A term is in Qhz if it has the form (hv1) and v1 is in Qz or the form (fv1v2) and
either v1 is in QI and v2 is in Qhz or v1 is in Qλz.hz and v2 is in Qz or v1 is in
Qλz′.hz and v2 = 2o.

Hence, we have to analyze membership to Qλz′.hz.

• analysis of membership to Qλz′.z

A term is in Qλz′.z if it has the form λz′.v1 and v1 is in Qz.

• analysis of membership to Qλz′.hz

A term is in Qλz′.hz if it has the form λz′.v1 and v1 is in Qhz.
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In this way we can build an automaton that recognizes in qw the terms of Qw.

(hqa)→ qha

(fqIqha)→ qha

(fqλz.hzqa)→ qha

(fqλz.haq2o)→ qha

a→ qa

(fqIqa)→ qa

(fqλz.aq2o)→ qa

λz.qz → qI

λz.qhz → qλz.hz

λz.qha → qλz.ha

λz.qa → qλz.a

z → qz

(fqIqz)→ qz

(fqλz′.zq2o)→ qz

(hqz)→ qhz

(fqIqhz)→ qhz

(fqλz.hzqz)→ qhz

(fqλz′.hzq2o)→ qhz

λz′.qz → qλz′.z

λz′.qhz → qλz′.hz

Then we need a rule that permits to recognize 2o in the state q2o

2o → q2o

and at last a rule that permits to recognize in q0 the relevant solution of the equation
(Xc1) = ha

λf.qha → q0

Notice that as a spin off we have proved that besides f all relevant solutions of this
problem can be expressed with two bound variables z and z′.

The states of this automaton are labeled by the terms ha, a, I, λz.a, λz.hz, λz.ha,
z, hz, λz′.z and λz′.hz. All these terms have the form

u = λy1 . . . λyp.C

where C is a context of a subterm of ha and the free variables of C are in the set {z, z′}.
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Tree automata for relevant solutions

Let t be a normal term and V be a set of k variables of type o not occurring in t where k
is the size of t. A context of t is a term C such that there exists a substittion σ mapping
the variables of V to terms of type o such that σC = t.

Consider an equation
X~t = u

where X is a variable of fourth-order type at most. Consider a finite number of constants
2T for each type T of a subterm of u. Let k be the size of u. Consider a fixed set V
of k variables of type o. Let N be the finite set of term of the form λy1...λypC where
C is a context of a subterm of u and the free variables of C are in V . We define a
tree automaton with the states qw for w in N and q2T

for each constant 2T , and the
transitions

• (fiqw1 ...qwn)→ qw if (ti ~w) = w and replacing a wi different from 2T by a 2T does
not yield a solution,

• (hqu1 ...qun)→ q(hu1...un) (for u1, ..., un in N)

• 2T → q2T

• λz.qt → qλz.t,

• λf1 . . . λfn.qu → q0

4.3.3. Proposition. Let a and b be two elements of N and X1, ..., Xn be variables of
order at most two. Let σ be a relevant solution of the second-order matching problem

(aX1...Xn) = b

then for each i, either σXi is in N (modulo alpha-conversion) or is equal to 2T .

Proof. Let a′ be the normal form of (aσX1 . . . σXi−1XiσXi+1 . . . σXn). If Xi has no
occurrence in a′ then as σ is relevant σXi = 2T .

Otherwise consider the higher occurrence l of a subterm of type o of a′ that has the
form (Xiv1...vp). The terms v1, ..., vp have type o. Let b′ be the subterm of b at the same
occurrence l. The term b′ has type o, it is a context of a subterm of u.

Let v′i be the normal form of vi[σXi/Xi]. We have (σXiv
′
1...v

′
p) = b′. Consider p

variables y1, ..., yp of V that not free in b′. We have σXi = λy1...λypC and C[v′1/y1, ..., v
′
p/yp] =

b′. Hence C is a context of a subterm of u and σXi = λy1 . . . λyp.C is an element of N .

4.3.4. Remark. As a corollary of proposition 4.3.3, we get an alternative proof of the
decidability of second-order matching.

4.3.5. Proposition. Let
X~t = u

be an equation, and A the associated automaton. Then a term is recognized by A (in q0)
if and only if it is a relevant solution of this equation.
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Proof. We want to prove that a term v is recognized in q0 if and only if it is a relevant
solution of the equation v ~t = u. It is sufficient to prove that v is recognized in the state
qu if and only if it is a relevant solution of the equation v[f1 := t1, ..., fn := tn] = u.
We prove, more generally, that for any term w of N , v is recognized in qw if and only if
v[f1 := t1, ..., fn := tn] = w.

The direct sense is easy. We prove by induction over the structure of v that if v is
recognized in qw then v is a relevant solution of the equation v[f1 := t1, ..., fn := tn] = w.
If v = (fi v1 ... vp) then the term vi is recognized in a state qwi

where wi is either a
term of N or 2T and (ti ~w) = w. In the first case, by induction hypothesis vi is
a relevant solution of the equation vi[f1 := t1, ..., fn := tn] = ti and in the second
vi = 2T . Thus (ti v1[f1 := t1, ..., fn := tn] ... vp[f1 := t1, ..., fn := tn]) = u i.e.
v[f1 := t1, ..., fn := tn] = u, and moreover v is relevant. If v = (h v1 ... vp) then the
vi are recognized in states qwi

with wi in N . By induction hypothesis vi are relevant
solutions of vi[f1 := t1, ..., fn := tn] = ti. Hence v[f1 := t1, ..., fn := tn] = u and moreover
v is relevant. The case where v is an abstraction is similar.

Conversely, assume that v is a relevant solution of the equation v[f1 := t1, ..., fn :=
tn] = w. We prove, by induction over the structure of v, that v is recognized in qw.

If v = (fi v1 ... vp) then (ti v1[f1 := t1, ..., fn := tn] ... vp[f1 := t1, ..., fn := tn]) = u.
Let v′i = vi[f1 := t1, ..., fn := tn]. The v′i are a relevant solutions of the second-order
matching problem (ti v

′
1 ... v

′
p) = u.

Hence, by proposition 4.3.3, each v′i is either an element of N or the constant 2T .
In both cases vi is a relevant solution of the equation vi[f1 := t1, ..., fn := tn] = v′i
and by induction hypothesis vi is recognized in qwi

. Thus v is recognized in qw. If
v = (h v1 ... vp) then (h v1[f1 := t1, ..., fn := tn] ... vp[f1 := t1, ..., fn := tn]) = w. Let
wi = vi[f1 := t1, ..., fn := tn]. We have (h ~w) = w and vi is a relevant solution of the
equation vi[f1 := t1, ..., fn := tn] = wi. By induction hypothesis vi is recognized in qwi

.
Thus v is recognized in qw. The case where w is an abstraction is similar.

4.3.6. Proposition. Fourth-order dual interpolation is decidable.

Proof. Consider a system of equations and disequations and the automata associated
to all these equations. Let L be the language containing the union of the languages of
these automata and an extra constant of type o. Obviously the system has a solution if
and only if it has a solution in the language L. Each automaton recognizing the relevant
solutions can be transformed into one recognizing all the solutions in L (adding a finite
number of rules, so that the state 2T recognizes all terms of type T in the language
L). Then using the fact that languages recognized by a tree automaton are closed
by intersection and complement, we build a automaton recognizing all the solutions of
the system in the language L. The system has a solution if and only if the language
recognized by this automaton is non empty.

Decidability follows from the decidability of the emptiness of a language recognized
by a tree automaton.
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Decidability of rank 3 matching

A particular case

We shall start by proving the decidability of a subcase of fourth-order matching where
problems are formulated in a language without any constant and the solutions also must
not contain any constant.

Consider a problem t = u. The term u contains no constant. Hence, by Theorem
3.4.7 there is a closed term r of type T → o, whose constants have order at most two
(i.e. level at most one), such that for each term t of type T

t =βη u ⇐⇒ ∀i.(r t) =βη (r u).

The normal form of (r u)∈Λø(o) is a closed term whose constants have order at most
two, thus it contains no bound variables. Let U be the set of all subterms of type o
of the normal forms of (r u). All these terms are closed. Like in the relation defined
by equality in the model of the finite completeness theorem, we define a congruence on
closed terms of type o that identifies all terms that are not in U . This congruence has
card(U) + 1 equivalence classes.

4.3.7. Definition. t =βηu t
′ ⇐⇒ ∀s∈U [t =βη s ⇐⇒ t′ =βη s].

Notice that if t, t′ ∈Λø(o) one has the following

t =βηu t
′ ⇐⇒ t =βη t

′ or ∀s∈U (t 6=βη s & t 6=βη s)

⇐⇒ [t =βη t
′

or neither the normal form of t nor that of t′ is in U ]

Now we extend this to a logical relation on closed terms of arbitrary types. The following
construction could be considered as an application of the Gandy Hull defined in Example
3.3.37. Hovere, we choose to do it explicitly so as to prepare for Definition 4.3.16.

4.3.8. Definition. Let ‖v be the logical relation lifted from =βηu on closed terms.

4.3.9. Lemma. (i) ‖v is head-expansive.
(ii) For each constant F of type of rank ≤ 1 one has F ‖v F .
(iii) For any X ∈Λ(A) one has X ‖v X.
(iv) ‖v is an equivalence relation.
(v) P ‖v Q ⇐⇒ ∀R1, . . . ,Rk.P ~R ‖v Q~R.

We want to prove, using the decidability of the dual interpolation problem, that the
equivalence classes of this relation can be enumerated up to order four, i.e. that we can
compute a set ET of closed terms containing a term in each class.

More generally, we shall prove that if dual interpolation of rank n is decidable, then
the sets TT / ‖u can be enumerated up to rank n. We first prove the following Proposition.
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4.3.10. Proposition (Substitution lemma). Let t be a normal term of type o, whose free
variables are x1, ..., xn. Let v1, ..., vn, v′1, ..., v

′
n be closed terms such that v1 ‖u v′1, ...,

vn ‖u v′n. Let σ = v1/x1, ..., vn/xn and σ′ = v′1/x1, ..., v
′
n/xn. Then

σt =βηu σ
′t

Proof. By induction on the pair formed with the length of the longest reduction in σt
and the size of t. The term t is normal and has type o, thus it has the form (f w1 ... wk).

If f is a constant, then let us write wi = λsi with si of type o. We have σt =
(f λ σs1 ... λ σsk) and σ′t = (f λ σ′s1 ... λ σ′sk). By induction hypothesis (as the
si’s are subterms of a) we have σs1 =βηu σ

′s1, ..., σsk =βηu σ
′sk thus either for all i,

σsi =βη σ
′si and in this case σt =βη σ

′t or for some i, neither the normal forms of σsi

nor that of σ′si is an element of U . In this case neither the normal form of σt nor that
of σ′t is in U and σt =βηu σ

′t.
If f is a variable xi and k = 0 then t = xi, σt = vi and σ′t = v′i and vi and v′i have

type o. Thus σt =βηu σ
′t.

Otherwise, f is a variable xi and k 6= 0. The term vi has the form λz1...λzk s and
the term v′i has the form λz1...λzk s

′. We have

σt = (vi σw1 ... σwk) =βη s[σw1/z1, ..., σwk/zk]

and σ′t = (v′i σ
′w1 ... σ

′wk). As vi ‖u v′i, we get

σ′t =βηu (vi σ
′w1 ... σ

′wk) =βηu s[σ
′w1/z1, ..., σ

′wk/zk]

It is routine to check that for all i, (σwi) ‖u (σ′wi). Indeed, if the term wi has the
form λ1 ... λyp a, then for all closed terms b1 ... bp, we have

σwi b1 ... bp = ((b1/y1, ..., bp/yp) ◦ σ)a

σ′wi b1 ... bp = ((b1/y1, ..., bp/yp) ◦ σ′)a.

Applying the induction hypothesis to a that is a subterm of t, we get

(σwi) b1 ... bp =βηu (σ′wi) b1 ... bp

and thus (σwi) ‖u (σ′wi).
As (σwi) ‖u (σ′wi) we can apply the induction hypothesis again (because s[σw1/z1, ..., σwk/zk]

is a reduct of σt) and get

s[σw1/z1, ..., σwk/zk] =βηu s[σ
′w1/z1, ..., σ

′wk/zk]

Thus σt =βηu σ
′t.

The next proposition is a direct corollary.

4.3.11. Proposition (Application lemma). If v1 ‖u v′1, ..., vn ‖u v′n then for all term t
of type T1 → ...→ Tn → o,

(t v1 ... vn) =βηu (t v′1 ... v
′
n)
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Proof. Applying proposition 4.3.10 to the term (t x1 ... xn).

We then prove the following lemma that justifies the use of the relations =βηu and
‖u.

4.3.12. Proposition (Discrimination lemma). For every term t, if t ‖u u then t =βη u.

Proof. As t ‖u u, by proposition 4.3.11, we have for all i, (ri t) =βηu (ri u). Hence, as
the normal form of (ri u) is in U , (ri t) =βη (ri u). Thus t =βη u.

Let us discuss now how we can decide and enumerate the relation ‖u. If t and t′ of
type T1 → ...→ Tn → o, then, by definition, t ‖u t′ if and only if

∀w1 ∈TT1 ...∀wn ∈TTn (t ~w =βηE t′ ~w)

The fact that t ~w =βηE t′ ~w can be reformulated

∀s∈U (t ~w =βη s if and only if t′ ~w =βη s)

Thus t ‖u t′ if and only if

∀w1 ∈TT1 ...∀wn ∈TTn ∀s∈U (t ~w =βη s if and only if t′ ~w =βη s)

Thus to decide if t ‖u t′, we should list all the sequences s, w1, ..., wn where s is an
element of U and w1, ..., wn are closed terms of type T1, ..., Tn, and check that the set of
sequences such that t ~w =βη s is the same as the set of sequences such that t′ ~w =βη s.

Of course, the problem is that there is an infinite number of such sequences. But by
proposition 4.3.11 the fact that t ~w =βηu t

′ ~w is not affected if we replace the terms wi

by ‖u-equivalent terms. Hence, if we can enumerate the sets TT1/ ‖u, ..., TTn/ ‖u by sets
ET1 , ..., ETn , then we can decide the relation ‖u for terms of type T1 → ...→ Tn → o by
enumerating the sequences in U ×ET1 × ...×ETn , and checking that the set of sequences
such that t ~w =βη s is the same as the set of sequences such that t′ ~w =βη s.

As class of a term t for the relation ‖u is completely determined, by the set of
sequences s, w1, ..., wn such that t ~w =βη s and there are a finite number of subsets of
the set E = U × ET1 × ...× ETn , we get this way that the set TT / ‖u is finite.

To obtain an enumeration ET of the set TT / ‖u we need to be able to select the
subsets A of U × ET1 × ...× ETn , such that there is a term t such that t ~w =βη s if and
only if the sequence s, ~w is in A. This condition is exactly the decidability of the dual
interpolation problem. This leads to the following proposition.

4.3.13. Proposition (Enumeration lemma). If dual interpolation of rank n is decidable,
then the sets TT / ‖u can be enumerated up to rank n.
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Proof. By induction on the order of T = T1 → ... → Tn → o. By the induction
hypothesis, the sets TT1/ ‖u, ..., TTn/ ‖u can be enumerated by sets ET1 , ..., ETn .

Let x be a variable of type T . For each subset A of E = U ×ET1 × ...×ETn we define
the dual interpolation problem containing the equation x~w = s for s, w1, ..., wp ∈A and
the negated equation x~w 6= s for s, w1, ..., wp /∈ A. Using the decidability of dual
interpolation of rank n, we select those of such problems that have a solution and we
chose a closed solution for each problem. We get this way a set ET .

We prove that this set is an enumeration of TT / ‖u, i.e. that for every term t of type
T there is a term t′ in ET such that t′ ‖u t. Let A be the set of sequences s, w1, ..., wp

such that (t ~w) =βη s. The dual interpolation problem corresponding to A has a solution
(for instance t). Thus one of its solutions t′ is in ET . We have

∀w1 ∈ET1 ...∀wn ∈ETn∀s∈U ((t ~w) =βη s ⇐⇒ (t′ ~w) =βη s)

Thus
∀w1 ∈ET1 ...∀wn ∈ETn (t ~w) =βηu (t′ ~w)

and thus, by proposition 4.3.11

∀w1 ∈TT1 ...∀wn ∈TTn(t ~w) =βηu (t′ ~w)

Thus t ‖u t′.

Then, we prove that if the sets TT / ‖u can be enumerated up to rank n, then matching
of rank n is decidable. The idea is that we can restrict the search of solutions to the sets
ET .

4.3.14. Proposition (Matching lemma). If the sets TT / ‖u can be enumerated up to
order N , then matching problems of rank n whose right hand side is u can be decided.

Proof. Let ~X = X1, . . . ,Xn. We prove that if a matching problem t ~X = u has a
solution ~v, then it has also a solution ~v′, such that v′i ∈ET , for each i.

As ~v is a solution of the problem t = u, we have t~v =βη u.
For all i, let v′i be a representative in ETi

of the class of vi. We have

v′1 ‖u v1, . . . , v′n ‖u vn.

Thus by proposition 4.3.10
t~v =βηu ~v

′,

thus
t~v′ =βηu u

and by proposition 4.3.12
t~v′ =βη u

Thus to check if a problem has a solution it is sufficient to check if it has a solution
~v′, such that each v′i is a member of ET , and such substitutions can be enumerated.
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4.3.15. Theorem. Fourth-order matching problems whose right hand side contain no
constants can be decided.

Proof. Dual interpolation of order 4 is decidable, hence, by proposition 4.3.13, if u is
a closed term containing no constants, then the sets T / ‖u can be enumerated up to
order 4, hence, by proposition 4.3.14, we can decide if a problem of the form t = u has
a solution.

The general case

We consider now terms formed in a langage containing an infinite number of constants
of each type and we want to generalize the result. The difficulty is that we cannot apply
Statman’s result anymore to eliminate bound variables. Hence we shall define directly
the set U as the set of subterms of u of type o. The novelty here is that the bound
variables of U may now appear free in the terms of U . It is important here to chose the
names x1, ..., xn of these variables, once for all.

We define the congruence t =βηu t
′ on terms of type o that identifies all terms that

are not in U .

4.3.16. Definition. (i) Let t, t′ ∈Λ(o) (not necessarily closed). Define

t =βηu t
′ ⇐⇒ ∀s∈U.[t =βη s ⇐⇒ t′ =βη s].

(ii) Define the logical relation ‖u by lifting =βηU to all open terms at higher types.

4.3.17. Lemma. (i) ‖v is head-expansive.
(ii) For any variable of arbitrary type A one has x ‖v x.
(iii) For each constant F ∈Λ(A) one has F ‖v F .
(iv) For any X ∈Λ(A) one has X ‖v X.
(v) ‖v is an equivalence relation at all types.
(vi) P ‖v Q ⇐⇒ ∀R1, . . . ,Rk.P ~R ‖v Q~R.

Proof. (i) By definition the relation is closed under arbitrary βη expansion.
(ii) By induction on the generation of the type A.
(iii) Similarly.
(iv) Easy.
(v) Easy.
(vi) Easy.

Then we can turn to the enumerability lemma (proposition 4.3.13). Due to the presence
of the free variables, the proof of this lemma introduces several novelties. Given a
subset A of E = U × ET1 × ... × ETn we cannot define the dual interpolation problem
containing the equation (x ~w) = s for s, w1, . . . ,wp ∈A and the negated equation (x ~w) 6=
s for s, w1, ..., wp /∈ A, because the right hand side of these equations may contain free
variables. Thus, we shall replace these variables by fresh constants c1, ..., cn. Let θ
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be the substitution c1/x1, ..., cn/xn. To each set of sequences, we associate the dual
interpolation problem containing the equation (x ~w) = θs or its negation.

This introduces two difficulties: first the term θs is not a subterm of u, thus,
besides the relation ‖u, we shall need to consider also the relation ‖θs, and one of its
enumerations, for each term s in U . Then, the solutions of such interpolation problems
could contain the constants c1, ..., cn, and we may have difficulties proving that they
represent their ‖u-equivalence class. To solve this problem we need to duplicate the
constants c1, ..., cn with constants d1, ..., dn. This idea goes back to [Goldfarb].

Let us consider a fixed set of constants c1, ..., cn, d1, ..., dn that do not occur in u, and
if t is a term containing constants c1, ..., cn, but not the constants d1, ..., dn, we write t̃
for the term t where each constant ci is replaced by the constant di.

Let T = T1 → ...→ Tn → o be a type. We assume that for any closed term s of type
o, the sets TTi

/ ‖s can be enumerated up to rank n by sets Es
Ti

.

4.3.18. Definition. We define the set of sequences E containing for each term s in
U and sequence w1, ..., wn in Eθs

T1
× ... × Eθs

Tn
, the sequence θs, w1, ..., wn. Notice that

the terms in these sequences may contain the constants c1, ..., cn but not the constants
d1, ..., dn.

To each subset of A of E we associate a dual interpolation problem containing the
equations x ~w = s and x w̃1 ... w̃n = s̃ for s, w1, ..., wn ∈A and the disequations x ~w 6= s
and x w̃1 ... w̃n 6= s̃ for s, w1, ..., wn /∈ A.

The fist lemma justifies the use of constants duplication.

4.3.19. Proposition. If an interpolation problem of definition 4.3.18 has a solution t,
then it also has a solution t′ that does not contain the constants c1, ..., cn, d1, ..., dn.

Proof. Assume that the term t contains a constant, say c1. Then by replacing this
constant c1 by a fresh constant e, we obtain a term t′. As the constant e is fresh, all the
disequations that t verify are still verified by t′. If t verifies the equations x ~w = s and
x w̃1 ... w̃n = s̃ then the constant e does not occur in the normal form of t′ ~w. Otherwise
the constant c1 would occur in the normal form of t w̃1 ... w̃n, i.e. in the normal form of
s̃ which is not the case. Thus t′ also verifies the equations x ~w = s and x w̃1 ... w̃n = s̃.

We can replace this way all the constants c1, ..., cn, d1, ..., dn by fresh constants,
obtaining a solution where these constants do not occur.

Then, we prove that the interpolation problems of definition 4.3.18 characterize the
equivalence classes of the relation ‖u.

4.3.20. Proposition. Every term t of type T not containing the constants c1, ..., cn, d1, ..., dn

is the solution of a unique problem of definition 4.3.18.

Proof. Consider the subset A of E formed with sequences s, w1, ..., wn such that t ~w =
s. The term t is the solution of the interpolation problem associated to A and A is the
only subset of E such that t is a solution to the interpolation problem associated to.
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4.3.21. Proposition. Let t and t′ be two terms of type T not containing the constants
c1, ..., cn, d1, ..., dn. Then t and t′ are solutions of the same problem if and only if t ‖u t′.

Proof. By definition if t ‖u t′ then for all w1, ..., wn and for all s in U t ~w =βη s ⇐⇒
t′ ~w =βη s. Thus for any s, ~w in E, θ−1s is in U and t θ−1w1 ... θ

−1wn =βη θ
−1s ⇐⇒

t′ θ−1w1 ... θ
−1wn =βη θ

−1s. Then as the constants c1, ..., cn, d1, ..., dn do not appear in
t and t′ t ~w =βη s ⇐⇒ t′ ~w =βη s and t w̃1 ... w̃n =βη s ⇐⇒ t′ w̃1 ... w̃n =βη s̃. Thus
t and t′ are the solutions of the same problems.

Conversely, assume that t 6 ‖ut′. Then there exists terms w1, ..., wn and a term s in U
such that t ~w =βη s and t′ ~w 6=βη s. Hence t θw1 ... θwn =βη θs and t′ θw1 ... θwn 6=βη θs.
As the sets Eθs

Ti
are enumeration of the sets TTi

/ ‖θs there exists terms ~r such that the
ri ‖θs θwi and θs, ~r∈E. Using proposition 4.3.11 we have t ~r =βηθs t θw1 ... θwn =βη θs
hence t ~r =βηθs θs i.e. t ~r =βη θs. Similarly, we have t′ ~r =βηθs t

′ θw1 ... θwn 6=βη θs
hence t′ ~r 6=βηθs θs i.e. t′ ~r 6=βη θs Hence t and t′ are not the solutions of the same
problems.

Finally, we can prove the enumeration lemma.

4.3.22. Proposition (Enumeration lemma). If dual interpolation of rank n is decidable,
then, for any closed term u of type o, the sets TT / ‖u can be enumerated up to rank n.

Proof. By induction on the order of T . Let T = T1 → ...→ Tn → o. By the induction
hypothesis, for any closed term s of type o, the sets TTi

/ ‖s can be enumerated by sets
Es

Ti
.

We consider all the interpolation problems of definition 4.3.18. Using the decidability
of dual interpolation of rank n, we select those of such problems that have a solution.
By proposition 4.3.19, we can construct for each such problem a solution not containing
the constants c1, ..., cn, d1, ..., dn and by proposition 4.3.20 and 4.3.21, these terms form
an enumeration of TT / ‖u.

To conclude, we prove the matching lemma (proposition 4.3.14) exactly as in the
particular case and then the theorem.

4.3.23. Theorem. (Padovani) Fourth-order matching problems can be decided.

Proof. Dual interpolation of order 4 is decidable, hence, by proposition 4.3.13, if u is a
closed term, then the sets T / ‖u can be enumerated up to order 4, hence, by proposition
4.3.14, we can decide if a problem of the form t = u has a solution.

4.4. Decidability of the maximal theory

We prove now that the maximal theory is decidable. The original proof of this result is
due to Vincent Padovani [1996]. This proof has later been simplified independently by
Schmidt-Schauß and Loader [1997], based on Schmidt-Schauß [1999].
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Remember that the maximal theory is

Tmax{M = N |M,N ∈Λø
o(A), A∈TTo &M~c

min |= M = N},

where

M~c
min = Λø

o[~c]/≈ext
~c

consists of all terms having the ~c = c1, . . . ,cn, with n > 1, of type o as distinct constants
and M ≈ext

~c N on type A = A1→ . . .→Aa→o is defined by

M ≈ext
~c N ⇐⇒ ∀t1 ∈Λø

o[~c](A1) . . . ta ∈Λø
o[~c](Aa).M~t =βη N~t.

Theorem 3.5.29 states that ≈ext
~c is a congruence which we will denote by ≈. Also that

theorem implies that Tmax is independent of n.

4.4.1. Definition. For a type T ∈TTA we define its degree ||T || as follows.

||o|| = 2,

||T → U || = ||T ||!||U ||, i.e. ||T || factorial times ||U ||.

4.4.2. Proposition. (i) ||T1 → . . .→ Tn → o|| = 2||T1||! . . . ||Tn||!.
(ii) ||Ti|| < ||T1 → . . .→ Tn → o||.
(iii) n < ||T1 → . . .→ Tn → o||.
(iv) If p < ||Ti||, ||U1|| < ||Ti||, . . . , ||Up|| < ||Ti|| then

||T1 → . . .→ Ti−1 → U1 → . . .→ Up → Ti+1 → . . .→ Tn → o|| <
< ||T1 → . . .→ Tn → o||

4.4.3. Definition. LetM ∈Λø
o[~c](T1→ . . . Tn→o) be a lnf. Then eitherM ≡ λx1 . . . xn.y

or M ≡ λx1 . . . xn.xiU1 . . . Up. In the first case, M is called constant, in the second it
has index i.

The following proposition states that for every type T , the terms t∈Λø
o[~c](T ) with a

given index can be enumerated by a term E : ~V→T , where the ~V have degrees lower
than T .

4.4.4. Proposition. Let ≈ be the equality in the minimal model (the maximal theory).
Then for each type T and each natural number i, there exists a natural number k < ||T ||,
types V1, . . . , Vk such that ||V1|| < ||T ||, . . . , ||Vk|| < ||T ||, a term E of type V1 → . . .→
Vk → T and terms B1 of type T → V1, . . . , Bk of type T → Vk such that if t has index
i then

t ≈ E(B1t) . . . (Bkt)

Proof. By induction on ||T ||. Let us write T = T1 → . . . → Tn → o and Ti =
U1 → . . . → Um → o. By induction hypothesis, for each j in {1, . . . ,m} there are
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types Wj,1, . . . ,Wj,lj , terms Ej , Bj,1, . . . , Bj,lj such that lj < ||Ti||, ||Wj,1|| < ||Ti||, . . . ,

||Wj,lj || < ||Ti|| and if u∈Λø
o[~c](T )i has index j then

u ≈ Ej(Bj,1u) . . . (Bj,lju).

We take k = m,

V1 ≡ T1 → . . .→ Ti−1 →W1,1 → . . .→W1,l1 → Ti+1 → . . .→ Tn → o,

. . .

Vk ≡ T1 → . . .→ Ti−1 →Wk,1 → . . .→Wk,lk → Ti+1 → . . .→ Tn → o,

E ≡ λf1 . . . fkx1 . . . xn.xi (λ~c.f1x1 . . . xi−1(d1,1xi) . . . (d1,l1xi)xi+1 . . . xn)
. . .

(λ~c.fkx1 . . . xi−1(dk,1xi) . . . (dk,lkxi)xi+1 . . . xn),

B1 ≡ λgx1 . . . xi−1~z1xi+1 . . . xn.gx1 . . . xi−1(E1~z1)xi+1 . . . xn,
. . .

Bk ≡ λgx1 . . . xi−1~zkxi+1 . . . xn.gx1 . . . xi−1(Ek~zk)xi+1 . . . xn,

where ~zi = z1, . . . ,zli for 1 ≤ i ≤ k. We have k < ||Ti|| < ||T ||, ||Vi|| < ||T || for

1 ≤ i ≤ k and for any t∈Λø
o[~c](T )

E(B1t) . . . (Bkt) = λx1 . . . xn.xi

(λ~c.tx1 . . . xi−1(E1(B1,1xi) . . . (B1,l1xi))xi+1 . . . xn)
. . .
(λ~c.tx1 . . . xi−1(Ek(Bk,1xi) . . . (Bk,lkxi))xi+1 . . . xn)

We want to prove that if t has index i then this term is equal to t. Consider terms
~w∈Λø

o[~c]. We want to prove that for the term

N = wi (λ~c.tw1 . . . wi−1(E1(B1,1wi) . . . (B1,l1wi))wi+1 . . . wn)
. . .

(λ~c.tw1 . . . wi−1(Ek(Bk,1wi) . . . (Bk,lkwi))wi+1 . . . wn)

one has N ≈ (tw1 . . . wn). If wi is constant then this is obvious. Overwise, it has an
index j, say, and N reduces to

N ′ = tw1 . . . wi−1(Ej(Bj,1wi) . . . (Bj,ljwi))wi+1 . . . wn.

By the induction hypothesis the term (Ej(Bj,1wi) . . . (Bj,ljwi)) ≈ wi and hence, by
Theorem 3.5.29 one has N = N ′ ≈ (tw1 . . . wn).

4.4.5. Theorem. Let M be the minimal model built over ~c:o, i.e.

M =Mmin = Λø
o[~c]/≈.

For each type T , we can compute a finite set RT ⊆ Λø
o[~c](T ) that enumeratesM(T ), i.e.

such that
∀M ∈M(T )∃N ∈RT .M ≈ N.
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Proof. By induction on ||T ||. If T = o, then we can take RT = {~c}. Otherwise write
T = T1 → . . . → Tn → o. By Proposition 4.4.4 for each i∈{1, . . . , n}, there exists a
natural number ki, types Vi,1, . . . , Vi,ki

smaller than T , a term Ei of type Vi,1 → . . . →
Vi,ki

→ T such that for each term t of index i, there exists terms v1, . . . , vki
such that

t ≈ (Eiv1 . . . vki
).

By the induction hypothesis, for each type Vi,j we can compute a finite set RVi,j
that

enumerates M(Vi,j). We take for RT all the terms of the form (Eie1 . . . eki
) with e1 in

RVi,1 , . . . , eki
in RVi,ki

.

4.4.6. Corollary (Padovani). The maximal theory is decidable.

Proof. Check equivalence in any minimal modelM~c
min. At type

A = A1→ . . .→Aa→o we have

M ≈ N ⇐⇒ ∀P1 ∈Λø
o[~c](A1) . . . Pa ∈Λø

o[~c](Aa).M~t =βη N~t,

where we can now restrict the ~P to the RAj
.

4.4.7. Corollary (Decidability of unification in Tmax). For terms

M,N ∈Λø
o[~c](A→B),

of the same type, the following unification problem is decidable

∃X ∈Λø[~c](A).MX ≈ NX.

Proof. Working inM~c
min, check the finitely many enumerating terms as candidates.

4.4.8. Corollary (Decidability of atomic higher-order matching). (i) For

M1 ∈Λø
o[~c](A1→o), . . . ,Mn ∈Λø

o[~c](An→o),

with 1 ≤ i ≤ n, the following problem is decidable

∃X1 ∈Λø
o[~c](A1), . . . , Xn ∈Λø

o[~c](An).[M1X1 =βη c1

. . .

MnXn =βη cn].

(ii) For M,N ∈Λø
o[~c](A→o) the following problem is decidable.

∃X ∈Λø
o[~c](A).MX =βη NX.

Proof. (i) Since βη-convertibility at type o is equivalent to ≈, the previous Corollary
applies.

(ii) Similarly to (i) or by reducing this problem to the problem in (i).
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The non-redundancy of the enumeration

We now prove that the enumeration of terms in Proposition is not redundant. We follow
the given construction, but actually the proof does not depend on it, see Exercise 4.5.2.
We first prove a converse to Proposition 4.4.4.

4.4.9. Proposition. Let E,B1, . . . ,Bk be the terms constructed in Proposition 4.4.4.
Then for any sequence of terms M1, . . . ,Mk, we have

(Bj(EM1 . . .Mk)) ≈Mj

Proof. By induction on ||T || where T is the type of (EM1 . . .Mk). The term

N ≡ Bj(EM1 . . .Mk)

reduces to

λx1 . . . xi−1~zjxi+1 . . . xn.Ej~zj
(λ~c.M1x1 . . . xi−1(B1,1(Ej~zj)) . . . (B1,l1(Ej~zj))xi+1 . . . xn)
. . .
(λ~c.Mkx1 . . . xi−1(Bk,1(Ej~zj)) . . . (Bk,lk(Ej~zj))xi+1 . . . xn)

Then, since Ej is a term of index lj + j, the term N continues to reduce to

λx1 . . . xi−1~zjxi+1 . . . xn.Mjx1 . . . xi−1(Bj,1(Ej~zj)) . . . (Bj,lj (Ej~zj))xi+1 . . . xn.

We want to prove that this term is equal to Mj . Consider terms

N1, . . . , Ni−1, ~Lj , Ni+1, . . . , Nn ∈Λø
o[~c].

It suffices to show that

MjN1 . . . Ni−1(Bj,1(Ej
~Lj)) . . . (Bj,lj (Ej

~Lj))Ni+1 . . . Nn ≈
MjN1 . . . Ni−1

~LjNi+1 . . . Nn.

By the induction hypothesis we have

(Bj,1(Ej
~Lj)) ≈ L1

. . .

(Bj,lj (Ej
~Lj)) ≈ Llj

Hence by Theorem 3.5.29 we are done.

4.4.10. Proposition. The enumeration in Theorem 4.4.5 is non-redundant, i.e.

∀A∈TTo∀M,N ∈RA.M ≈C N ⇒ M ≡ N.
Proof. Consider two terms M and N equal in the enumeration of a type A. We prove,
by induction, that these two terms are equal. Since M and N are equal, they must have
the same head variables. If this variable is free then they are equal. Otherwise, the
terms have the form M = (EiM

′
1 . . .M

′
k) and N = (EiN

′
1 . . . N

′
k). For all j, we have

M ′
j ≈ (BjM) ≈ (BjN) ≈ N ′

j

Hence, by induction hypothesis M ′
j = N ′

j and therefore M = N .
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4.5. Exercises

4.5.1. Let Tn = 1n → o and let cn be the cardinality of the setMTn .
(i) Prove that

cn+1 = 2 + (n+ 1)cn

(ii) Prove that

cn = 2n!
n∑

i=0

1

i!
.

The dn = n!
∑n

i=0
1
i! “the number of arrangements of n elements” forms

a well-known sequence in combinatorics. See, for instance, Flajolet and
Sedgewick [1993].

(iii) Can the cardinality ofMT be bounded by a function of the form k|T | where
|T | is the size of T and k a constant?

4.5.2. Let C = {co, do}. Let E be a computable function that assigns to each type A∈TTo

a finite set of terms XA such that for all

∀M ∈Λ[C](A)∃N ∈XA.M ≈C N.

Show that not knowing the theory of section 4.4 one can effectively make E non-
redundant, i.e. such that

∀A∈TTo∀M,N ∈EA.M ≈C N ⇒ M ≡ N.

4.5.3. (Herbrand’s Problem) Consider sets S of universally quantified equations ∀x1 . . . xn.[t1 =
t2] between first order terms involving constants f, g, h, . . . various aritites. Herbrand’s
theorem concerns the problem of whether S |= r = s where r, s are closed first
order terms. For example the word problem for groups can be represented this
way. Now let d be a new quaternary constant i.e. d : 14 and let a, b be new 0-ary
constants i.e. a, b : o. We define the set S+ of simply typed equations by

S+ = { (λ~x.t1 = λ~x.t2) | (∀~x[t1 = t2])∈S}.

Show that the following are equivalent
(i) S 6|= r = s.
(ii) S+ ∪ {λx.dxxab = λx.a, drsab = b} is consistent.
Conclude that the consistency problem for finite sets of equations with constants
is Π0

1-complete (in contrast to the decidability of finite sets of pure equations).

4.5.4. (Undecidability of second-order unification) Consider the unification problem

Fx1 . . . xn = Gx1 . . . xn,

where each xi has type of rank <2. By the theory of reducibility we can assume
that Fx1 . . . xn has type (o→(o→o))→(o→o) and so by introducing new constants
of types o ,and o→(o→o) we can assume Fx1 . . . xn has type o. Thus we arrive
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at the problem (with constants) in which we consider the problem of unifying 1st
order terms built up from 1st and 2nd order constants and variables, The aim
of this exercise is to show that it is recursively unsolvable by encoding Hilbert’s
10-th problem, Goldfarb [1981]. For this we shall need several constants. Begin
with constants

a, b o

s o→o
e o→(o→(o→o))

The nth numeral is sna.
(i) Let F o→o. F is said to be affine if F = λx.snx. N is a numeral iff there exists

an affine F such that Fa = N . Show that F is affine ⇐⇒ F (sa) = s(Fa).
(ii) Next show that L = N + M iff there exist affine F and G such that N =

Fa, M = Ga & L = F (Ga).
(iii) We can encode a computation of n ∗m by

e(n ∗m)m(e(n ∗ (m− 1))(m− 1)(...(e(n ∗ 1)11)...)).

Finally show that L = N ∗M ⇐⇒ ∃c, d, u, v affine and ∃f, w

fab = e(ua)(va)(wab)

f(ca)(sa)(e(ca)(sa)b) = e(u(ca))(v(sa))(fab)

L = ua

N = ca

M = va

= da.

4.5.5. (Sets of unifiers) The intention of this exercise is to prove the following.

Theorem. Let A be a simple type and let S ⊆ Λø(A) be recursively enumerable
and closed under =βη. Then there exist simple types B and C and F,G : A→(B→C)
such that

M ∈S ⇐⇒ ∃N B.FMN =βη GMN.

Moreover we can always assume that

C = (o→(o→o))→(o→o) = 12→o→o.

In short, every r.e. βη-closed set of combinators is the projection of the set of
solutions to a unification problem.
(i) Let A be given. Then by the reducibility theorem for sinple types, there

exists H : A→(o→(o→o))→(o→o) such that

∀M,N A.[M =βη N ⇐⇒ HM =βη HN ].
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Thus it suffices to prove the theorem for A = 12→o→o. For similar reasons
in the end it will suffice to have C = 12→o→o. We shall need some special
types below

o∗ = o→o;
1∗ = o∗→o∗;
A = (1∗→(1∗→1∗))→(1∗→1∗);
A+ = (1∗→(1∗→1∗))→((1∗→1∗)→(1∗→1∗));
A# = (1∗→(1∗→1∗))→((1∗→1∗)→((1∗→1∗))→(1∗→1∗))).

and we declare the following variables

f : 1∗→(1∗→1∗)
g : 1∗→1∗

h : 1∗→1∗

a : o∗→o∗

where the reader should recognize o∗→o∗ as the type of Church numerals.

(ii) We define several notions of terms recursively as follows.

• cheap
a is cheap if r and s are cheap then frs is cheap

• inexpensive of level n
a is inexpensive of level o
if r and s are inexpensive of level n and j, k are among h, g then f(jr)(ks)
is inexpensive of level n+ 1.

Clearly, X is a cheap term of depth n iff there exists an inexpensive term Y
of level n such that X=βη[g = I, h = Ka]Y .
Cheap terms are useful because for each N (o→(o→o))→(o→o) in βη normal
form there exists a unique cheap X such that

N=βη(λbλxy.b(λuv.λwz.x(uwz)(vwz))(λwz.y)Iy)(λfa.X).

We shall say that M is frugal if M=βηλfa.X where X is cheap. We shall
try to prove our theorem for r.e. βη closed sets of frugal terms.

(iii) We define

M A# is frugal if M=βηλfgha.Y, where Y is inexpensive.

Similarly we say that M : A+ is frugal if M=βηλfga.[h = g]Y where Y is
inexpensive. This will not introduce any ambiguity because of the difference
between A,A+, and A#. For M A# define M+ A+ by M+ = λfga.Mfgga.
We have M is frugal iff M+ is frugal. Claim:

M : A+ is frugal ⇐⇒
λfga.f(g(Mfga))(g(Mfga))=βηλfga.Mfg(f(ga)(ga)).



188 CHAPTER 4. DEFINABILITY, UNIFICATION AND MATCHING

Proof. W.l.o.g. we may assume that M is in long βη normal form. The
proof of ⇐ is by induction on the length of M . We let M = λfga.λuv.Z.
Case 1. Z = aUV . Let @ be the substitution [a = f(ga)(ga)]. In this case
we have

λuv.f(ga)(ga)(@U)(@V )=βηf(g(λuv.aUV )(g(λuv.aUV )).

This is only possible if λuv.Z eta reduces to a so M is frugal.
Case 2. Z = fXY UV . In this case we have

f(g(λuv.fXY UV ))(g(λuv.fXY UV ))=βη

λuv.f(@X)(@Y )(@U)(@V )

and as in case 1 this is not possible unless U eta reducse to u and V eta reduces
to v. Thus f(g(fXY ))(g(fXY ))=βηf(@X)(@Y ) Now by similar reasoning
X eta reduces to gP and Y eta reduces to gQ. Thus f(gP )(gQ)=βη@P and
@Q;in particular, @P=βη@Q so P=βηQ and f(gP )(gP )=βη@Pf(gQ)(gQ)=βη@Q.
Thus setting T = λfga.P and

L = λfga.Qλfga.f(g(Tfga))(g(Tfga))=βηλfga.Tfg(f(ga)(ga)),

and λfga.f(g(Lfga))(g(Lfga))=βηλfga.Lfg(f(ga)(ga)). Now the induction
hypothesis applies to the long βη-normal forms of T and L so these terms
are frugal. Thus so is M.
Case 3. Z = gXUV . This case is impossible.
Case 4. Z = uV or Z = v. These cases are impossible.
This completes the proof of the claim.

(iv) By Matijasevic’s solution to Hilbert’s 10th problem for every r.e. set S of
natural numbers there exists F and G such that n belongs to S iff there
exists N such that FnN=βηGnN (here N can be taken to be a 12-tuple of
Church numerals). Now there exists a bijective polynomial pairing function
p(x,y) represented by a lambda term P. If M A is frugal then we take as the
Gödel number for M the number represented by the βη-nf of MP1. The
set of Gödel numbers of members of an r.e. βη closed set of frugal members
of A is itself r.e. and has such F and G. We can now put all of these facts
together. Consider the system

Ha = λbxy.b(λuvwz.x(uwz)(vwz))(λwz.y)Iy)

b = λfa.cf IIa

d = λfga.cfgga

λfga.dfg(f(ga)(ga)) = λfga.f(g(dfga))(g(dfga))

F (bP1)e = G(bP1)e

is unifiable with a = M iff M belongs to the original r.e. βη-closed set of
closed terms.
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4.5.6. Consider Γn,m = {c1 o, . . . , cm o, f11, . . . , fn o}. Show that the unification problem
with constants from Γ with several unknowns of type 1 can be reduced to the
case where m = 1. This is equivalent to the following problem of Markov. Given
a finite alphabet Σ = {a1, . . . ,an} consider equations between words over Σ ∪
{X1, . . . ,Xp}. The aim is to find for the unknowns ~X words w1, . . . ,wp ∈Σ∗ such
that the equations become syntactic identities. In Makanin [1977] it is proved
that this problem is decidable (uniformly in n, p).

4.5.7. (Decidability of unification of second-order terms) Consider the unification problem
F~x = G~x of type A with rk(A) = 1. Here we are interested in the case of pure
unifiers of any types. Then A = 1m = om→o for some natural number m.
Consider for i = 1, . . . ,m the systems

Si = {F~x = λ~y.yi, G~x = λ~y.yi}.
(i) Observe that the original unification problem is solvable iff one of the systems

Si is solvable.
(ii) Show that systems whose equations have the form

F~x = λ~y.yi

where yi : 0 have the same solutions as single equations

H~x = λxy.x

where x, y : 0
(iii) Show that provided there are closed terms of the types of the xi the solutions

to a matching equation
H~x = λxy.x

are exactly the same as the lambda definable solutions to this equation in
the minimal model.

(iv) Apply the method of Exercise 2.5.7 to the minimal model. Conclude that if
there is a closed term of type A then the lambda definable elements of the
minimal model of type A are precisely those invariant under the transposition
of the elements of the ground domain. Conclude that unification of terms of
type of rank 1 is decidable.
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Chapter 5

Extensions

5.1. Lambda delta

In this section the simply typed lambda calculus will be extended by constants δ (=
δA,B), for every A,B ∈TT(o). Church [1940] used this extension to introduce a logical
system called “the simple theory of types”, based on classical logic. (The system is also
refered to as “higher order logic”, and denoted by HOL.) We will introduce a variant
of this system denoted by ∆. The intuitive idea is that δ = δA,B satisfies for all for all
a, a′ : A, b, b′ : B

δaa′bb′ = b if a = a′;

= b′ if a 6= a′.

Therefore the type of the new constants is as follows

δA,B : A→A→B→B→B.

The set of typed terms á la Church with as type atoms only o will be denoted by Λδ;
its elements will be called λδ-terms. The classical variant of the theory in which each
term and variable carries its unique type will be considered only, but will suppress types
whenever there is little danger of confusion.

The theory ∆ is a strong logical system, in fact stronger than each of the 1st, 2nd,
3rd, ... order logics. It turns out that because of the presence of δ’s an arbitrary
formula of ∆ is equivalent to an equation. This fact will be an incarnation of the
comprehension principle. It is because of the δ’s that ∆ is powerful, less so because
of the presence of quantification over elements of arbitrary types. Moreover, the set of
equational consequences of ∆ can be axiomatized by a finite subset. These are the main
results in this section. It is an open question whether there is a natural (decidable)
notion of reduction that is confluent and has as convertibility relation exactly these
equational consequences. Since the decision problem for (higher order) predicate logic
is undecidable, this notion of reduction will be non-terminating.

191
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Higher Order Logic

In the following logical system terms are elements of ΛCL
o . Formulas are built up form

equations between terms of the same type using implication (⊃) and typed quantification
(∀xA.ϕ). Absurdity is defined by ⊥ ≡ (K = K∗), where K ≡ λxoyo.x,K∗ ≡ λxoyo.y.
and negation by ¬ϕ ≡ ϕ ⊃ ⊥. By contrast to other sections in this book Γ stand
for a set of formulas. Finally Γ ⊢ ϕ is defined by the following axioms and rules.
Variables always have to be given types such that the terms involved are typable and
have the same type if they occur in one equation. Below Γ is a set of formulas, and
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FV(Γ) = {x | x∈FV(ϕ), ϕ∈Γ}. M,N,L, P,Q are terms.

∆ : Higher Order Logic

Γ ⊢ (λx.M)N = M [x = N ] (beta)

Γ ⊢ λx.Mx = M, x /∈ FV(M) (eta)

Γ ⊢M = M (reflexivity)

Γ ⊢M = N

Γ ⊢ N = M
(symmetry)

Γ ⊢M = N, Γ ⊢ N = L

Γ ⊢M = L
(transivity)

Γ ⊢M = N, Γ ⊢ P = Q

Γ ⊢MP = NQ
(cong-app)

Γ ⊢M = N
x /∈ FV(Γ)

Γ ⊢ λx.M = λx.N
(cong-abs)

ϕ∈Γ

Γ ⊢ ϕ
(axiom)

Γ ⊢ ϕ ⊃ ψ Γ ⊢ ϕ
Γ ⊢ ψ

(⊃ -elim)

Γ, ϕ ⊢ ψ
Γ ⊢ ϕ ⊃ ψ

(⊃ -intr)

Γ ⊢ ∀xA.ϕ

Γ ⊢ ϕ[x = M ]
M ∈Λ(A) (∀-elim)

Γ ⊢ ϕ
xA /∈ FV(Γ)

Γ ⊢ ∀xA.ϕ
(∀-intr)

Γ,M 6= N ⊢ ⊥
Γ ⊢M = N

(classical)

Γ ⊢M = N ⊃ δMNPQ = P (deltaL)

Γ ⊢M 6= N ⊃ δMNPQ = Q (deltaR)

Provability in this system will be denoted by Γ ⊢∆ ϕ.

5.1.1. Definition. The other logical connectives are introduced in the usual classical
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manner.

ϕ ∨ ψ ::= ¬ϕ ⊃ ψ;

ϕψ ::= ¬(¬ϕ ∨ ¬ψ);

∃xA.ϕ ::= ¬∀xA.¬ϕ.

5.1.2. Lemma. For all formulas of ∆ one has

⊥ ⊢ ϕ.

Proof. By induction on the structure of ϕ. If ϕ ≡ (M = N), then observe that by
(eta)

M = λ~x.M~x = λ~x.K(M~x)(N~x),
N = λ~x.N~x = λ~x.K∗(M~x)(N~x),

where the ~x are such that the type of M~x is o. Hence ⊥ ⊢M = N , since ⊥ ≡ (K = K∗).
If ϕ ≡ (ψ ⊃ χ) or ϕ ≡ ∀xA.ψ, then the result follows immediately from the induction
hypothesis.

5.1.3. Proposition. δA,B can be defined from δA,o.

Proof. Indeed, if we only have δA,o (with their properties) and define

δA,B = λmnpq~x . δA,omn(p~x)(q~x),

then all δA,B satisfy the axioms.

The rule (classical) is equivalent to

¬¬(M = N) ⊃M = N.

In this rule the terms can be restricted to type o and the same theory ∆ will be obtained.

5.1.4. Proposition. Suppose that in the formulation of ∆ one requires

Γ,¬(M = N) ⊢∆ ⊥ ⇒ Γ ⊢δ M = N (1)

only for terms x, y of type o. Then (1) holds for terms of all types.

Proof. By (1) we have ¬¬M = N ⊃M = N for terms of type o. Assume ¬¬(M = N),
with M,N of arbitrary type, in order to show M = N . We have

M = N ⊃M~x = N~x,

for all fresh ~x such that the type of M~x is o. By taking the contrapositive twice we
obtain

¬¬(M = N) ⊃ ¬¬(M~x = N~x).

Therefore by assumption and (1) we get M~x = N~x. But then by (cong-abs) and (eta)
it follows that M = N .
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5.1.5. Proposition. For all formulas ϕ one has

⊢∆ ¬¬ϕ ⊃ ϕ.

Proof. Induction on the structure of ϕ. If ϕ is an equation, then this is a rule of the
system ∆. If ϕ ≡ ψ ⊃ χ, then by the induction hypothesis one has ⊢∆ ¬¬χ ⊃ χ and we
have the following derivation

[ψ ⊃ χ]1 [ψ]3

χ [¬χ]2

⊥
1

¬(ψ ⊃ χ) [¬¬(ψ ⊃ χ)]4

⊥
2

¬¬χ

···
¬¬χ ⊃ χ

3
ψ ⊃ χ

4
¬¬(ψ ⊃ χ) ⊃ ψ ⊃ χ)

for ¬¬(ψ ⊃ χ) ⊃ (ψ ⊃ χ). If ϕ ≡ ∀x.ψ, then by the induction hypothesis ⊢∆ ¬¬ψ(x) ⊃
ψ(x). Now we have a similar derivation

[∀x.ψ(x)]1

ψ(x) [¬ψ(x)]2

⊥
1

¬∀x.ψ(x) [¬¬∀x.ψ(x)]3

⊥
2

¬¬ψ(x)

···
¬¬ψ(x) ⊃ ψ(x)

ψ(x)

∀x.ψ(x)
3

¬¬∀x.ψ(x) ⊃ ∀x.ψ(x)

for ¬¬∀x.ψ(x) ⊃ ∀x.ψ(x).

Now we will derive some equations in ∆ that happen to be strong enough to provide
an equational axiomatization of the equational part of ∆.

5.1.6. Proposition. The following equations hold universally (for those terms such that
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the equations make sense).

δMMPQ = P (δ-identity);

δMNPP = P (δ-reflexivity);

δMNMN = N (δ-hypothesis);

δMNPQ = δNMPQ (δ-symmetry);

F (δMNPQ) = δMN(FP )(FQ) (δ-monotonicity);

δMN(P (δMN))(Q(δMN)) = δMN(PK)(QK∗) (δ-transitivity).

Proof. We only show δ-reflexivity, the proof of the other assertions being similar. By
the δ axioms one has

M = N ⊢ δMNPP = P ;

M 6= N ⊢ δMNPP = P.

By the “contrapositive” of the first statement one has δMNPP 6= P ⊢M 6= N and hence
by the second statement δMNPP 6= P ⊢ δMNPP = P . So in fact δMNPP 6= P ⊢ ⊥,
but then ⊢ δMNPP = P , by the classical rule.

5.1.7. Definition. The equational theory δ consists of equations between λδ-terms of
the same type, axiomatized as follows. (As usual the axioms and rules are assumed
to hold universally, i.e. the free variables may be replaced by arbitrary terms. In the
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following E denotes a set of equations between λδ-terms of the same type.

δ : Equational version of ∆

E ⊢ (λx.M)N = M [x = N ] (β)

E ⊢ λx.Mx = M, x /∈ FV(M) (η)

E ⊢M = M (reflexivity)

E ⊢M = N

E ⊢ N = M
(symmetry)

E ⊢M = N, E ⊢ N = L

E ⊢M = L
(transivity)

E ⊢M = N, E ⊢ P = Q

E ⊢MP = NQ
(cong-app)

E ⊢M = N
x /∈ FV(E)

E ⊢ λx.M = λx.N
(cong-abs)

E ⊢ δMMPQ = P (δ-identity)

E ⊢ δMNPP = P (δ-reflexivity)

E ⊢ δMNMN = N (δ-hypothesis)

E ⊢ δMNPQ = δNMPQ (δ-symmetry)

E ⊢ F (δMNPQ) = δMN(FP )(FQ) (δ-monotonicity)

E ⊢ δMN(P (δMN))(Q(δMN)) = δMN(PK)(QK∗) (δ-transitivity)

The system δ may be given more conventionally by leaving out all occurences of E ⊢δ

and replacing in the rule (cong-abs) the proviso “x /∈ FV(E)” by “x not occurring in
any assumption on which M = N depends”.

There is a canonical map from formulas to equations, preserving provability in ∆.

5.1.8. Definition. (i) For an equation E ≡ (M = N) in ∆, write E.L ::= M and
E.R ::= N .

(ii) Define for a formula ϕ the corresponding equation ϕ+ as follows.

(M = N)+ ::= M = N ;

(ψ ⊃ χ)+ ::= (δ(ψ+.L)(ψ+.R)(χ+.L)(χ+.R) = χ+.R);

(∀x.ψ)+ ::= (λx.ψ+.L = λx.ψ+.R).

So, if ψ+ ≡ (M = N) and χ+ ≡ (P = Q), then

(ψ ⊃ χ)+ ::= (δMNPQ = Q);

(¬ψ)+ ::= (δMNKK∗ = K∗);

(∀x.ψ)+ ::= (λx.M = λx.N).
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(iii) If Γ is a set of formulas, then Γ+ = {ϕ+ | ϕ∈Γ}.

5.1.9. Theorem. For every formula ϕ one has

⊢∆ ϕ↔ ϕ+.

Proof. By induction on the structure of ϕ. If ϕ is an equation, then this is trivial. If
ϕ ≡ ψ ⊃ χ, then the statement follows from

⊢∆ (M = N ⊃ P = Q)↔ (δMNPQ = Q).

If ϕ ≡ ∀x.ψ, then this follows from

⊢∆ ∀x.(M = N)↔ (λx.M = λx.N).

We will show now that ∆ is conservative over δ. The proof occupies 5.1.10-5.1.17

5.1.10. Lemma. (i) ⊢δ δMNPQz = δMN(Pz)(Qz).
(ii) ⊢δ δMNPQ = λz.δMN(Pz)(Qz).
(iii) ⊢δ λz.δMNPQ = δMN(λz.P )(λz.Q).

Proof. (i) Use δ-monotonicity F (δMNPQ) = δMN(FP )(FQ) for F = λx.xz.
(ii) By (i) and (η).
(iii) By (ii) applied with P := λz.P and Q := λz.Q.

5.1.11. Lemma. (i) δMNPQ = Q ⊢δ δMNQP = P.
(ii) δMNPQ = Q, δMNQR = R ⊢δ δMNPR = R.

(iii) δMNPQ = Q, δMNUV = V ⊢δ δMN(PU) = (QV ).

Proof. (i) P = δMNPP
= δMN(KPQ)(K∗QP )
= δMN(δMNPQ)(δMNQP ), by (δ-transitivity),
= δMNQ(δMNQP ), by assumption,
= δMNQ(K∗QP ), by (δ-transitivity),
= δMNQP.

(ii) R = δMNQR, by assumption,
= δMN(δMNPQ)(δMNQR), by assumption,
= δMN(KPQ)(K∗QR), by (δ-transitivity),
= δMNPR.

(iii) Assuming δMNPQ = Q and δMNUV = V we obtain by (δ-transitivity) applied
twice δMN(PU)(QV ) = (QV ) and δMN(PU)(QV ) = (QV ). Hence the result δMN(PU)(QV ) =
QV follows by (ii).

5.1.12. Proposition (Deduction theorem I). Let E be a set of equations. Then

E ,M = N ⊢δ P = Q ⇒ E ⊢δ δMNPQ = Q.
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Proof. By induction on the derivation of E ,M = N ⊢δ P = Q. If P = Q is an
axiom of δ or in E , then E ⊢δ P = Q and hence E ⊢δ δMNPQ = δMNQQ = Q.
If (P = Q) ≡ (M = N), then E ⊢δ δMNPQ ≡ δMNMN = N ≡ N . If P = Q
follows directly from E , N = M ⊢δ V = U , then by the induction hypothesis one has
E ⊢δ δMNQP = U . But then by lemma 5.1.11(i) one has E ⊢δ δMNPQ = Q. If
P = Q follows by (transitivity), (cong-app) or (cong-abs), then the result follows from
the induction hypothesis, using lemma 5.1.11(ii), (iii) or lemma 5.1.10(iii) respectively.

5.1.13. Lemma. (i) ⊢δ δMN(δMNPQ)P = P .
(ii) ⊢δ δMNQ(δMNPQ) = Q.

Proof. (i) By (δ-transitivity) one has

δMN(δMNPQ)P = δMN(KPQ)P = δMNPP = P.

(ii) Similarly.

5.1.14. Lemma. (i) ⊢δ δKK∗ = K∗;
(ii) ⊢δ δMNKK∗ = δMN ;
(iii) ⊢δ δ(δMN)K∗PQ = δMNQP ;
(iv) ⊢δ δ(δMNKK∗)K∗(δMNPQ)Q = P.

Proof. (i) K∗ = δKK∗KK∗, by (δ-hypothesis),
= λab.δKK∗(Kab)(K∗ab), by (η) and lemma 5.1.10(ii),
= λab.δKK∗ab
= δKK∗, by (η).

(ii) δMNKK∗ = δMN(δMN)(δMN), by (δ-transitivity),
= δMN, by (δ-reflexivity).

(iii) δMNQP = δMN(δKK∗PQ)(δK∗K∗PQ), by (i), (δ-identity),
= δMN(δ(δMN)K∗PQ)(δ(δMN)K∗PQ), by (δ-transitivity),
= δ(δMN)K∗PQ, by (δ-reflexivity).

(iv) By (ii) and (iii) we have

δ(δMNKK∗)K∗(δMNPQ)Q = δ(δMN)K∗(δMNPQ)Q = δMNQ(δMNPQ).

Therefore we are done by lemma 5.1.13(ii).

5.1.15. Lemma. (i) δMN = K ⊢δ M = N ;
(ii) δMNK∗K = K∗ ⊢δ M = N.
(iii) δ(δMNKK∗)K∗KK∗ = K∗ ⊢δ M = N.

Proof. (i) M = KMN = δMNMN = N , by assumption and (δ-hypothesis).

(ii) Suppose δMNK∗K = K∗. Then by lemma 5.1.10(i) and (δ-hypothesis)

M = K∗NM = δMNK∗KNM = δMN(K∗NM)(KNM) = δMNMN = N.
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(iii) By lemma 5.1.14(ii) and (iii)

δ(δMNKK∗)K∗KK∗ = δ(δMN)K∗KK∗ = δMNK∗K.

Hence by (ii) we are done.

5.1.16. Exercise. Prove in δ the following equations.
(i) δMNK∗K = δ(δMN)K∗.
(ii) δ(λz.δ(Mz)(Nz))(λz.K) = δMN .

[Hint. Start observing that δ(Mz)(Nz)(Mz)(Nz) = Nz.]

Now we are able to prove the conservativity of ∆ over δ.

5.1.17. Theorem. For equations E , E and formulas Γ, ϕ of ∆ one has the following.

(i) Γ ⊢∆ ϕ ⇐⇒ Γ+ ⊢δ ϕ
+.

(ii) E ⊢∆ E ⇐⇒ E ⊢δ E.

Proof. (i) (⇒) Suppose Γ ⊢∆ ϕ. By induction on this proof in ∆ we show that Γ+ ⊢δ

ϕ+. Case 1. ϕ is in Γ. Then ϕ+ ∈Γ+ and we are done. Case 2. ϕ is an equational axiom.
Then the result holds since δ has more equational axioms than ∆. Case 3. ϕ follows
from an equality rule in ∆. Then the result follows from the induction hypothesis and
the fact that δ has the same equational deduction rules. Case 4. ϕ follows from Γ ⊢∆ ψ
and Γ ⊢∆ ψ ⊃ ϕ. By the induction hypothesis Γ+ ⊢δ (ψ ⊃ ϕ)+ ≡ (δMNPQ = Q) and
Γ+ ⊢δ ψ

+ ≡ (M = N), where ψ+ ≡ (M = N) and ϕ+ ≡ (P = Q). Then Γ+ ⊢δ U =
δMMPQ = Q, i.e. Γ+ ⊢δ ϕ

+. Case 5. ϕ ≡ (χ ⊃ ψ) and follows by an (⊃-intro) from
Γ, χ ⊢∆ ψ.By the induction hypothesis Γ+, χ+ ⊢δ ψ

+ and we can apply the deduction
theorem 5.1.12. In the cases that ϕ is introduced by a (∀-elim) or (∀-intro), the result
follows easily from the induction hypothesis and axiom (β) or the rule (cong-abs). One
needs that FV(Γ) = FV(Γ+). Case 8. ϕ ∼= (M = N) and follows from Γ,M 6= N ⊢∆ ⊥
using the rule (classical). By the induction hypothesis Γ+, (M 6= N)+ ⊢δ K = K∗. By
the deduction theorem it follows that Γ+ ⊢δ δ(δMNKK∗)K∗KK∗ = K∗. Hence we are
done by lemma 5.1.15(iii). Case 9. ϕ is the axiom (M = N ⊃ δMNPQ = P ). Then ϕ+

is provable in δ by lemma 5.1.13(i). Case 10. ϕ is the axiom (M 6= N ⊃ δMNPQ = Q).
Then ϕ+ is provable in δ by lemma 5.1.14(iv).

(⇐) By the fact that δ is a subtheory of ∆ and theorem 5.1.9.
(ii) By (i) and the fact that E+ ≡ E.

n-th Order Logic

In this subsection some results will be sketched but not (completely) proved.

5.1.18. Definition. (i) The system ∆ without the two delta rules is denoted by ∆−.
(ii) ∆(n) is ∆− extended by the two delta rules restricted to δA,B’s with rank(A) ≤ n.
(iii) Similarly δ(n) is the theory δ in which only terms δA,B are used with rank(A) ≤ n.
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(iv) The rank of a formula ϕ is rank(ϕ) = max{ rank(δ) | δ occurs in ϕ}.

In the applications section we will show that ∆(n) is essentially n-th order logic.
The relation between ∆ and δ that we have seen also holds level by level. We will

only state the relevant results, the proofs being similar, but using as extra ingredient the
proof-theoretic normalization theorem for ∆. This is necessary, since a proof of a formula
of rank n may use a priori formulas of arbitrarily high rank. By the normalization
theorem this is not the case.

A natural deduction is called normal if there is no (∀-intro) immediately followed
by a (∀-elim), nor a (⊃-intro) immediately followed by a (⊃-elim). If a reduction is not
normal, then one can make Prawitz deductions reduction as follows.

··· Σ
ϕ

∀x.ϕ
ϕ[x := M ]

⇒
··· Σ[x := M ]

ϕ[x := M ]

··· Σ2

ϕ

[ϕ]
··· Σ1

ψ

ϕ ⊃ ψ
ψ

⇒

··· Σ2

[ϕ]
··· Σ1

ψ

5.1.19. Theorem. Every reduction sequence of ∆ deductions terminates in a unique
normal form.

Proof. This has been proved essentially in Prawitz [1965]. The higher order quantifiers
pose no problems.

Notation. (i) Let Γδ be the set of universal closures of

δmmpq = p,

δmnpp = p,

δmnmn = n,

δmnpq = δnmpq,

f(δmnpq) = δmn(fp)(fq),

δmm(p(δmn))(q(δmn)) = δmn(pK)(qK∗).

(ii) Let Γδ(n) = {ϕ∈Γδ | rank(ϕ) ≤ n}.

5.1.20. Proposition (Deduction theorem II). Let S be a set of equations or negations
of equations in ∆. Then for every n
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(i) S,Γδ(n),M = N ⊢∆(n) P = Q ⇒ S,Γδ(n) ⊢∆(n) δMNPQ = Q.
(ii) S,Γδ(n),M 6= N ⊢∆(n) P = Q ⇒ S,Γδ(n) ⊢∆(n) δMNPQ = P.

Proof. In the same stayle as the proof of proposition 5.1.12, but now using the normalization
theorem 5.1.19.

5.1.21. Lemma. Let S be a set of equations or negations of equations in ∆. Let S∗ be S
with each M 6= N replaced by δMNKK∗ = K∗. Then we have the following.

(i) S,M = N ⊢∆(n) P = Q ⇒ S∗ ⊢δ(n) δMNPQ = Q.
(ii) S,M 6= N ⊢∆(n) P = Q ⇒ S∗ ⊢δ(n) δMNPQ = P.

Proof. By induction on derivations.

5.1.22. Theorem. E ⊢∆(n) E ⇐⇒ E ⊢δ(n) E.

Proof. (⇒) By taking S = E and M ≡ N ≡ x in lemma 5.1.21(i) one obtains E ⊢δ(n)

δxxPQ = Q. Hence E ⊢δ(n) P = Q, by (δ-identity). (⇐) Trivial.

5.1.23. Theorem. (i) Let rank(E ,M = N) ≤ 1. Then

E ⊢∆ M = N ⇐⇒ E ⊢δ(1) M = N.

(ii) Let Γ, A be a first-order sentences. Then

Γ ⊢∆ A ⇐⇒ Γ ⊢δ(1) A
+.

Proof. See Statman [2000].

In Statman [2000] it is also proved that ∆(0) is decidable. Since ∆(n) for n ≥ 1 is at
least first order predicate logic, these systems are undecidable. It is observed in Gödel
[1931] that the consistency of ∆(n) can be proved in ∆(n+ 1).

5.2. Surjective pairing 21.8.2006:951

A pairing on a set X consists of three maps π, π1, π1 such that

π : X→X→X
πi : X→X

and for all x1, x2 ∈X one has
πi(πx1x2) = xi.

Using a pairing one can pack two or more elements of X into one element:

πxy ∈ X,

πx(πyz) ∈ X.
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A pairing on X is called surjective if one also has for all x∈X

π(π1x)(π2x) = x.

This is equivalent to saying that every element of X is a pair. Using a (surjective) pairing
datastructures can be encoded.

The main results in this section are the following. 1. After adding a surjective
pairing to λo

→ the resulting system λSP becomes Hilbert-Post complete. This means
that an equation between terms is either provable or inconsistent. 2. Every recursively
enumerable set X of terms that is closed under provable equality is Diophantine, i.e.
satisfies for some terms F,G

M ∈X ⇐⇒ ∃N FMN = GMN.

Both results will be proved by introducing Cartesian monoids and studying freely generated
ones.

The system λSP

We define λSP as an extension of the simply typed lambda calculus λo
→.

5.2.1. Definition. (i) The set of types of λSP , notation TT = TT(λSP ), is the same as
TT(λo

→): TT = o | TT→TT.
(ii) The terms of λSP , notation ΛSP (or ΛSP (A) for terms of a certain type A or

Λø, Λø
SP

(A) for closed terms), are obtained from λo
→ by adding to the formation of

terms the constants π : 12 = o2→o, π1 : 1, ⊢: 1.
(iii) Equality for λSP is axiomatized by β, η and the following scheme. For all

M,M1,M2 : o

πi(πM1M2) = Mi;

π(π1M)(π2M) = M.

(iv) A notion of reduction SP is introduced on λSP -terms by the following contraction
rules: for all M,M1,M2 : o

πi(πM1M2) → Mi;

π(π1M)(π2M) → M.

Usually we will consider SP in combination of βη, obtaining βηSP .

5.2.2. Theorem. The conversion relation =βηSP , generated by the notion of reduction
βηSP, coincides with that of the theory λSP .

Proof. As usual.

For objects of higher type pairing can be defined in terms of π, π1,⊢ in the following
way.
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5.2.3. Definition. For every type A∈TT we define πA : A→A→A, πi : A→A as follows,
cf. definition ??.

πo ≡ π;

πo
i ≡ πi;

πA→B ≡ λxy (A→B)λz A.πB(xz)(yz);

πA→B
i ≡ λx (A→B)λz A.πB

i (xz).

Sometimes we may suppress type annotations in πA, πA
1 ,⊢A, but the types can always

and unambiguously be reconstructed from the context.
The defined constants for higher type pairing can easily be shown to be a surjective

pairing also.

5.2.4. Proposition. Let π = πA, πi = πA
i . Then for M,M1,M2 ∈ΛSP (A)

π(π1M)(⊢M) →→βηSP M ;

πi(πM1M2) →→βηSP Mi, (i = 1, 2).

Proof. By induction on the type A.

Note that the above reductions may involve more than one step, typically additional
βη-steps.

Now we will show that the notion of reduction βηSP is confluent.

5.2.5. Lemma. The notion of reduction βηSP satisfies WCR.

Proof. By the critical pair lemma of Mayr and Nipkow [1998]. But a simpler argument
is possible, since SP reductions only reduce to terms of type o that did already exist and
hence cannot create any redexes.

5.2.6. Lemma. (i) The notion of reduction SP is SN.
(ii) If M →→βηSP N , then there exists P such that M →→βη P →→SP N .
(iii) The notion of reduction βηSP is SN.

Proof. (i) Since SP -reductions are strictly decreasing.
(ii) Show M →SP L →βη N ⇒ ∃L′M →→βη L′ →→βηSP N . Then (ii) follows by a

staircase diagram chase.
(iii) By (i), the fact that βη is SN and a staircase diagram chase, possible by (ii).

5.2.7. Proposition. βηSP is CR.

Proof. By lemma 5.2.6(iii) and Newman’s Lemma 5.3.14.

5.2.8. Definition. (i) An SP-retraction pair from A to B is a pair of terms M A→B
and N B→A such that N ◦M =βηSP IA.
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(ii) A is a SP-retract of B, notation A ⊳SP B, if there is an SP -retraction pair
between A and B.

The proof of the following result is left as an exercise to the reader.

5.2.9. Proposition. Define types Nn as follows. N0 ≡ o and Nn+1 ≡ Nn→Nn. Then
for every type A, one has A ⊳SP Nrank(A).

Cartesian monoids

We start with the definition of a Cartesian monoid, introduced in Scott [1980] and,
independently, in Lambek [1980].

5.2.10. Definition. (i) A Cartesian monoid is a structure

C = 〈M, ∗, I, L,R, 〈·, ·〉〉

such that (M, ∗, I) is a monoid (∗ is associative and I is a two sided unit), L,R∈M
and 〈·, ·〉 :M2→M and satisfy

L ∗ 〈x, y〉 = x

R ∗ 〈x, y〉 = y

〈x, y〉 ∗ z = 〈x ∗ z, y ∗ z〉
〈L,R〉 = I

(ii) M is called trivial if L = R.

Note that ifM is trivial, then it consists of only one element: for all x, y ∈M

x = L〈x, y〉 = R〈x, y〉 = y.

5.2.11. Lemma. The last axiom of the Cartesian monoids can be replaced equivalently
by the surjectivity of the pairing:

〈L ∗ x,R ∗ x〉 = x.

Proof. First suppose 〈L,R〉 = I. Then 〈L∗x,R∗x〉 = 〈L,R〉∗x = I∗x = x. Conversely
suppose 〈L ∗ x,R ∗ x〉 = x, for all x. Then 〈L,R〉 = 〈L ∗ I, R ∗ I〉 = I.

5.2.12. Lemma. Let M be a Cartesian monoid. Then for all x, y ∈M

L ∗ x = L ∗ y & R ∗ x = R ∗ y ⇒ x = y.

Proof. x = 〈L ∗ x,R ∗ x〉 = 〈L ∗ y,R ∗ y〉 = y.

A first example of a Cartesian monoid has as carier set the closed βηSP -terms of
type 1 = o→o.
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5.2.13. Definition. Write for M,N ∈Λø
SP

(1)

〈M,N〉 ≡ π1MN ;

M ◦N ≡ λx o.M(Nx);

I ≡ λx o.x;

L ≡ πo
1;

R ≡ ⊢o .

Define

C0 = 〈Λø
SP (1)/ =βηSP , ◦, I, L, R, 〈·, ·〉〉.

The reason to call this structure C0 and not C1 is that we will generalize it to Cn being
based on terms of the type 1n→1.

5.2.14. Proposition. C0 is a non-trivial Cartesian monoid.

Proof. For x, y, z 1 the following equations are valid in λSP .

I ◦ x = x;

x ◦ I = x;

L ◦ 〈x, y〉 = x;

R ◦ 〈x, y〉 = y;

〈x, y〉 ◦ z = 〈x ◦ z, y ◦ z〉;
〈L, R〉 = I.

The third equation is intuitively right, if we remember that the pairing on type 1 is lifted
pointwise from a pairing on type o; that is, 〈f, g〉 = λx.π(fx)(gx).

5.2.15. Example. Let [·, ·] be any surjective pairing of natural numbers, with left and
right projections l, r : N→N. For example, we can take Cantor’s well-known bijection1

from N
2 to N. We can lift the pairing function to the level of functions by putting

〈f, g〉(x) = [f(x), g(x)] for all x∈N. Let I be the identity function and let ◦ denote
function composition. Then

N 1 = 〈N→N, I, ◦, l, r, 〈·, ·〉〉.

is a non-trivial Cartesian monoid.

Now we will show that the equalities in the theory of Cartesian monoids are generated
by a confluent rewriting system.

1A variant of this function is used in Section 5.3 as a non-surjective pairing function [x, y] + 1,
such that, deliberaately, 0 does not encode a pair. This variant is specified in detail and explained in
Figure 5.2.
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5.2.16. Definition. (i) Let TCM be the terms in the signature of Cartesian monoids.
Let T o

CM be the closed such terms.
(ii) Consider the rewrite system CM on TCM defined as follows.

L ∗ 〈x, y〉 → x

R ∗ 〈x, y〉 → y

〈x, y〉 ∗ z → 〈x ∗ z, y ∗ z〉
〈L,R〉 → I

〈L ∗ x,R ∗ x〉 → x

I ∗ x → x

x ∗ I → x

modulo the associativity axioms (i.e. terms like f ∗ (g ∗ h) and (f ∗ g) ∗ h are considered
as the same).

5.2.17. Proposition. (i) CM is WCR.
(ii) CM is SN.
(iii) CM is CR.

Proof. (i) Examine all critical pairs. Modulo associativity there are many such pairs,
but they all converge. Consider, as an example, the following reductions:

x ∗ z ← (L ∗ 〈x, y〉) ∗ z = L ∗ (〈x, y〉) ∗ z)→ L ∗ 〈x ∗ z, y ∗ z〉 → x ∗ z
(ii) Interprete CM as integers by putting

[[x]]ρ = ρ(x);

[[e]]ρ = 2, if e is L,R or I;

[[e1 ∗ e2]]ρ = [[e1]]ρ.[[e2]]ρ;

[[〈e1, e2〉]]ρ = [[e1]]ρ + [[e2]]ρ + 1.

Then [[·]]ρ preserves associativity and

e→CM e′ ⇒ [[e]]ρ > [[e′]]ρ.

Therefore CM is SN.
(iii) By (i), (ii) and Newmans lemma 5.3.14.

Closed terms in CM -nf can be represented as binary trees with strings of L,R (the
empty string becomes I) at the leaves, for example

•
��
��
�

77
77

•
��
��
�

77
77

LRR

LL I

represents 〈〈L ∗ L, I〉, L ∗R ∗R〉. In such trees the subtree corresponding to 〈L,R〉 will
not occur, since this term reduces to I.
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The free Cartesian monoids F [x1, . . . , xn]

5.2.18. Definition. (i) The closed term model of the theory of Cartesian monoids
consists of TCM modulo =CM and is denoted by F . It is the free Cartesian monoid
with no generators.

(ii) The free Cartesian monoid over the generators ~x, notation F [~x], is generated
from I, L,R and the indeterminates ~x using ∗ and 〈−,−〉. Usually ~x = x1, . . . ,xn is
finite.

5.2.19. Proposition. (i) For all a, b∈F one has

a 6= b ⇒ ∃c, d∈F [c ∗ a ∗ d = L & c ∗ b ∗ d = R].

(ii) F is simple: every homomorphism g : F→M to a non-trivial Cartesian monoid
M is injective.

Proof. (i) We can assume that a, b are in normal form. The binary tree part of the
normal form is called ∆. The ∆’s of a, b can be made to be congruent by expansions of
the form x← 〈L ∗ x,R ∗ x〉. The expanded trees are distinct in some leaf, which can be
reached by a string of L’s and R’s joined by ∗. Thus there is such a string, say c, such
that c ∗ a 6= c ∗ b and both of these reduce to 〈 〉-free strings of L’s and R’s joined by ∗.
We can also assume that neither of these strings is a suffix of the other, since c could
be replaced by L ∗ c or R ∗ c (depending on an R or an L just before the suffix). Thus
there are 〈 〉-free a′, b′ and integers k, l such that

c ∗ a ∗ 〈I, I〉k ∗ 〈R,L〉l = a′ ∗ L and

c ∗ b ∗ 〈I, I〉k ∗ 〈R,L〉l = b′ ∗R

and there exist integers n and m, being the length of a′ and of b′, respectively, such that

a′ ∗ L ∗ 〈〈I, I〉n ∗ L, 〈I, I〉m ∗R〉 = L and

b′ ∗R ∗ 〈〈I, I〉n ∗ L, 〈I, I〉m ∗R〉 = R

Therefore we can set d = 〈I, I〉k ∗ 〈R,L〉l ∗ 〈〈I, I〉n ∗ L, 〈I, I〉m ∗R〉.
(ii) By (i) and the fact thatM is non-trivial.

Finite generation of F [x1, . . . ,xn]

Now we will show that F [x1, . . . ,xn] is finitely generated as a monoid, i.e. from finitely
many of its elements using the operation ∗ only.

5.2.20. Notation. In a monoidM we define list-like left-associative and right-associative
iterated 〈 〉-expressions of length > 0 as follows. Let the elements of ~x range overM.

〈〈x〉 ≡ x;

〈〈x1, . . . , xn+1〉 ≡ 〈〈〈x1, . . . , xn〉, xn+1〉, n > 0;

〈x〉〉 ≡ x;

〈x1, . . . , xn+1〉〉 ≡ 〈x1, 〈x2, . . . , xn+1〉〉〉, n > 0.
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5.2.21. Definition. Define G ⊆ F as follows.

G = {〈X ∗ L, Y ∗ L ∗R,Z ∗R ∗R〉〉 | X,Y, Z ∈{L,R, I}} ∪ {〈I, I, I〉〉}.

Let [G] be the set generated from G using ∗, i.e. the least subset of F containing G
and closed under ∗. We will show that [G] = F .

5.2.22. Lemma. Define a string to be an expression of the form X1 ∗ . . . ∗ Xn, with
Xi ∈{L,R, I}. Then for all strings s, s1, s2, s3 one has the following.

(i) 〈s1, s2, s3〉〉 ∈ [G].
(ii) s∈ [G].

Proof. (i) Note that

〈X ∗ L, Y ∗ L ∗R,Z ∗R ∗R〉〉 ∗ 〈s1, s2, s3〉〉 = 〈X ∗ s1, Y ∗ s2, Z ∗ s3〉〉.

Hence, starting from 〈I, I, I〉〉 ∈G every triple of strings can be generated because the
X,Y, Z range over {L,R, I}.

(ii) Notice that

s = 〈L,R〉 ∗ s
= 〈L ∗ s,R ∗ s〉
= 〈L ∗ s, 〈L,R〉 ∗R ∗ s〉
= 〈L ∗ s, L ∗R ∗ s,R ∗R ∗ s〉〉,

which is in [G] by (i).

5.2.23. Lemma. Suppose 〈〈s1, . . . , sn〉 ∈ [G]. Then

(i) si ∈ [G], for 1 ≤ i ≤ n.
(ii) 〈〈s1, . . . , sn, 〈si, sj〉〉 ∈ [G] for 0 ≤ i, j ≤ n.
(iii) 〈〈s1, . . . , sn, X ∗ si〉 ∈ [G] for X ∈{L,R, I}.

Proof. (i) By lemma 5.2.22(ii) one has F1 ≡ L(n−1) ∈ [G] and
Fi ≡ R ∗ L(n−i) ∈ [G]. Hence

s1 = F1 ∗ 〈〈s1, . . . , sn〉 ∈ [G];
si = Fi ∗ 〈〈s1, . . . , sn〉 ∈ [G], for i = 2, . . . , n.

(ii) By lemma 5.2.22(i) one has 〈I, 〈Fi, Fj〉〉 = 〈I, Fi, Fj〉〉 ∈ [G]. Hence

〈〈s1, . . . , sn, 〈si, sj〉〉 = 〈I, 〈Fi, Fj〉〉 ∗ 〈〈s1, . . . , sn〉 ∈ [G].

(iii) Similarly 〈〈s1, . . . , sn, X ∗ si〉 = 〈I,X ∗ Fi〉 ∗ 〈〈s1, . . . , sn〉 ∈ [G].

5.2.24. Theorem. As a monoid, F is finitely generated. In fact F = [G].
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Proof. Let e∈F . Then there is a formation sequence e1 ≡ L, e2 ≡ R, e3 ≡ I, . . . , en ≡
e such that for each 4 ≤ k ≤ n there are i, j < k such that ek ≡ 〈ei, ej〉 or ek ≡ X ∗ ei,
with X ∈{L,R, I}.

We have I = 〈L,R〉 = 〈〈L,R〉 ∈ [G]. By lemma 5.2.23(ii), (iii) it follows that

〈〈e1, e2, e3, . . . , en〉 ∈ [G].

Therefore by (i) of that lemma e ≡ en ∈ [G].

The following corollary is similar to a result of Böhm, who showed that the monoid of
untyped lambda terms has two generators, see Barendregt [1984].

5.2.25. Corollary. (i) Let M be a finitely generated cartesian monoid. Then M is
generated by two of its elements.

(ii) F [x1, . . . ,xn] is generated by two elements.

Proof. (i) Let G = {g1, . . . , gn} be the set of generators of M. Then G and hence M
is generated by R and 〈〈g1, . . . , gn, L〉.

(ii) F [~x] is generated by G and the ~x, hence by (i) by two elements.

Invertibility in F

5.2.26. Definition. (i) Let L (R) be the submonoid of the right (left) invertible elements
of F

L = {a∈F | ∃b∈F b ∗ a = I};
R = {a∈F | ∃b∈F a ∗ b = I}.

(ii) Let I be the subgroup of F consisting of invertible elements

I = {a∈F | ∃b∈F a ∗ b = b ∗ a = I}.

It is easy to see that I = L ∩R.

5.2.27. Examples. (i) L,R∈L, since both have the right inverse 〈I, I〉.
(ii) a = 〈〈L,R〉, L〉 having as ‘tree’

•
��
�� ++

++

•
��
�� ))

))
L

L R

has as left inverse b = 〈R,RL〉, where we do not write the ∗ in strings.
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(iii) •
��
�� **

**

•
��
�� ((

((
L

L L

has no left inverse, since “R cannot be obtained”.

(iv) a = 〈〈RL,LL〉, RR〉 having the following tree

•
��
�� 55

55

•
��
�� --

--
RR

LL LR

has the following right inverses b = 〈〈〈RL,LL〉, 〈c,R〉〉, R〉. Indeed

a ∗ b = 〈〈RLb, LLb〉, RRb〉 = 〈〈LL,RL〉, R〉 = 〈L,R〉 = I.

(v) •
{{

{{
{

??
??

?

•
��
�� 33

33
•

��
�� ..

..

•
��
�� --

--
LL RR RL

LL LR

has no right inverse, as “LL occurs twice”.

(vi) •
		

		 77
77

•
��
�� 44

44
RL

•
��
�� --

--
RR

LL LR

has a two-sided inverse, as “all strings of two letters” occur

exactly once, the inverse being •
zz

zz
z

FF
FF

FF

•
��
�� 00

00
•

��
�� 00

00

LLL R RLL RL

.

For normal forms f ∈F we have the following characterizations.

5.2.28. Proposition. (i) f has a right inverse if and only if f can be expanded (by
replacing x by 〈Lx,Rx〉) so that all of its strings at the leaves have the same length and
none occurs more than once.

(ii) f has a left inverse if and only if f can be expanded so that all of its strings at
the leaves have the same length, say n, and each of the possible 2n strings of this length
actually occurs.
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(iii) f is doubly invertible if and only if f can be expanded so that all of its strings at
the leaves have the same length, say n, and each of the possible 2n strings of this length
occurs exactly once.

Proof. This is clear from the examples.

The following terms are instrumental to generate I and R.

5.2.29. Definition.

Bn = 〈LR0, . . . , LRn−1, LLRn, RLRn, RRn〉〉;
C0 = 〈R,L〉

Cn+1 = 〈LR0, . . . , LRn−1, LRRn, LRn, RRRn〉〉.

5.2.30. Proposition. (i) I = [{Bn | n∈N} ∪ {Cn | n∈N}].
(ii) R = L ∗ I = R ∗ I.

5.2.31. Remark. The Bn alone generate the so-called Thompson-Freyd-Heller group,
see exercise 5.6.25.

5.2.32. Proposition. If f(~x) and g(~x) are distinct members of F [~x], then there exists
~h∈F such that f(~h) 6= g(~h). We say that F [~x] is separable.

Proof. Suppose that f(~x) and g(~x) are distinct normal members of F [~x]. We shall
find ~h such that f(~h) 6= g(~h). First remove subexpressions of the form L ∗ xi ∗ h and
R ∗ xj ∗ h by substituting 〈y, z〉 for xi, xj and renormalizing. This process terminates,
and is invertible by substituting L ∗ xi for y and R ∗ xj for z. Thus we can assume that
f(~x) and g(~x) are distinct normal and without subexpressions of the two forms above.
Indeed, expressions like this can be recursively generated as a string of xi’s followed by
a string of L’s and R’s, or as a string of xi’s followed by a single 〈 〉 of expressions of the
same form. Let m be a large number relative to f(~x), g(~x) (> #f(~x),#g(~x), where #t
is the number of symbols in t.) For each positive integer i, set

hi = 〈〈Rm, . . . , Rm, I〉〉, Rm〉

where the right-associative 〈 〉-expression contains i times Rm. We claim that both
f(~x) and g(~x) can be reconstructed from the normal forms of f(~h) and g(~h), so that
f(~h) 6= g(~h).

Define dr(t), for a normal t∈F , as follows.

dr(~w) = 0 if ~w is a string of L,R’s;

dr(〈t, s〉 = dr(s).

Note that if t is a normal member of F and dr(t) < m, then

hi ∗ t =CM 〈〈t′, . . . , t′, t〉〉, t′〉,
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where t′ ≡ Rmt is 〈 〉-free. Also note that if s is the CM-nf of hi ∗ t, then dr(s) = 1. The
normal form of, say, f(~h) can be computed recursively bottom up as in the computation
of the normal form of hi ∗ t above. In order to compute back f(~x) we consider several
examples.

f1(~x) = x3R;

f2(~x) = 〈〈R2, R2, R2, R〉〉, R2〉;
f3(~x) = 〈R,R,L〉〉
f4(~x) = x3x1x2R;

f5(~x) = x3x1〈x2R,R〉.

Then f1(~h), . . . , f5(~h) have as trees respectively

???
��

��

R∗

??
??���

??
??���

???���

R

R∗

R∗

R∗

???
��

��

R2

??
??���

??
??���

??
?

���

R

R2

R2

R2

???
��

��

R∗L
??

??���

??
??���

??
??���

???���

L

R∗L

R∗L

R

R

???
��

��

R∗

??
??���

??
??���

??
??���

???
��

��

R∗

R∗

R∗

R∗

??
??���

???
��

��

R∗

R∗

??
??���

???���

R

R∗

R∗

???
��

��

R∗

??
??���

??
??���

??
??���

???
��

��

R∗

R∗

R∗

R∗

??
??���

???
��

��

R

R∗

???
��

��

R∗

??
??���

???���

R

R∗

R∗

In these trees the R∗ denote long sequences of R’s of possibly different lengths.

Cartesian monoids inside λSP

Remember C0 = 〈Λø
SP (1)/ =βηSP , ◦, I, L, R, 〈·, ·〉〉.
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5.2.33. Proposition. There is a surjective homomorphism h : F→C0.

Proof. Now if M : 1 is a closed term and in long βηSP normal form, then M has one of
the following shapes: λa.a, λa.πX1X2, λa.πiX for i = 1 or i = 2. Then we have M ≡ I,
M = 〈λa.X1, λa.X2〉, M = L ◦ (λa.X) or M = R ◦ (λa.X), respectively. Since the terms
λa.Xi are smaller than M , this yields an inductive definition of the set of closed terms
of λSP modulo = in terms of the combinators I, L, R, 〈 〉, ◦. Thus the elements of C0 are
generated from {I, ◦, L, R, 〈·, ·〉} in an algebraic way. Now define

h(I) = I;

h(L) = L;

h(R) = R;

h(〈a, b〉) = 〈h(a), h(b)〉;
h(a ∗ b) = h(a) ◦ h(b).

Then h is a surjective homomorphism.

Now we will show in two different ways that this homomorphism is in fact injective and
hence an isomorphism.

5.2.34. Theorem. F ∼= C0.

Proof 1. We will show that the homomorphism h in proposition 5.2.33 is injective. By
a careful examination of CM -normal forms one can see the following. Each expression
can be rewritten uniquely as a binary tree whose nodes correspond to applications of
〈·, ·〉 with strings of L’s and R’s joined by ∗ at its leaves (here I counts as the empty
string) and no subexpressions of the form 〈L ∗ e,R ∗ e〉. Thus

a 6= b ⇒ anf 6≡ bnf ⇒ h(anf) 6= h(bnf) ⇒ h(a) 6= h(b),

so h is injective. 1

Proof 2. By proposition 5.2.19. 2

The structure C0 will be generalized as follows.

5.2.35. Definition. Consider the type 1n→1 = (o→o)n→o→o. Define

Cn = 〈Λø
SP (1n→1)/ =βηSP , In, Ln, Rn, ◦n, 〈−,−〉n〉,

where writing ~x = x1, . . . , xn 1

〈M,N〉n = λ~x.〈M~x,N~x〉;
M ◦n N = λ~x.(M~x) ◦ (N~x);

In = λ~x.I;

Ln = λ~x.L;

Rn = λ~x.R.



5.2. SURJECTIVE PAIRING 21.8.2006:951 215

5.2.36. Proposition. Cn is a non-trivial Cartesian monoid.

Proof. Easy.

5.2.37. Proposition. Cn ∼= F [x1, . . . , xn].

Proof. As before, let hn : F [~x]→Cn be induced by

hn(xi) = λ~xλz o.xiz = λ~x.xi;
hn(I) = λ~xλz o.z = In;
hn(L) = λ~xλz o.π1z = Ln;
hn(R) = λ~xλz o.π2z = Rn;

hn(〈s, t〉) = λ~xλz o.π(s~xz)(t~xz) = 〈hn(s), hn(t)〉n.

As before one can show that this is an isomoprphism.

In the sequel an important case is n = 1, i.e. C1→1 ∼= F [x].

Hilbert-Post completeness of λ→SP

The claim that an equation M = N is either a βηSP convertibility or inconsistent is
proved in two steps. First it is proved for the type 1→1 by the analysis of F [x]; then it
follows for arbitrary types by reducibility of types in λSP .

Remember that M#TN means that T ∪ {M = N} is inconsistent.

5.2.38. Proposition. (i) Let M,N ∈Λø
SP

(1). Then

M 6=βηSP ⇒ M#βηSPN.

(ii) The same holds for M,N ∈Λø
SP

(1→1).

Proof. (i) Since F ∼= C0 = Λø
SP

(1), by theorem 5.2.34, this follows from proposition
5.2.19(i).

(ii) If M,N ∈Λø
SP

(1→1), then

M 6= N ⇒ M = λf 1.M1[f ] 6= λf 1.N1[f ] = N with M1[f ], N1[f ]

⇒ M1[f ] 6= N1[f ]

⇒ M1[F ] 6= N1[F ] for some F ∈Λø
SP

(1),

by 5.2.32,

⇒ M1[F ]#N1[F ]

⇒ M#N.

We now want to generalize this last result for all types by using type reducibility in
the context of λSP .
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5.2.39. Definition. Let A,BTT(λ→). We say that A is βηSP -reducible to B, notation
A ≤βηSP B, iff there exists Φ : A→B such that for any closed N1, N2 : A

N1 = N2 ⇐⇒ ΦN1 = ΦN2.

5.2.40. Proposition. For each type A one has A ≤βηSP 1→1.

Proof. We can copy the proof 3.4.7 to obtain A ≤βηSP 12→o→o. Moreover, by

λuxa.u(λz1z2.x(π(xz1)(xz2)))a

one has 12→o→o ≤βηSP 1→1.

5.2.41. Corollary. Let A∈TT(λ→) and M,N ∈Λø
SP

. Then

M 6=βηSP N ⇒ M#βηSPN.

Proof. Let A ≤βηSP 1→1 using Φ. Then

M 6= N ⇒ ΦM 6= ΦN
⇒ ΦM#ΦN, by corollary 5.2.38(ii),
⇒ M#N.

We obtain the following Hilbert-Post completeness theorem.

5.2.42. Theorem. LetM be a model of λSP . For any type A and closed terms M,N ∈Λø(A)
the following are equivalent.

(i) M =βηSP N ;

(ii) M |= M = N ;

(iii) λSP ∪ {M = N} is consistent.

Proof. ((i)⇒(ii)) By soundness. ((ii)⇒(iii)) Since truth implies consistency. ((iii)⇒(i))
By corollary 5.2.41.

The result also holds for equations between open terms (consider their closures). The
moral is that every equation is either provable or inconsistent. Or that every model of
λSP has the same (equational) theory.
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Diophantine relations

5.2.43. Definition. Let R ⊆ Λø(A1)× . . .× Λø(An) be an n-ary relation.
(i) R is called equational iff

∃B ∈TT(o)∃M,N ∈Λø(A1→ . . .→An→B)∀~F

R(F1, . . . , Fn) ⇐⇒ MF1 . . . Fn = NF1 . . . Fn. (1)

Here = is taken in the sense of the theory of λSP .
(ii) R is called the projection of the n+m-ary relation S if

R(~F ) ⇐⇒ ∃~G S(~F , ~G)

(iii) R is called Diophantine if it is the projection of an equational relation.

Note that syntactic relations are closed coordinate wise under = and are recursive (since
λSP is CR and SN). A Diophantine relation is clearly closed under = (coordinate wise)
and recursivly enumerable. Our main result will be the converse.

5.2.44. Theorem. A relation R on closed ΛSP terms is Diophantine if and only if R is
closed coordinate wise under = and recursively enumerable.

The rest of this section is devoted to the proof of this claim.

5.2.45. Proposition. (i) Equational relations are closed under substitution of lambda
definable functions. This means that if R is equational and R′ is defined by

R′(~F ) ⇐⇒ R(H1
~F , . . . ,Hn

~F ),

then R′ is equational.
(ii) Equational relations are closed under conjunction.
(iii) Equational relations are Diophantine.
(iv) Diophantine relations are closed under substitution of lambda definable functions,

conjunction and projection.

Proof. (i) Easy.
(ii) Use (simple) pairing.
(iii) By dummy projections.
(iv) By some easy logical manipulations.

5.2.46. Lemma. Let R ⊆ Πn
i=1Λ

ø(Ai). Suppose that Φi : Ai ≤βηSP 1→1. Define RΦ ⊆
Λø(1→1)n by

RΦ(G1, . . . , Gn) ⇐⇒ ∃F1 . . . Fn [Φ1F1 = G1& . . .ΦnFn = Gn & R(F1, . . . , Fn)].

Then
(i) R is Diophantine iff RΦ is Diophantine.
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(ii) R is =-closed and re iff RΦ is =-closed and re.

Proof. (i) (⇒) By proposition 5.2.45.
(⇐) By noting that R(F1, . . . , Fn) ⇐⇒ RΦ(ΦF1, . . . ,ΦFn).

(ii) Similarly.

By pairing we can assume without loss of generality that n = 1.

5.2.47. Lemma. Let R ⊆ Λø(1→1)n. Define R∧ ⊆ Λø(1→1) by

R∧(F ) ⇐⇒ R(π1→1
1 (F ), . . . , π1→1

n (F )).

Then
(i) R is Diophantine iff R∧ is Diophantine.
(ii) R is =-closed and re iff R∧ is =-closed and re.

Proof. By proposition 5.2.45(i) and the pairing functions.

5.2.48. Corollary. In order to prove that every RE relation R ⊆ Πn
i=1Λ

ø(Ai) that is
closed under =βηSP is Diophantine, it suffices to do this just for such R ⊆ Λø(1→1).

Proof. By the previous two lemmas.

So now we are interested in recursively enumerable subsets of Λø(1→1) closed under
=βηSP . Since

exp(CM ∪ {x})/ =CM = F [x] ∼= C1 = Λø(1→1)/ =βηSP

one can shift atention to relations on exp(CM ∪ {x}) closed under =CM. We say loosly
that such relations are on F [x]. The definition of Such relations to be equational
(Diophantine) is slightly different (but completely in accordance with the isomorphism
C1 ∼= F [x]).

5.2.49. Definition. A k-ary relation R on F [~x] is called Diophantine if there exist
s(u1, . . . ,uk, ~v), t(u1, . . . ,uk, ~v)∈F [~u,~v] such that

R(f1[~x], . . . , fk[~x]) ⇐⇒ ∃~v ∈F [~x].s(f1[~x], . . . , fk[~x], ~v) = t(f1[~x], . . . , fk[~x], ~v).

Diophantine relations on F are closed under conjunction as before.

5.2.50. Proposition (Transfer lemma). (i) Let X ⊆ (F [x1, . . . ,xn])k be equational (Diophantine).
Then hn(X) ⊆ (Cn)k is equational (Diophantine), respectively.

(ii) Let X ⊆ (Cn)k be RE and closed under =βηSP . Then
h−1

n (X) ⊆ (F [x1, . . . ,xn])k is RE and closed under =CM.

5.2.51. Corollary. In order to prove that every RE relation on C1 closed under =βηSP

is Diophantine it suffices to show that every RE relation on F [x] closed under =CM is
Diophantine.
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Before proving that every recursively enumerable relation on F [x] is Diophantine,
for the sake of clarity we shall give the proof first for F . It consists of two steps: first we
encode Matijasevic’s solution to Hilbert’s 10th problem into this setting; then we give a
Diophantine coding of F in F , and finish the proof for F . Since the coding of F can
easily be extended to F [x] the result then holds also for this structure and we are done.

5.2.52. Definition. Write sn = Rn ∈F . The set of numerals in F is defined by N =
{sn | n∈N}.

We have the following.

5.2.53. Proposition. f ∈N ⇐⇒ f ∗R = R ∗ f.

Proof. This is because if f is normal and f ∗R = R ∗ f , then f the binary tree part
of f must be trivial, that is, f must be a string of L’s and R’s, thus only R’s.

5.2.54. Definition. A sequence of k-ary relations on Rn ⊆ F is called Diophantine
uniformly in n iff there is a k + 1-ary Diophantine relation P ⊆ Fk+1 such that

Rn(~u) ⇐⇒ P (sn, ~u).

Now we build up a toolkit of Diophantine relations on F .

1. N is equational (hence Diophantine).

Proof. In 5.2.53 is was proved that

f ∈N ⇐⇒ f ∗R = R ∗ f.

2. The sets F ∗ L, F ∗R ⊆ F and {L,R} are equational. In fact one has

f ∈F ∗ L ⇐⇒ f ∗ 〈L,L〉 = f.
f ∈F ∗R ⇐⇒ f ∗ 〈R,R〉 = f.
f ∈{L,R} ⇐⇒ f ∗ 〈I, I〉 = f.

Proof. To see that the first equivalence holds, notice that if f ∈F ∗ L, then
f = g ∗ L, for some g ∈F hence f ∗ 〈L,L〉 = f . Conversely, if f = f ∗ 〈L,L〉, then
f = f ∗ 〈I, I〉 ∗ L∈F ∗ L.

The second equivalence is proved similarly.

In the third equivalence (⇐) follows by induction on the nf of f .

3. Notation [ ] = R;
[f0, . . . , fn−1] = 〈f0 ∗ L, . . . , fn−1 ∗ L,R〉, if n > 0.

One easily sees that [f0, . . . , fn−1] ∗ [I, fn] = [f0, . . . , fn]. Write

Auxn(f) = [f, f ∗R, . . . , f ∗Rn−1].
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Then the relation h = Auxn(f) is Diophantine uniformly in n.

Proof. Indeed,

h = Auxn(f) ⇐⇒ Rn ∗ h = R & h = R ∗ h ∗ 〈〈L,L〉, 〈f ∗Rn−1 ∗ L,R〉〉.

To see (⇒), assume h = [f, f ∗R, . . . , f ∗Rn−1], then
h = 〈f ∗ L, f ∗R ∗ L, . . . , f ∗Rn−1 ∗ L,R〉〉, so Rn ∗ h = R and

R ∗ h = [f ∗R, . . . , f ∗Rn−1]

R ∗ h ∗ 〈〈L,L〉, 〈f ∗Rn−1 ∗ L,R〉〉 = [f, f ∗R, . . . , f ∗Rn−1]

= h.

To see (⇐), note that we always can write h = 〈h0, . . . , hn〉〉. By the assumptions
h = R ∗h ∗ 〈〈L,L〉, 〈f ∗Rn−1 ∗L,R〉〉 = R ∗h ∗—, say. So by reading the following
equality signs in the correct order (first the left =’s top to bottom; then the right
=’s bottom to top) it follows that

h0 = h1 ∗ — = f ∗ L
h1 = h2 ∗ — = f ∗R ∗ L

. . .
hn−2 = hn−1 ∗ — = f ∗Rn−2 ∗ L
hn−1 = f ∗Rn−1 ∗ L
hn = R.

Therefore h = Auxn(f) .

4. Write Seqn(f) ⇐⇒ f = [f0, . . . , fn−1], for some f0, . . . , fn−1. Then Seqn is
Diophamtine uniformly in n.

Proof. One has Seqn(f) iff

Rn ∗ f = R & Auxn(L) ∗ 〈I, L〉 ∗ f = Auxn(L) ∗ 〈I, L〉 ∗ f ∗ 〈L,L〉,

as can be proved similarly (use 2(i)).

5. Define
Cpn(f) = [f, . . . , f ], (n times f).

(By default Cp0(f) = [ ] = R.) Then Cpn is Diophantine uniformly in n. Then
Cpn is Diophantine uniformly in n.

Proof. Cpn(f) = g iff

Seqn(g) & g = R ∗ g ∗ 〈L, f ∗ L,R〉〉.

6. Let Pown(f) = fn. Then Pown is Diophantine uniformly in n.

Proof. One has Pown(f) = g iff

∃h[Seqn(h) & h = R ∗ h ∗ 〈f ∗ L, f ∗ L,R〉〉 & L ∗ h = g].
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This can be proved in a similar way (it helps to realize that h has to be of the form
h = [fn, . . . , f1]).

Now we can show that the operations + and × on N are ‘Diophantine’.

7. There are Diophantine ternary relations P+, P× such that for all n,m, k

(1) P+(sn, sm, sk) ⇐⇒ n+m = k.
(2) P×(sn, sm, sk) ⇐⇒ n.m = k.

Proof. (i) Define P+(x, y, z) ⇐⇒ x ∗ y = z. This relation is Diophantine and
works: Rn ∗Rm = Rk ⇐⇒ Rn+m = Rk ⇐⇒ n+m = k.

(ii) Let Pown(f) = g ⇐⇒ P (sn, f, g), with P Diophantine. Then P×(x, y, z) ⇐⇒
P (x, y, z).

8. Let X ⊆ N be a recursively enumerable set of narural numbers. Then {sn | n∈X}
is Diophantine.

Proof. By 7 and the famous theorem of Matijasevič [1971].

9. Define SeqNn = {[sm0 , . . . , smn−1 ] | m0, . . . ,mn−1 ∈N}. Then the relation f ∈ SeqNn
is Diophantine uniformly in n.

Proof. Indeed, f ∈ SeqNn iff

Seqn(f) & f ∗ 〈R ∗ L,R〉 = Auxn(R ∗ L) ∗ 〈I,Rn〉 ∗ f.

10. Let f = [f0, . . . , fn−1] and g = [g0, . . . , gn−1]. We write

f#g = [f0 ∗ g0, . . . , fn−1 ∗ gn−1].

Then there exists a Diophantine relation P such that for arbitrary n and f, g ∈ Seqn

one has
P (f, g, h) ⇐⇒ h = f#g.

Proof. Let

Cmpn(f) = [L ∗ f, L ∗R ∗ f ∗R, . . . , L ∗Rn−1 ∗ f ∗Rn−1].

Then g = Cmpn(f) is Diophantine uniformly in n.

This requires some work. One has by the by now familiar technique

Cmpn(f) = g ⇐⇒
∃h1, h2, h3 [

Seqn(h1) & f = h1 ∗ 〈I,Rn ∗ f〉
Seqn2(h2) & h2 = Rn ∗ h2 ∗ 〈〈L,L〉, h1 ∗ 〈Rn−1 ∗ L,R〉〉
SeqNn (h3) & h3 = R ∗ h3 ∗ 〈〈I, I〉n+1 ∗ L, 〈Rn2−1 ∗ L,R〉〉

& g = Auxn(L2) ∗ 〈h3, R
n〉 ∗ 〈h2, R〉

] .
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For understanding it helps to identify the h1, h2, h3. Suppose
f = 〈f0, . . . , fn−1, fn〉〉. Then

h1 = [f0, f1, . . . , fn−1];

h2 = [f0, f1, . . . , fn−1,

f0 ∗R, f1 ∗R, . . . , fn−1 ∗R,
. . . ,

f0 ∗Rn−1, f1 ∗Rn−1, . . . , fn−1 ∗Rn−1];

h3 = [I,Rn+1, R2(n+1), . . . , R(n−1)(n+1)].

Now define

P (f, g, h) ⇐⇒ ∃n[Seqn(f) & Seqn(g) & Cmpn(f ∗ L) ∗ 〈I,Rn〉 ∗ g = h].

Then P is Diophantine and for arbitrary n and f, g ∈ Seqn one has

h = f#g ⇐⇒ P (f, g, h).

11. For f = [f0, . . . , fn−1] define Π(f) = f0∗. . .∗fn−1. Then there exists a Diophantine
relation P such that for all n∈N and all f ∈ Seqn one has

P (f, g) ⇐⇒ Π(f) = g.

Proof. Define P (f, g) iff

∃n, h [

Seqn(f) &

Seqn+1(h) & h = ((f ∗ 〈I,R〉)#(R ∗ h)) ∗ 〈L, I ∗ L,R〉〉
& g = L ∗ h ∗ 〈I,R〉
] .

Then P works as can be seen realizing h has to be

[f0 ∗ . . . ∗ fn−1, f1 ∗ . . . ∗ fn−1, . . . , fn−2 ∗ fn−1, fn−1, I].

12. Define Byten(f) ⇐⇒ f = [b0, . . . , bn−1], for some bi ∈{L,R}. Then Byten is
Diophantine uniformly in n.

Proof. Using 2 one has Byten(f) iff

Seqn(f) & f ∗ 〈〈I, I〉, R〉 = Cpn(I).

13. Let m∈N and let [m]2 be its binary notation of length n. Let [m]Byte ∈ SeqNn be
the corresponding element, where L corresponds to a 1 and R to a 0 and the most
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significant bit is written last. For example [6]2 = 110, hence [6]Byte = [R,L,L].
Then there exists a Diophantine relation Bin such that for all m∈N

Bin(sm, f) ⇐⇒ f = [m]Byte.

Proof. We need two auxiliary maps.

Pow2(n) = [R2n−1
, . . . , R20

];

Pow2I(n) = [〈R2n−1
, I〉, . . . , 〈R20

, I〉].
For these the relations Pow2(n) = g and Pow2I(n) = g are Diophantine uniformly
in n. Indeed, Pow2(n) = g iff

Seqn(g) & g = ((R ∗ g)#(R ∗ g)) ∗ [I,R];

and Pow2I(n) = g iff

Seqn(g) & Cpn(L)#g = Pow2(n);

& Cpn(R)#g = Cpn(I).

It follows that Bin is Diophantine since Bin(m, f) iff

m∈N & ∃n[Byten(f) & Π(f#Pow2I(n)) = m].

14. We now define a surjection ϕ : N→F . Remember that F is generated by two
elements {e0, e1} using only ∗. One has e1 = L. Define

ϕ(n) = ei0 ∗ . . . ∗ eim−1 ,

where [n]2 = im−1 . . . i0. We say that n is a code of ϕ(n). Since every f ∈F can
be written as L ∗ 〈I, I〉 ∗ f the map ϕ is surjective indeed.

15. Code(n, f) defined by ϕ(n) = f is Diophantine uniformly in n.

Proof. Indeed, Code(n, f) iff

∃g [Bin(n, g) & Π(g ∗ 〈〈e0, e1〉, R〉) = f.

16. Every RE subset X ⊆ F is Diophantine.

Proof. Since the word problem for F is decidable, #X = {m | ∃f ∈X ϕ(m) = f}
is also RE. By (8), #X ⊆ N is Diophantine. Hence by (15) X is Diophantine via

g ∈X ⇐⇒ ∃f f ∈#X & Code(f, g).

17. Every RE subset X ⊆ F [~x] is Diophantine.

Proof. Similarly, since also F [~x] is generated by two of its elements. We need
to know that all the Diophantine relations ⊆ F are also Diophantine ⊆ F [x].
This follows from exercise 5.6.23 and the fact that such relations are closed under
intersection.

Proof of 5.2.44. By 17 and corollaries 5.2.48 and 5.2.51.
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5.3. Gödel’s system T : higher-order primitive recursion

The set of primitive recursive functions is the smallest set containing zero, successor
and projection functions which is closed under composition and the following schema of
first-order primitive recursion:

F (0, ~x) = G(~x)

F (n+ 1, ~x) = H(F (n, ~x), n, ~x)

This schema defines F from G and H by stating that F (0) = G and by expressing
F (n+1) in terms of F (n), H and n. The parameters ~x range over the natural numbers.

Thus defined, the primitive recursive functions were conjectured by Skolem to cover
all computable functions, early this century. This conjecture was shown to be false in
Ackermann [1928], who gave a computable function that is not primitive recursive. A
few years later the class of computable functions was shown to be much larger by Church
and Turing. Nevertheless the primitive recursive functions include almost all functions
that one encounters ‘in practice’, such as addition, multiplication, exponentiation, and
many more.

Besides the existence of computable functions that are not primitive recursive, there
is another reason to generalize the above schema, namely the existence of computable
objects that are not number theoretic functions. For example, given a number theoretic
function F and a number n, compute the maximum that F takes on arguments less than
n. Other examples of computations where inputs and/or outputs are functions: compute
the function that coincides with F on arguments less than n and zeroes otherwise,
compute the n-th iterate of F , and so on. These computations define mappings that are
commonly called functionals, to stress that they are more general than number theoretic
functions.

Consider the full typestructure over the natural numbers, that is, sets NN = N and
NA→B = NA→NB, the set of all mappings from NA to NB. Application of F ∈NA→B to
G∈NA is denoted by FG or F (G). We allow a liberal use of currying, so the following
denotations are all identified:

FGH ≡ (FG)H ≡ F (G,H) ≡ F (G)H ≡ F (G)(H)

Application is left associative, so F (GH) is notably different from the above denotations.
The abovementioned interest in higher-order computations leads to the following

schema of higher-order primitive recursion proposed in Gödel [1958]:2

RMN0 = M

RMN(n+ 1) = N(RMNn)n

HereM need not be a natural number, but can have any A∈TTo as type (see Section 1.1).
The corresponding type of N is A→N→A, where N is the type of the natural numbers.

2For the purpose of a translation of intuitionistic arithmetic into the quantifier free theory of primitive
recursive functionals of finite type, yielding a consistency proof for arithmetic.
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We make some further observations with respect to this schema. First, the dependency
of F from G and H in the first-order schema is made explicit by defining RMN , which is
to be compared to F . Second, the parameters ~x from the first-order schema are left out
above since they are no longer necessary: we can have higher-order objects as results of
computations. Third, the type of R depends on the type of the result of the computation.
In fact we have a family of recursors RA : A→(A→N→A)→N→A for every type A.

5.3.1. Exercise. Show that the first-order schema of primitive recursion is subsumed
by the higher-order schema, by expressing F in terms of R, G and H.

The set of primitive recursive functionals is the smallest set of functionals containing
0, the successor function and functionals R of all appropriate types, which is closed under
explicit λo

→-definition. This definition implies that the primitive recursive functionals
include projection functions and are closed under application, composition and the above
schema of higher-order primitive recursion.

We shall now exhibit a number of examples of primitive recursive functionals. First,
let K,K∗ be defined explicitly by K(x, y) = x, K∗(x, y) = y for all x, y ∈N, that
is, the first and the second projection. Obviously, K and K∗ are primitive recursive
functionals, as they come from λo

→-terms. Now consider P ≡ R0K∗. Then we have
P0 = 0 and P (n + 1) = R0K∗(n + 1) = K∗(R0K∗)n = n for all n∈N, so that we
call P the predecessor function. Now consider x . y ≡ Rx(P ∗K)y. Here P ∗K is the
composition of P andK, that is, (P ∗K)xy = P (K(x, y)) = P (x). We have x . 0 = x and
x . (y + 1) = Rx(P ∗K)(y + 1) = (P ∗K)(Rx(P ∗K)y)y = P (Rx(P ∗K)y) = P (x . y).
Thus we have defined cut-off subtraction . as primitive recursive functional.

5.3.2. Exercise. Which function is computed if we replace P in Rx(P ∗ K)y by the
successor function? Define multiplication, exponentiation and division with remainder
as primitive recursive functionals.

In the previous paragraph, we have only used RN in order to define some functions
that are, in fact, already definable with first-order primitive recursion. In this paragraph
we are going to use RN→N as well. Given a functions F, F ′ and natural numbers x, y,
define explicitly the functional G by G(F, F ′, x, y) = F ′(F (y)) and abbreviate G(F ) by
GF . Now consider RIGF , where R is actually RN→N and I is the identity function on
the natural numbers. We calculate RIGF 0 = I and RIGF (n+1) = GF (RIGFn)n, which
is a function assigning G(F,RIGFn, n,m) = RIGFn(Fm) to every natural number m.
In other words, RIGFn is a function which iterates F precisely n times, and we denote
this function by Fn.

We finish this paragraph with an example of a computable function A that is not
first-order primitive recursive, a result due to Ackermann. The essential difficulty of the
function A is the nested recursion in the third clause below.

A(0,m) = m+ 1

A(n+ 1, 0) = A(n, 1)

A(n+ 1,m+ 1) = A(n,A(n+ 1,m))
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In other words, A(0) is the successor function, and by using the the last two equations we
see A(n+ 1,m) = A(n)m+1(1). Thus we can obtain A = RSH, where S is the successor
function and H(F, x, y) = F y+11. As examples we calculate A(1,m) = H(A(0), 1,m) =
A(0)m+11 = m+ 2 and A(2,m) = H(A(1), 1,m) = A(1)m+11 = 2m+ 3.

5.3.3. Exercise. Calculate A(3,m) and verify that A(4, 0) = 13 and A(4, 1) = 65533.

5.3.4. Exercise. With one occurrence hidden in H, RSH contains RN→N twice. Define
A using RN and RN→N only once. Is it possible to define A with RN only, possibly with
multiple occurrences?

course of value recursion
multiple recursion

5.3.5. Exercise (simultaneous primitive recursion). Assume Gi, Hi (i = 1, 2) have been
given and define Fi (i = 1, 2) as follows.

Fi(0, ~x) = Gi(~x)

Fi(n+ 1, ~x) = Hi(F1(n, ~x), (F2(n, ~x), n, ~x)

Show that Fi (i = 1, 2) can be defined by first-order primitive recursion. Hint: use a
pairing function such as in Figure 5.2.

5.3.6. Exercise (nested recursion, Péter [1967]). Define

ψ(n,m) = 0 if m · n = 0

ψ(n+ 1,m+ 1) = β(m,n, ψ(m, γ(m,n, ψ(m+ 1, n))), ψ(m+ 1, n))

Show that ψ can be defined from β, γ using higher-order primitive recursion.

5.3.7. Exercise (Dialectica translation). We closely follow Troelstra [1973], Section 3.5;
the solution can be found there. Let HAω be the theory of higher-order primitive recursive
functionals equipped with many-sorted intuitionistic predicate logic with equality for
natural numbers and axioms for arithmetic, in particular the schema of aritmetical
induction:

(ϕ(0) ∧ ∀x (ϕ(x) ⇒ ϕ(x+ 1))) ⇒ ∀x ϕ(x)

The Dialectica interpretation of Gödel [1958], D-interpretation for short, assigns to every
formula ϕ in the language of HAω a formula ϕD ≡ ∃~x ∀~y ϕD(~x, ~y) in the same language.
The types of ~x, ~y depend on the logical structure of ϕ only. We define ϕD and ϕD by
induction on ϕ:

1. If ϕ is prime, that is, an equation of lowest type, then ϕD ≡ ϕD ≡ ϕ.

For the binary connectives, assume ϕD ≡ ∃~x ∀~y ϕD(~x, ~y), ψD ≡ ∃~u ∀~v ψD(~u,~v).

2. (ϕ ∧ ψ)D ≡ ∃~x, ~u ∀~y,~v (ϕ ∧ ψ)D, with (ϕ ∧ ψ)D ≡ (ϕD(~x, ~y) ∧ ψD(~u,~v)).
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3. (ϕ ∨ ψ)D ≡ ∃z, ~x, ~u ∀~y,~v (ϕ ∨ ψ)D, with (ϕ ∨ ψ)D ≡ ((z = 0 ⇒ ϕD(~x, ~y)) ∧ (z 6=
0 ⇒ ψD(~u,~v))).

4. (ϕ ⇒ ψ)D ≡ ∃~u′, ~y′ ∀~x,~v (ϕ ⇒ ψ)D, with (ϕ ⇒ ψ)D ≡ (ϕD(~x, ~y′~x~v) ⇒
ψD(~u′~x,~v)).

Note that the clause for ϕ ⇒ ψ introduces quantifications over higher types than those
used for the formulas ϕ,ψ. This is also the case for formulas of the form ∀z ϕ(z), see
the sixth case below. For both quantifier clauses, assume ϕD(z) ≡ ∃~x ∀~y ϕD(~x, ~y, z).

5. (∃z ϕ(z))D ≡ ∃z, ~x ∀~y (∃z ϕ(z))D, with (∃z ϕ(z))D ≡ ϕD(~x, ~y, z).

6. (∀z ϕ(z))D ≡ ∃~x′ ∀z, ~y (∀z ϕ(z))D, with (∀z ϕ(z))D ≡ ϕD(~x′z, ~y, z).

With ϕ,ψ as in the case of a binary connective, determine (ϕ ⇒ (ϕ ∨ ψ))D and
give a sequence ~t of higher-order primitive recursive functionals such that ∀~y (ϕ ⇒
(ϕ ∨ ψ))D(~t, ~y). We say that thus the D-interpretation of (ϕ ⇒ (ϕ ∨ ψ))D is validated
by higher-order primitive recursive functionals. Validate the D-interpretation of (ϕ ⇒
(ϕ∧ϕ))D. Validate the D-interpretation of induction. The result of Gödel [1958] can now
be rendered as: the D-interpretation of every theorem of HAω can be validated by higher-
order primitive recursive functionals. This yields a consistency proof for HAω, since
0 = 1 cannot be validated. Note that the D-interpretation and the successive validation
translates arbitrarily quantified formulas into universally quantified propositional combinations
of equations.

Syntax of λT

In this section we formalize Gödel’s T as an extension of the simply typed lambda
calculus λo

→, called λT .

5.3.8. Definition. The types of λT are the types of λo
→ over a base type N. The terms

of λT are obtained by adding to the term formation rules of λo
→ the constants 0 : N,

S+ : N→N and RA : A→(A→N→A)→N→A for all types A. We denote the set of (closed)
terms of type A by ΛT (A) (Λø

T (A)) and put ΛT =
⋃

A ΛT (A) (Λø
T =

⋃
A Λø

T (A)). Terms
constructed from 0 and S+ only are called numerals, with 1 abbreviating S+(0), 2

abbreviating S+(S+(0)), and so on. An arbitrary numeral will be denoted by n. We
define inductively nA→B ≡ λxA.nB, with nN ≡ n.

The formulas of λT are equations between terms (of the same type). The theory
of λT is axiomatized by equality axioms and rules, β-conversion and the schema of
higher-order primitive recursion from the previous section. The reduction relation →T

of λT is the compatible closure of the β-rules and the following (schematic) rules for the
constants RA:

RAMN 0 →T M

RAMN(S+P ) →T N(RAMNP )P
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5.3.9. Theorem. The conversion relation generated by→T coincides with the theory λT .

Proof. By an easy extension of the proof of this result in untyped lambda calculus, see
B[1984] Proposition 3.2.1.

5.3.10. Lemma. Every closed normal form of type N is a numeral.

Proof. Consider the leftmost symbol of a closed normal form of type N. This symbol
cannot be a variable since the term is closed. The leftmost symbol cannot be a λ, since
abstraction terms are not of type N and a redex is not a normal form. If the leftmost
symbol is 0, then the term is the numeral 0. If the leftmost symbol is S+, then the term
must be of the form S+P , with P a closed normal form of type N. If the leftmost term is
R, then for typing reasons the term must be RMNP ~Q, with P a closed normal form of
type N. In the latter two cases we can complete the argument by induction, since P is a
smaller term. Hence P is a numeral, so also S+P . The case RMNP with P a numeral
can be excluded, as RMNP should be a normal form.

We now prove SN and CR for λT , two results that could be proved independently from
each other. However, the proof of CR can be simplified by using SN, which we prove
first by an extension of the proof of SN for λo

→, Theorem 2.2.2.

5.3.11. Theorem. Every M ∈ΛT is SN with respect to →T .

Proof. We recall the notion of computability from the proof of Theorem 2.2.2, generalised
to terms of λT . We shall frequently use that computable terms are SN, see formula (2) in
the proof of Theorem 2.2.2. In view of the definition of computability it suffices to prove
that the constants 0, S+, RA of λT are computable. The constant 0 : N is computable
since it is SN. Consider S+P with computable P : N, so P is SN and hence S+P . It
follows that S+ is computable. In order to prove that RA is computable, assume that
M,N,P are computable and of appropriate type such that RAMNP is of type A. Since
P : N is computable, it is SN. Since →T is finitely branching, P has only finitely many
normal forms, which are numerals by Lemma 5.3.10. Let #P be the largest of those
numerals. We shall prove by induction on #P that RAMNP is computable. Let ~Q be
computable such that RAMNP ~Q is of type N. We have to show that RAMNP ~Q is SN.
If #P = 0, then every reduct of RAMNP ~Q passes through a reduct of M ~Q, and SN
follows since M ~Q is computable. If #P = S+n, then every reduct of RAMNP ~Q passes
through a reduct of N(RAMNP ′)P ′ ~Q, where P ′ is such that S+P ′ is a reduct of P .
Then we have #P ′ = n and by induction it follows that RAMNP ′ is computable. Now
SN follows since all terms involved are computable. We have proved that RAMNP is
computable whenever M,N,P are, and hence RA is computable.

5.3.12. Theorem. Every M ∈ΛT is WCR with respect to →T .

Proof. Different redexes in the same term are either completely disjoint, or one redex is
included in the other. In the first case the order of the reduction steps is irrelevant, and
in the second case a common reduct can be obtained by reducing (possibly multiplied)
included redexes.
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5.3.13. Theorem. Every M ∈ΛT is CR with respect to →T .

Proof. By Newman’s Lemma 5.3.14, using Theorem 5.3.11.

5.3.14. Lemma (Newman, localized). Let S be a set and → a binary relation on S that
is WCR. For every a∈S we have: if a∈SN, then a∈CR.

Proof. Call an element ambiguous if it reduces to two (or more) distinct normal forms.
Assume a∈SN, then a reduces to at least one normal form and all reducts of a are SN.
It suffices for a∈CR to prove that a is not ambiguous, i.e. that a reduces to exactly
one normal form. Assume by contradiction that a is ambiguous, reducing to different
normal forms n1, n2, say a → b → · · · → n1 and a → c → · · · → n2. Applying WCR
to the diverging reduction steps yields a common reduct d such that b→→ d and c→→ d.
Since d∈SN reduces to a normal form, say n, distinct of at least one of n1, n2, it follows
that at least one of b, c is ambiguous. See Figure 5.1. Hence a has a one-step reduct
which is again ambiguous and SN. Iterating this argument yields an infinite reduction
sequence contradicting a∈SN, so a cannot be ambiguous.

a

||yyyyyyyyyyyyy

""EEEEEEEEEEEEE

b

����

"" ""EEEEEEEEEEEEE c

����

||||yyyyyyyyyyyyy

d

����
n1 n n2

Figure 5.1: Ambiguous a has ambiguous reduct b or c.

If one considers λT also with η-reduction, then the above results can also be obtained.
For SN it simply suffices to strenghten the notion of computability for the base case to
SN with also η-reductions included. WCR and hence CR are harder to obtain and
require techniques like η-postponement, see Barendregt [1984], Section 15.1.6.

Semantics of λT

In this section we give some interpetations of Gödel’s T , preceded by a general model
definition of λT building on that of λo

→.

5.3.15. Definition. A model of λT is a model of λo
→ with interpretations of the constants

0, S+ and RA for all A, such that the schema of higher-order primitive recursion is valid.
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5.3.16. Example. Recall the full typestructure over the natural numbers, that is, sets
NN = N and NA→B = NA→NB, with set-theoretic application. The full typestructure
becomes the canonical model of λT by interpreting 0 as 0, S+ as the successor function,
and the constants RA as primitive recursors of the right type. The proof that [[RA]] is
well-defined goes by induction.

5.3.17. Exercise. Consider for any type B the set of closed terms of type B modulo
convertibility. Prove that this yields a model for Gödel’s T . This model is called the
closed term model of Gödel’s T .

Let ∗ be Kleene application, that is, i ∗ n stands for applying the i-th partial recursive
function to the input n. If this yield a result, then we flag i∗n↓, otherwise i∗n↑. Equality
between expressions with Kleene application is taken to be strict, that is, equality does
only hold if left and right hand sides do yield a result and the results are equal. Similarly,
i ∗ n∈S should be taken in the strict sense of i ∗ n actually yielding a result in S.

5.3.18. Exercise. By induction we define for every type B a set HROB ⊆ N:

HRON = N

HROB→B′ = {x∈N | x ∗ y ∈HROB′ for all y ∈HROB}

Prove that HRO with Kleene application constitutes a model for Gödel’s T .

5.3.19. Exercise. By simultaneous induction we define for every type B a set HEOB ⊆
N equipped with an equivalence relation =B by

HEON = N

x =N y ⇐⇒ x = y

HEOB→B′ = {x∈N | x ∗ y ∈HEOB′ for all y ∈HEOB and

x ∗ y =B′ x ∗ y′ for all y, y′ ∈HEOB with y =B y′}
x =B→B′ x′ ⇐⇒ x, x′ ∈HEOB→B′ and x ∗ y =B′ x′ ∗ y for all y ∈HEOB

Prove that HEO with Kleene application constitutes a model for Gödel’s T .

5.3.20. Exercise. Recall that extensionality essentially means that objects having the
same applicative behaviour can be identified. Which of the above models of λT , the full
type structure, the closed term model, HRO and HEO, is extensional?

Computational strength

Brief review of ordinal theory

Here are some ordinal numbers, simply called ordinals, in increasing order:

0, 1, 2, . . . ω, ω + 1, ω + 2, . . . ω + ω = ω · 2, . . . ω · ω = ω2, . . . ωω, . . . ω(ωω), . . .
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Apart from ordinals, also some basic operations of ordinal arithmetic are visible, namely
addition, multiplication and exponentiation, denoted in the same way as in highschool
algebra. The dots . . . stand for many more ordinals in between, produced by iterating
the previous construction process.

The most important structural property of ordinals is that < is a well-order, that is,
an order such that every non-empty subset contains a smallest element. This property
leads to the principle of (transfinite) induction for ordinals, stating that P (α) holds for
all ordinals α whenever P is inductive, that is, P (α) follows from ∀β < α.P (β) for all α.

In fact the aritmetical operations are defined by means of two more primitive operations
on ordinals, namely the successor operation +1 and the supremum operation

⋃
. The

supremum
⋃
a of a set of ordinals a is the least upper bound of a, which is equal to the

smallest ordinal greater than all ordinals in the set a. A typical example of the latter
is the ordinal ω, the first infinite ordinal, which is the supremum of the sequence of the
finite ordinals n produced by iterating the successor operation on 0.

These primitive operations divide the ordinals in three classes: the successor ordinals
of the form α + 1, the limit ordinals λ =

⋃{α | α < λ}, i.e. ordinals which are the
supremum of the set of smaller ordinals, and the zero ordinal 0. (In fact 0 is the
supremum of the empty set, but is not considered to be a limit ordinal.) Thus we have
zero, successor and limit ordinals.

Addition, multiplication and exponentiation are now defined according to Table 5.1.
Ordinal arithmetic has many properties in common with ordinary arithmetic, but there
are some notable exceptions. For example, addition and multiplication are associative
but not commutative: 1+ω = ω 6= ω+1 and 2·ω = ω 6= ω·2. Furthermore, multiplication
is left distributive over addition, but not rigth distributive: (1+1) ·ω = ω 6= 1 ·ω+1 ·ω.
The sum α+ β is weakly increasing in α and strictly increasing in β. Similarly for the
product α ·β with α > 0. The only exponentiations we shall use, 2α and ωα, are strictly
increasing in α.

Addition Multiplication Exponentiation (α > 0)
α+ 0 = α α · 0 = 0 α0 = 1
α+ (β + 1) = (α+ β) + 1 α · (β + 1) = α · β + α αβ+1 = αβ · α
α+ λ =

⋃{α+ β | β < λ} α · λ =
⋃{α · β | β < λ} αλ =

⋃{αβ | β < λ}

Table 5.1: Ordinal arithmetic (with λ limit ordinal in the third row).

The operations of ordinal arithmetic as defined above provide examples of a more
general phenomenon called transfinite iteration, to be defined below.

5.3.21. Definition. Let f be an ordinal function. Define by induction f0(α) = α,
fβ+1(α) = f(fβ(α)) and fλ(α) =

⋃{fβ(α) | β < λ} for every limit ordinal λ. We call
fβ the β-th transfinite iteration of f .

As examples we redefine the arithmetical operations above: α + β = fβ(α) with f the

successor function; α · β = gβ
α(0) with gα(γ) = γ + α; αβ = hβ

α(1) with hα(γ) = γ · α.
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5.3.22. Exercise. Verify the redefinition of the ordinal arithmetic is correct.

We proceed with the canonical construction for finding the least fixpoint of a weakly
increasing ordinal function if there exists one.

5.3.23. Lemma. Let f be a weakly increasing ordinal function. Then:

(i) fα+1(0) ≥ fα(0) for all α;

(ii) fα(0) is weakly increasing in α;

(iii) fα(0) does not surpass any fixpoint of f ;

(iv) fα(0) is strictly increasing (and hence fα(0) ≥ α), until a fixpoint of f is reached,
after which fα(0) becomes constant.

5.3.24. Exercise. Prove the above lemma. More precisely:

(i) To be proved by induction on α;

(ii) Prove α ≤ β ⇒ fα(0) ≤ fβ(0) by induction on β;

(iii) Assume f(β) = β and prove fα(0) ≤ β by induction on α;

(iv) Prove α < β ⇒ fα(0) < fβ(0) for all α,β such that fα(0) is below any fixpoint,
by induction on β.

If a weakly increasing ordinal function f has a fixpoint, then it has a smallest fixpoint and
Lemma 5.3.23 above guarantees that this so-called least fixpoint is of the form fα(0),
that is, can be obtained by transfinite iteration of f starting at 0. This justifies the
following definition.

5.3.25. Definition. Let f be a weakly increasing ordinal function having a least fixpoint
which we denote by lfp(f). The closure ordinal of f is the smallest ordinal α such that
fα(0) = lfp(f).

Closure ordinals can be arbitrarily large, or may not even exist. The following lemma
gives a condition under which the closure ordinal exists and does not surpass ω.

5.3.26. Lemma. If f is a weakly increasing ordinal function such that f(λ) =
⋃{f(α) |

α < λ} for every limit ordinal λ, then the closure ordinal exists and is at most ω.

Proof. Let conditions be as in the lemma. Consider the sequence of finite iterations
of f : 0, f(0), f(f(0)) and so on. If this sequence becomes constant, then the closure
ordinal is finite. If the sequence is strictly increasing, then the supremum must be a
limit ordinal, say λ. Then we have f(λ) =

⋃{f(α) | α < λ} = fω(0) = λ, so the closure
ordinal is ω.

5.3.27. Exercise. Justify the equation f(λ) = λ in the proof above.

For example, f(α) = 1 + α has lfp(f) = ω, and f(α) = (ω + 1) · α has lfp(f) = 0. In
contrast, f(α) = α + 1 has no fixpoint (note that the latter f is weakly increasing, but
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the condition on limit ordinals is not satisfied). Finally, f(α) = 2α has lfp(f) = ω, and
the least fixpoint of f(α) = ωα is denoted by ǫ0, being the supremum of the sequence:

0, ω0 = 1, ω1 = ω, ωω, ωωω

, ωωωω

, . . .

In the following proposition we formulate some facts about ordinals that we need in
the sequel.

5.3.28. Proposition. (i) Every ordinal α < ǫ0 can be written uniquely as α = ωα1 +
ωα2 + · · · + ωαn with n ≥ 0 and α1, α2, . . . , αn a weakly decreasing sequence of ordinals
smaller than α.

(ii) For all α,β we have ωα + ωβ = ωβ if and only if α < β. if α is a limit and
β < γ + 2α, then there is an α′ < α such that β < γ + 2α′

.

Proof. (i) This is a special case of Cantor normal forms with base ω, the generalization
of the position system for numbers to ordinals, where terms of the form ωα ·n are written
as ωα + · · ·+ωα (n summands). The fact that the exponents in the Cantor normal form
are strictly less than α comes from the assumption that α < ǫ0.

(ii) The proof of this so-called absorption property goes by a induction on β. The
case α ≥ β can be dealt with by using Cantor normal forms.

From now on ordinal will mean ordinal less than ǫ0, unless explicitly stated otherwise.
This also applies to ∀α, ∃α, f(α) and so on.

Encoding ordinals in the natural numbers

Systematic enumeration of grid points in the plane, such as shown in Figure 5.2, yields
an encoding of pairs 〈x, y〉 of natural numbers x, y as given in Definition 5.3.29.

y 〈x, y〉

...
...

3 7
FFF

FF
.

2 4
FFF

FF 8
FFF

FF
.

1 2
FFF

FF 5
FFF

FF 9
HHH

HH
.

0 1 3 6 10 · · ·

0 1 2 3 · · · x

Figure 5.2: 〈x, y〉-values for x+ y ≤ 3

Finite sequences [x1, . . . , xk] of natural numbers, also called lists, can now be encoded
by iterating the pairing function. The number 0 does not encode a pair and can hence
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be used to encode the empty list [ ]. All functions and relations involved, including
projection functions to decompose pairs and lists, are easily seen to be primitive recursive.

5.3.29. Definition. Recall that 1+2+. . .+n = 1
2n(n+1) gives the number of grid points

satisfying x + y < n. The function − below is to be understood as cut-off subtraction,
that is, x− y = 0 whenever y ≥ x. Define the following functions:

〈x, y〉 = 1
2(x+ y)(x+ y + 1) + x+ 1

sum(p) = min{n | p ≤ 1
2n(n+ 1)} − 1

x(p) = p− 〈0, sum(p)〉
y(p) = sum(p)− x(p)

Now let [ ] = 0 and, for k > 0, [x1, . . . , xk] = 〈x1, [x2, . . . , xk]〉 encode lists. Define
lth(0) = 0 and lth(p) = 1 + lth(y(p)) (p > 0) to compute the length of a list.

The following lemma is a straithforward consequence of the above definition.

5.3.30. Lemma. For all p > 0 we have p = 〈x(p), y(p)〉. Moreover, 〈x, y〉 > x, 〈x, y〉 > y,
lth([x1, . . . , xk]) = k and 〈x, y〉 is strictly increasing in both arguments. Every natural
number encodes a unique list of smaller natural numbers. Every natural number encodes
a unique list of lists of lists and so on, ending with the empty list.

Based on the Cantor normal form and the above encoding of lists we can represent
ordinals below ǫ0 as natural numbers in the following way. We write α for the natural
number representing the ordinal α.

5.3.31. Definition. Let α < ǫ0 have Cantor normal form ωα1 + · · ·+ωαk . We encode α
by putting α = [α1, α2, . . . , αn]. This representation is well-defined since every αi (1 ≤
i ≤ n) is strictly smaller than α. The zero ordinal 0, having the empty sum as Cantor
normal form, is thus represented by the empty list [ ], so by the natural number 0.

Examples are 0 = [ ], 1 = [[ ]], 2 = [[ ], [ ]], . . . and ω = [[[ ]]], ω + 1 = [[[ ]], [ ]]
and so on. Observe that [[ ], [[ ]]] does not represent an ordinal as ω0 + ω1 is not a
Cantor normal form. The following lemmas allow one to identify which natural numbers
represent ordinals and to compare them.

5.3.32. Lemma. Let ≺ be the lexicographic ordering on lists. Then ≺ is primitive recursive
and α ≺ β ⇐⇒ α < β for all α,β < ǫ0.

Proof. Define 〈x, y〉 ≺ 〈x′, y′〉 ⇐⇒ (x ≺ x′) ∨ (x = x′ ∧ y ≺ y′) and x 6≺ 0, 0 ≺ 〈x, y〉.
The primitive recursive relation ≺ is the lexicographic ordering on pairs, and hence also
on lists. Now the lemma follows using Cantor normal forms. (Note that ≺ is not a
well-order itself, as [1] ≺ [0, 1] ≺ [0, 0, 1], . . . has no smallest element.)

5.3.33. Lemma. For all x∈N, define:
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(i) Ord(x) if and only if x = α for some ordinal α < ǫ0.
(ii) Succ(x) if and only if x = α for some successor ordinal < ǫ0.
(iii) Lim(x) if and only if x = α for some limit ordinal < ǫ0.
(iv) Fin(x) if and only if x = α for some ordinal α < ω.

Then Ord, Fin, Succ and Lim are primitive recursive predicates.

Proof.

(i) Put Ord(0) and Ord(〈x, y〉) ⇐⇒ (Ord(x) ∧Ord(y) ∧ (y > 0 ⇒ x(y) � x)).
(ii) Put ¬Succ(0) and Succ(〈x, y〉) ⇐⇒ (Ord(〈x, y〉) ∧ (x > 0 ⇒ Succ(y))).
(iii) Put Lim(x) ⇐⇒ (Ord(x) ∧ ¬Succ(s) ∧ x 6= [ ]).
(iv) Put Fin(x) ⇐⇒ (x = [ ] ∨ (x = 〈0, y〉 ∧ Fin(y))).

5.3.34. Lemma. There exist primitive recursive functions exp (base ω exponentiation),
succ (successor), pred (predecessor), plus (addition), exp2 (base 2 exponentiation) such
that for all α,β: exp(α) = ωα, succ(α) = α+ 1, pred(0) = 0, pred(α+ 1) = α,
plus(α,β) = α+ β, exp2(α) = 2α.

Proof. Put exp(x) = [x]. Put succ(0) = 〈0, 0〉 and succ(〈x, y〉) = 〈x, succ(y)〉, then
succ([x1, . . . , xk]) = [x1, . . . , xk, 0]. Put pred(0) = 0, pred(〈x, 0〉) = x and pred(〈x, y〉) =
〈x,pred(y)〉 for y > 0. For plus, use the absorption property in adding the Cantor
normal forms of α and β. For exp2 we use ωβ = 2ω·β. Let α have Cantor normal form
ωα1 + · · ·+ωαk . Then ω ·α = ω1+α1 + · · ·+ω1+αk . By absorption, 1+αi = αi whenever
αi ≥ ω. It follows that we have α = ω · (ωα1 + · · ·+ωαi +ωn1 + · · ·+ωnp)+n for suitable
nj , n with α1 ≥ · · · ≥ αi ≥ ω, nj + 1 = αi+j < ω for 1 ≤ j ≤ p and n = k − i − p with

αk′ = 0 for all i + p < k′ ≤ k. Using ωβ = 2ω·β we can calculate 2α = ωβ · 2n with
β = ωα1+· · ·+ωαi+ωn1+· · ·+ωnp and n as above. If α = [x1, . . . , xi, . . . , xj , . . . , 0, . . . , 0],

then β = [x1, . . . , xi, . . . ,pred(xj), . . .] and we can obtain exp2(α) = 2α = ωβ · 2n by

doubling n times ωβ = exp(β) using plus.

5.3.35. Lemma. There exist primitive recursive functions num, mun such that num(n) =
n and mun(n) = n for all n. In particular we have mun(num(n)) = n and num(mun(n)) =
n for all n. In other words, num is the order isomorphism between (N, <) and ({n |
n∈N},≺) and mun is the inverse order isomorphism.

Proof. Put num(0) = 0 = [ ] and num(n + 1) = succ(num(n)) and mun(0) = 0 and
mun(〈x, y〉) = mun(y) + 1.

5.3.36. Lemma. There exists a primitive recursive function p such that p(α,β, γ) = α′

with α′ < α and β < γ + 2α′

, provided that α is a limit and β < γ + 2α.

Proof. Let conditions be as above. The existence of α′ follows directly from the
definition of the operations of ordinal arithmetic on limit ordinals. The interesting
point, however, is that α′ can be computed from α,β, γ in a primitive recursive way,
as will become clear by the following argument. If β ≤ γ, then we can simply take
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α′ = 0. Otherwise, let β = ωβ1 + · · ·+ ωβn and γ = ωγ1 + · · ·+ ωγm be Cantor normal
forms. Now γ < β implies that γi < βi for some smallest index i ≤ m, or no such
index exists. In the latter case we have m < n and γj = βj for all 1 ≤ j ≤ m, and
we put i = m + 1. Since α is a limit, we have α = ω · ξ (see ...) for suitable ξ, and
hence 2α = ωξ. Since β < γ + 2α it follows by absorption that ωβi + · · · + ωβn < ωξ.
Hence βi + 1 ≤ ξ, so ωβi + · · · + ωβn ≤ ωβi · n < ωβi · 2n = 2ω·βi+n. Now take
α′ = ω · βi + n < ω · (βi + 1) ≤ ω · ξ = α and observe β < γ + 2α′

.

From now on we will freely use ordinals in the natural numbers instead of their codes.
This includes uses like α is finite instead of Fin(α), α ≺ β instead of α ≺ β, and so
on. Note that we avoid using < for ordinals now, as it would be ambiguous. Phrases
like ∀α P (α) and ∃α P (α) should be taken as relativized quantifications over natural
numbers, that is, ∀x (Ord(x) ⇒ P (x)), and ∃x (Ord(x) ∧ P (x)), respectively. Finally,
functions defined in terms of ordinals are assumed to take value 0 for arguments that do
not encode any ordinal.

Transfinite induction and recursion

Transfinite induction (TI) is a principle of proof that generalizes the usual schema of
structural induction from natural numbers to ordinals. Define:

Ind(P ) ≡ ∀α ((∀β < α P (β)) ⇒ P (α))

TIα ≡ Ind(P ) ⇒ ∀β < α P (β)

Here Ind(P ) expresses that P is inductive, that is, ∀β < α P (β) induces P (α) for
all ordinals α. For proving a property P to be inductive it suffices to prove (∀β <
α P (β)) ⇒ P (α) for limit ordinals α only, in addition to P (0) and P (α) ⇒ P (α+ 1)
for all α. If a property is inductive then TIγ implies that every ordinal up to γ has
this property. (For the latter conclusion, in fact inductivity up to γ suffices. Note that
ordinals may exceed ǫ0 in this paragraph.)

By Lemma 5.3.35, TIω is equivalent to structural induction on the natural numbers.
Obviously, the strength of TIα increases with α. Therefore TIα can be used to measure
the proof theoretic strength of theories. Given a theory T , for which α can we prove
TIα? We shall show that TIα is provable in Peano Arithmetic for all ordinals α < ǫ0 by
a famous argument due to Gentzen.

The computational counterpart of transfinite induction is transfinite recursion TR,
a principle of definition which can be used to measure computational strength. By a
translation of Gentzen’s argument we shall show that every function which can be defined
by TRα for some ordinal α < ǫ0, is definable in Gödel’s T . Thus we have established a
lower bound to the computational strength of Gödel’s T .

5.3.37. Lemma. The schema TIω is provable in Peano Arithmetic.

Proof. Observe that TIω is structural induction on an isomorphic copy of the natural
numbers by Lemma 5.3.35.
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5.3.38. Lemma. The schema TIω·2 is provable in Peano Arithmetic with the schema TIω.

Proof. Assume TIω and Ind(P ) for some P . In order to prove ∀α < ω · 2 P (α) define
P ′(α) ≡ ∀β < ω + α P (β). By TIω we have P ′(0). Also P ′(α) ⇒ P ′(α + 1), as
P ′(α) implies P (ω + α) by Ind(P ). If Lim(α), then β < ω + α implies β < ω + α′ for
some α′ < α, and hence P ′(α′) ⇒ P (β). It follows that P ′ is inductive, which can be
combined with TIω to conclude P ′(ω), so ∀β < ω + ω P (β). This completes the proof
of TIω·2.

5.3.39. Lemma. The schema TI2α is provable in Peano Arithmetic with the schema TIα,
for all α < ǫ0.

Proof. Assume TIα and Ind(P ) for some P . In order to prove ∀α′ < 2α P (α′) define
P ′(α′) ≡ ∀β(∀β′ < β P (β′) ⇒ ∀β′ < β + 2α′

P (β′)). The intuition behind P ′(α′)
is: if P holds on an arbitrary initial segment, then we can prolong this segment with
2α′

. The goal will be to prove P ′(α), since we can then prolong the empty inititial
segment on which P vacuously holds to one of length 2α. We prove P ′(α) by proving
first that P ′ is inductive and then combining this with TIα, similar to the proof of
the previous lemma. We have P ′(0) as P is inductive and 20 = 1. The argument for
P ′(α) ⇒ P ′(α+1) amounts to applying P ′(α) twice, relying on 2α+1 = 2α+2α. Assume
P ′(α) and ∀β′ < β P (β′) for some β. By P ′(α) we have ∀β′ < β + 2α P (β′). Hence
again by P ′(α), but now with β + 2α instead of β, we have ∀β′ < β + 2α + 2α P (β′).
We conclude P ′(α + 1). The limit case is equally simple as in the previous lemma. It
follows that P ′ is inductive, and the proof can be completed as explained above.

The general idea of the above proofs is that the stronger axiom schema is proved by
applying the weaker schema to more complicated formulas (P ′ as compared to P ). This
procedure can be iterated as long as the more complicated formulas remain well-formed.
In the case of Peano arithmetic we can iterate this procedure finitely many times. This
yields the following result.

5.3.40. Lemma (Gentzen). TIα is provable in Peano Arithmetic for every ordinal α < ǫ0.

Proof. Use ωβ = 2ω·β, so 2ω·2 = ω2 and 2ω2
= ωω. From ωω on, iterating exponentiation

with base 2 yields the same ordinals as with base ω. We start with Lemma 5.3.37 to
obtain TIω, continue with Lemma 5.3.38 to obtain TIω·2, and surpass TIα for every
ordinal α < ǫ0 by iterating Lemma 5.3.39 a sufficient number of times.

We now translate the Gentzen argument from transfinite induction to transfinite
recursion, closely following the development of Terlouw [1982].

5.3.41. Definition. For any functional F of type 0→A and ordinals α,β we define
primitive recursively

[F ]αβ(β′) =

{
F (β′) if β′ ≺ β � α,
0A otherwise.
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By convention, ‘otherwise’ includes the cases in which α,β,β′ are not ordinals, and the
case in which α ≺ β. Furthermore, we define [F ]α = [F ]αα, that is, the functional F
restricted to an initial segment of ordinals smaller than α.

5.3.42. Definition. The class of functionals definable by TRα is the smallest class of
functionals which contains all primitive recursive functionals and is closed under the
definition schema TRα, defining F from G (of appropriate types) in the following way:

F (β) = G([F ]αβ,β)

Note that, by the above definition, F (β) = G(00→A,β) if α ≺ β or if the argument of
F does not encode an ordinal.

The following lemma is to be understood as the computational counterpart of Lemma 5.3.38,
with the primitive recursive functionals taking over the role of Peano Arithmetic.

5.3.43. Lemma. Every functional definable by the schema TRω is T -definable.

Proof. Let F0(α) = G([F0]
ω
α, α) be defined by TRω. We have to show that F0 is

T -definable. Define primitive recursively F1 by F1(0) = 00→A and

F1(n+ 1, α) =

{
F1(n, α) if α < n
G([F1(n)]ωα, α) otherwise

By induction one shows [F0]
ω
n = [F1(n)]ωn for all n. Define primitive recursively F2 by

F2(n) = F1(n+ 1, n) and F2(α) = 0A if α is not a finite ordinal, then F2 = [F0]
ω
ω. Now

it is easy to define F0 explicitly in F2

F0(α) =





F2(α) if α < ω
G(F2, ω) if α = ω
G(00→A, α) otherwise

Note that we used both num and mun implicitly in the definition of F2.

The general idea of the proofs below is that the stronger schema is obtained by applying
the weaker schema to functionals of more complicated types.

5.3.44. Lemma. Every functional definable by the schema TRω·2 is definable by the
schema TRω.

Proof. Put ω · 2 = α and let F0(β) = G([F0]
α
β,β) be defined by TRα. We have to

show that F0 is definable by TRω (applied with functionals of more complicated types).
First define F1(β) = G([F1]

ω
β,β) by TRω. Then we can prove F1(β) = F0(β) for all

β < ω by TIω. So we have [F1]ω = [F0]ω, which is to be compared to P ′(0) in the proof
of Lemma 5.3.38. Now define H of type 0→(0→A)→(0→A) by TRω as follows. The
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more complicated type of H as compared to the type 0→A of F is the counterpart of
the more complicated formula P ′ as compared to P in the proof of Lemma 5.3.38.

H(0, F ) = [F1]ω

H(β + 1, F,β′) =





H(β, F,β′) if β′ < ω + β

G(H(β, F ),β′) if β′ = ω + β

0A otherwise

This definition can easily be casted in the form H(β) = G′([H]ωβ,β) for suitable G′, so

that H is actually defined by TRω. We can prove H(β, 00→A) = [F0]
α
ω+β for all β < ω

by TIω. Finally we define

F2(β
′) =





F1(β
′) if β′ < ω

G(H(β, 00→A),β′) if β′ = ω + β < α
G(00→A,β′) otherwise

Note that F2 is explicitly defined in G and H and therefore defined by TRω only. One
easily shows that F2 = F0, which completes the proof of the lemma.

5.3.45. Lemma. Every functional definable by the schema TR2α is definable by the schema
TRα, for all α < ǫ0.

Proof. Let F0(β) = G([F0]
2α

β ,β) be defined by TR2α . We have to show that F0 is
definable by TRα (applied with functionals of more complicated types). Like in the
previous proof, we will define by TRα an auxiliary functional H in which F0 can be
defined explicitly. The complicated type of H compensates for the weaker definition
principle. The following property satisfied by H is to be understood in the same way
as the property P ′ in the proof of Lemma 5.3.39, namely that we can prolong initial
segments with 2α.

propH (α′) ≡ ∀β, F ([F ]
2α

β = [F0]
2α

β ⇒ [H(α′,β, F )]
2α

β+2α′ = [F0]
2α

β+2α′ )

To make propH come true, define H of type 0→0→(0→A)→(0→A) as follows.

H(0,β, F,β′) =





F (β′) if β′ < β ≤ 2α

G([F ]
2α

β ,β) if β′ = β ≤ 2α

0A otherwise

H(α′ + 1,β, F ) = H(α′,β + 2α′

, H(α′,β, F ))

If α′ is a limit ordinal, then we use the function p from Lemma 5.3.36.

H(α′,β, F,β′) =

{
H(p(α′,β′,β),β, F,β′) if β′ < β + 2α′

0A otherwise

This definition can easily be casted in the form H(β) = G′([H]αβ,β) for suitable G′,
so that H is in fact defined by TRα. We shall prove that propH (α′) is inductive, and
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conclude propH (α′) forall α′ ≤ α by TIα. This implies [H(α′, 0, 00→A)]
2α

2α′ = [F0]
2α

2α′ for

all α′ ≤ α, so that one could manufacture F0 from H in the following way:

F0(β) =





H(α, 0, 00→A,β) if β < 2α

G(H(α, 0, 00→A),β) if β = 2α

G(00→A,β) otherwise

It remains to show that propH (α′) is inductive up to and including α. For the case α′ = 0

we observe that H(0,β, F ) follows F up to β, applies G to the initial segment of [F ]
2α

β

in β, and zeroes after β. This entails propH (0), as 20 = 1. Analogous to the successor
case in the proof of Lemma 5.3.39, we prove propH (α+ 1) by applying propH (α) twice,
once with β and once with β + 2α. Given β and F we infer:

[F ]
2α

β = [F0]
2α

β ⇒ [H(α′,β, F )]
2α

β+2α′ = [F0]
2α

β+2α′ ⇒

[H(α′,β + 2α′

, H(α′,β, F ))]
2α

β+2α′+1
= [F0]

2α

β+2α′+1

For the limit case, assume α′ ≤ α is a limit ordinal such that propH holds for all smaller
ordinals. Recall that, according to Lemma 5.3.36 and putting α′′ = p(α′,β′,β), α′′ < α′

and β′ < β + 2α′′

whenever β′ < β + 2α′

. Now assume [F ]
2α

β = [F0]
2α

β and β′ < β + 2α′

,

then [H(α′′,β, F )]
2α

β+2α′′ = [F0]
2α

β+2α′′ by propH (α′′), so H(α′′,β, F,β′) = F0(β
′). It

follows that [H(α′,β, F )]
2α

β+2α′ = [F0]
2α

β+2α′ .

5.3.46. Lemma. Every functional definable by the schema TRα for some ordinal α < ǫ0
is T-definable.

Proof. Analogous to the proof of Lemma 5.3.40.

Lemma 5.3.46 establishes ǫ0 as a lower bound for the computational strength of
Gödel’s T . It can be shown that ǫ0 is a sharp bound for T , see Tait [1965], Howard
[1970] and Schwichtenberg [1975]. In the next section we will introduce Spector’s system
B. It is also known that B is much stronger than T , lower bounds have been established
for subsystems of B, but the computational strength of B in terms of ordinals remains
one of the great open problems in this field.

5.4. Spector’s system B: bar recursion

Spector [1962] extends Gödel’s T with a definition schema called bar recursion.3 Bar
recursion is a principle of definition by recursion on a well-founded tree of finite sequences
of functionals of the same type. For the formulation of bar recursion we need finite
sequences of functionals of type A. These can conveniently be encoded by pairs consisting

3For the purpose of characterizing the provably recursive functions of analysis, yielding a consistency
proof of analysis.
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of a functional of type N and one of type N→A. The intuition is that x,C encode the
sequence of the first x values of C, that is, C(0), . . . , C(x − 1). We need auxiliary
functionals to extend finite sequences of any type. A convenient choice is the primitive
recursive functional ExtA : (N→A)→N→A→N→A defined by:

ExtA(C, x,A, y) =

{
C(y) if y < x,
A otherwise.

We shall often omit the type subscript in ExtA, and abbreviate Ext(C, x,A) by C ∗x A
and Ext(C, x, 0A) by [C]x. We are now in a position to formulate the schema of bar
recursion:4

ϕ(x,C) =

{
G(x,C) if Y [C]x < x,
H(λaA.ϕ(x+ 1, C ∗x a), x, C) otherwise.

The case distinction is governed by Y [C]x < x, the so-called bar condition. The base
case of bar recursion is the case in which the bar condition holds. In the other case ϕ is
recursively called on all extensions of the (encoded) finite sequence.

A key feature of bar recursion is its proof theoretic strength as established by
Spector[1962]. As a consequence, some properties of bar recursion are hard to prove,
such as SN and the existence of a model. As an example of the latter phenomenon we
shall show that the full set theoretic model of Gödel’s T is not a model of bar recursion.

Consider functionals Y,G,H defined by G(x,C) = 0, H(Z, x,C) = 1 + Z(1) and

Y (F ) =

{
0 if F (m) = 1 for all m,
n otherwise, where n = min{m | F (m) 6= 1}.

Let 1N→N be the constant 1 function. The crux of Y is that Y [1N→N]x = x for all x, so
that the bar recursion is not well-founded. We calculate

ϕ(0, 1N→N) = 1 + ϕ(1, 1N→N) = . . . = n+ ϕ(n, 1N→N) = . . .

which shows that ϕ is not well-defined.

Syntax of λB

In this section we formalize Spector’s B as an extension of Gödel’s T called λB.

5.4.1. Definition. The types of λB are the types of λT . We use AN as shorthand for
the type N→A. The terms of λB are obtained by adding constants

B(A,B) : (AN→N)→(N→AN→B)→((A→B)→N→AN→B)→N→AN→B
Bc

A,B : (AN→N)→(N→AN→B)→((A→B)→N→AN→B)→N→AN→N→B
4Spector uses [C]x instead of C as last argument of G and H. Both formulations are easily seen to

be equivalent since they are schematic in G, H (as well as in Y ).
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for all types A,B to the constants of λT . The set of (closed) terms of λB (of type A)

is denoted with Λ
(0)
B (A). The formulas of λB are equations between terms of λB (of

the same type). The theory of λB extends the theory of λT with the above schema of
bar recursion (with ϕ abbreviating BY GH). The reduction relation →B of λB extends
→T by adding the following (schematic) rules for the constants B, Bc (omitting type
annotations A,B):

BY GHXC →B BcY GHXC(X . [C]X)

BcY GHXC(S+N) →B GXC

BcY GHXC0 →B H(λa.BY GH(S+X)(C ∗X a))XC

The reduction rules for B, Bc require some explanation. First observe that x . Y [C]x =
0 iff Y [C]x ≥ x, so that testing x . Y [C]x = 0 amounts to evaluating the (negation) of the
bar condition. Consider a primitive recursive functional IfB satisfying IfB 0M1M0 = M0

and IfB(S+P )M1M0 = M1. A straightforward translation of the definition schema of
bar recursion into a reduction rule:

BY GHXC → If (X . [C]X)(GXC)(H(λx.BY GH(S+X)(C ∗X x))XC)

would lead to infinite reduction sequences (the innermost B can be reduced again and
again). It turns out to be necessary to evaluate the boolean first. This has been achieved
by the interplay between B and Bc.

Theorem 5.3.9, Lemma 5.3.10 and Theorem 5.3.12 carry over from λT to λB with
proofs that are easy generalizations. We now prove SN for λB and then obtain CR for
λB using Newman’s Lemma 5.3.14. The proof of SN for λB is considerably more difficult
than for λT , which reflects the metamathematical fact that λB corresponds to analysis
(see Spector [1962]), whereas λT corresponds to arithmetic. We start with defining
hereditary finiteness for sets of terms, an analytical notion which plays a similar role as
the arithmetical notion of computability for terms in the case of λT . Both are logical
relations in the sense of Section 3.3, although hereditary finiteness is defined on the
power set. Both computability and hereditary finiteness strengthen the notion of strong
normalization, both are shown to hold by induction on terms. For metamathematical
reasons, notably the consistency of analysis, it should not come as a surprise that we
need an analytical induction loading in the case of λB.

5.4.2. Definition. For every set X ⊆ ΛB, let nf (X) denote the set of normal forms of
terms from X. For all X ⊆ ΛB(A→B) and Y ⊆ ΛB(A), let XY denote the set of all
applications of terms from X to terms from Y. Furthermore, if M(x1, . . . , xk) is a term
with free variables x1, . . . , xk, and X1, . . . ,Xk are sets of terms such that every term from
Xi has the same type as xi (1 ≤ i ≤ k), then we denote the set of all corresponding
substitution instances by M(X1, . . . ,Xk).

By induction on the type A we define X∈HFA, expressing that the set X of closed
terms of type A is hereditarily finite.
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X∈HFN ⇐⇒ X ⊆ Λø
B(N) ∩ SN and nf (X) is finite

X∈HFA→B ⇐⇒ X ⊆ Λø
B(A→B) and XY∈HFB whenever Y∈HFA

A closed termM is hereditarily finite, denoted byM ∈HF0, if {M}∈HF. IfM(x1, . . . , xk)
is a term all whose free variables occur among x1, . . . , xk, thenM(x1, . . . , xk) is hereditarily
finite, denoted by M(x1, . . . , xk)∈HF, if M(X1, . . . ,Xk) is hereditarily finite for all
Xi ∈HF of appropriate types (1 ≤ i ≤ k).

Some basic properties of hereditary finiteness are summarized in the following lemmas.
We use vector notation to abbreviate sequences of arguments of appropriate types both
for terms and for sets of terms. For example, M ~N abbreviates MN1 . . . Nk and X~Y
stands for XY1 . . .Yk. The first two lemmas are instrumental for proving hereditary
finiteness.

5.4.3. Lemma. X ⊆ Λø
B(A1→· · ·→An→N) is hereditarily finite if and only if X~Y∈HFN

for all Y1 ∈HFA1 , . . . ,Yn ∈HFAn.

Proof. By induction on n, applying Definition 5.4.2.

5.4.4. Definition. Given two sets of terms X,X′ ⊆ Λø
B, we say that X is adfluent with

X′ if every maximal reduction sequence starting in X passes through a reduct of a term
in X′. Let A ≡ A1→· · ·→An→N with n ≥ 0 and let X,X′ ⊆ Λø

B(A). We say that X is

hereditarily adfluent with X′ if X~Y is adfluent with X′~Y, for all Y1 ∈HFA1 , . . . ,Yn ∈HFAn .

5.4.5. Lemma. Let X,X′ ⊆ Λø
B(A) be such that X is hereditarily adfluent with X′. Then

X∈HFA whenever X′ ∈HFA.

Proof. Let conditions be as in the lemma and assume X′ ∈HFA withA ≡ A1→· · ·→An→N.
Let Y1 ∈HFA1 , . . . ,Yn ∈HFAn , then X~Y is adfluent with X′~Y. It follows that X~Y ⊆ SN

since X′~Y ⊆ SN and nf (X~Y) ⊆ nf (X′~Y), so nf (X~Y) is finite since nf (X′~Y) is. Applying
Lemma 5.4.3 we obtain X∈HFA.

Note that the above lemma holds in particular if n = 0, that is, if A ≡ N.

5.4.6. Lemma. For every type A we have: (i) HFA ⊆ SN and (ii) 0A ∈HFA.

Proof. We prove (ii) and (iii) HF0
A ⊆ SN by simultaneous induction on A. Then (i)

follows immediately. Obviously, 0 ∈HFN and HF0
N
⊆ SN. For the induction step A→B,

assume (ii) and (iii) hold for all smaller types. If M ∈HF0
A→B, then by the induction

hypothesis (ii) 0A ∈HF0
A, so M 0A ∈HF0

B, so M 0A is SN by the induction hypothesis
(iii), and hence M is SN. Recall that 0A→B ≡ λxA.0B. We use Lemma 5.4.3 to prove
the induction step for (ii). Let X∈HFA, then X ⊆ SN by the induction hypothesis. It
follows that 0A→BX is hereditarily adfluent with 0B. By the induction hypothesis we
have 0B ∈HFB, so 0A→BX∈HFB by Lemma 5.4.5. It follows that 0A→B ∈HFA→B.
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The proofs of the following three lemmas are left to the reader.

5.4.7. Lemma. Every reduct of a hereditarily finite term is hereditarily finite.

5.4.8. Lemma. Subsets of hereditarily finite sets of terms are hereditarily finite.

In particular elements of a hereditarily finite set are hereditarily finite.

5.4.9. Lemma. Finite unions of hereditarily finite sets are hereditarily finite.

In this connection of course only unions of the same type make sense.

5.4.10. Exercise. Prove the above three lemmas.

5.4.11. Lemma. The hereditarily finite terms are closed under application.

Proof. Immediate from Definition 5.4.2.

5.4.12. Lemma. The hereditarily finite terms are closed under lambda abstraction.

Proof. Let M(x, x1, . . . , xk)∈HF be a term all whose free variables occur among
x, x1, . . . , xk. We have to prove λx.M(x, x1, . . . , xk)∈HF, that is,

λx.M(x,X1, . . . ,Xk)∈HF

for given ~X = X1, . . . ,Xk ∈HF of appropriate types. Let X∈HF be of the same type
as the variable x, so X ⊆ SN by Lemma 5.4.6. We also have M(x, ~X) ⊆ SN by
the assumption on M and Lemma 5.4.6. It follows that (λx.M(x, ~X)X is hereditarily
adfluent with M(X, ~X). Again by the assumption on M we have that M(X, ~X)∈HF,
so that (λx.M(x, ~X))X∈HF by Lemma 5.4.5. We conclude that λx.M(x, ~X)∈HF, so
λx.M(x, x1, . . . , xk)∈HF.

5.4.13. Theorem. Every term of λT is hereditarily finite.

Proof. By Lemma 5.4.11 and Lemma 5.4.12, the hereditarily finite terms are closed
under application and lambda abstraction, so it suffices to show that the constants
and the variables are hereditarily finite. Variables and the constant 0 are obviously
hereditarily finite. Regarding S+, let X∈HFN, then S+X ⊆ Λø

B(N) ∩ SN and nf (S+X) is
finite since nf (X) is finite. Hence S+X∈HFN, so S+ is hereditarily finite. It remains to
prove that the constants RA are hereditarily finite. Let M,N,X∈HF be of appropriate
types and consider RAMNX. We have in particular X∈HFN, so nf (X) is finite, and
the proof of RAMNX∈HF goes by induction on the largest numeral in nf (X). If
nf (X) = {0}, then RAMNX is hereditarily adfluent with M. Since M∈HF we can apply
Lemma 5.4.5 to obtain RAMNX∈HF. For the induction step, assume RAMNX′ ∈HF

for all X′ ∈HF such that the largest numeral in nf (X′) is n. Let, for some X∈HF, the
largest numeral in nf (X) be S+n. Define

X′ = {X | S+X is a reduct of a term in X}
Then X′ ∈HF since X∈HF, and the largest numeral in nf (X′) is n. It follows by the
induction hypothesis that RAMNX′ ∈HF, so N(RAMNX′)X′ ∈HF and hence N(RAMNX′)X′ ∪M∈HF

by Lemma 5.4.11,5.4.9. We have that RAMNX, is hereditarily adfluent with N(RAMNX′)X′∪
M so RAMNX∈HF by Lemma 5.4.5. This completes the induction step.
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Before we can prove that B is hereditarily finite we need the following lemma.

5.4.14. Lemma. Let Y,G,H,X,C∈HF be of appropriate type. Then

BYGHXC∈HF,

whenever BYGH(S+X)(C ∗X A)∈HF for all A∈HF of appropriate type.

Proof. Let conditions be as above. Abbreviate BYGH by B and BcYGH by Bc. Assume
B(S+X)(C ∗X A)∈HF for all A∈HF. Below we will frequently and implicitly use that
. , ∗, [ ] are primitive recursive and hence hereditarily finite, and that hereditary finiteness
is closed under application. Since hereditarily finite terms are strongly normalizable, we
have that BXC is hereditarily adfluent with BcXC(X . Y[C]X), and hence with GCX ∪
H(λa.B(S+X)(C ∗X a))CX. It suffices to show that the latter set is in HF. We have
GCX∈HF, so by Lemma 5.4.9 the union is hereditarily finite if H(λa.B(S+X)(C ∗X a))CX

is. It suffices that λa.B(S+X)(C∗Xa)∈HF, and this will follow by the assumption above.
We first observe that {0A}∈HF so B(S+X)(C∗X{0A})∈HF and hence B(S+X)(C ∗X a) ⊆
SN by Lemma 5.4.6. Let A∈HF. Since B(S+X)(C ∗X a),A ⊆ SN we have that (λa.B(S+X)(C∗X
a))A is adfluent with B(S+X)(C∗XA)∈HF and hence hereditarily finite itself by Lemma 5.4.5.

We now have arrived at the crucial step, where not only the language of analysis
will be used, but also the axiom of dependent choice in combination with classical logic.
We will reason by contradiction. Suppose B is not hereditarily finite. Then there
are hereditarily finite Y,G,H,X and C such that BYGHXC is not hereditarily finite.
We introduce the following abbreviations: B for BYGH and X+n for S+(. . . (S+X) . . .)
(n times S+). By Lemma 5.4.14, there exists U∈HF such that B(X+1)(C ∗X U) is
not hereditarily finite. Hence again by Lemma 5.4.14, there exists V∈HF such that
B(X+2)((C ∗X U) ∗X+1 V) is not hereditarily finite. Using dependent choice, let

D = C ∪ (C ∗X U) ∪ ((C ∗X U) ∗X+1 V) ∪ . . .

be the infinite union of the sets obtained by iterating the argument above. Note that all
sets in the infinite union are hereditarily finite of type AN. Since the union is infinite,
it does not follow from Lemma 5.4.9 that D itself is hereditarily finite. However, since
D has been built up from terms of type AN having longer and longer initial segments
in common we will nevertheless be able to prove that D∈HF. Then we will arrive at a
contradiction, since YD∈HF implies that Y is bounded on D, so that the bar condition
is satisfied after finitely many steps, which conflicts with the construction process.

5.4.15. Lemma. The set D constructed above is hereditarily finite.

Proof. Let N, ~Z∈HF be of appropriate type, that is, N of type N and ~Z such that
DN~Z is of type N. We have to show DN~Z∈HF. Since all elements of D are hereditarily
finite we have DN~Z ⊆ SN. By an easy generalization of Theorem 5.3.12 we have WCR
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for λB, so by Newman’s Lemma 5.3.14 we have DN~Z ⊆ CR. Since N∈HF it follows
that nf (N) is finite, say nf (N) ⊆ {0, . . . , n} for n large enough. It remains to show
that nf (DN~Z) is finite. Since all terms in DN~Z are CR, their normal forms are unique.
As a consequence we may apply a leftmost innermost reduction strategy to any term
DN ~Z ∈DN~Z. At this point it might be helpful to remind the reader of the intended
meaning of ∗: C ∗x A represents the finite sequence C0, . . . , C(x− 1), A. More formally,

(C ∗x A)y =

{
C(y) if y < x,
A otherwise.

With this in mind it is easily seen that nf (DN~Z) is a subset of nf (DnN~Z), with

Dn = C ∪ (C ∗X U) ∪ ((C ∗X U) ∗X+1 V) ∪ . . . ∪ (· · · (C ∗X U) ∗ · · · ∗X+n W)

a finite initial part of the infinite union D. The set nf (DnN~Z) is finite since the union is
finite and all sets involved are in HF. Hence D is hereditarily finite by Lemma 5.4.3.

Since D is hereditarily finite, it follows that nf (YD) is finite. Let k be larger than
any numeral in nf (YD). Consider

Bk = B(X+k)(· · · (C ∗X U) ∗ · · · ∗
X+k W′)

as obtained in the construction above, iterating Lemma 5.4.14, hence not hereditarily
finite. Since k is a strict upper bound of nf (YD) it follows that the set nf ((X+k) . YD)
consists of numerals greater than 0, so that Bk is hereditarily adfluent with G(X+k)D.
The latter set is hereditarily finite since it is an application of hereditarily finite sets (use
Lemma 5.4.15). Hence Bk is hereditarily finite by Lemma 5.4.5, which yields a plain
contradiction.

By this contradiction, B must be hereditarily finite, and so is Bc, which follows by
inspection of the reduction rules. As a consequence we obtain the main theorem of this
section.

5.4.16. Theorem. Every bar recursive term is hereditarily finite.

5.4.17. Corollary. Every bar recursive term is strongly normalizable.

5.4.18. Remark. The first normalization result for bar recursion is due to Tait [1971],
who proves WN for λB. Vogel [1976] strengthens Tait’s result to SN, essentially by
introducing Bc and by enforcing every B-redex to reduce via Bc. Both Tait and Vogel
use infinite terms. The proof above is based on Bezem [1985] and avoids infinite terms
by using the notion of hereditary finiteness, which is a syntactic version of Howard’s
compactness of functionals of finite type, see Troelstra [1973], Section 2.8.6.

If one considers λB also with η-reduction, then the above results can also be obtained
in a similar way as for λT with η-reduction.
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Semantics of λB

In this section we give some interpretations of bar recursion.

5.4.19. Definition. A model of λB is a model of λT with interpretations of the constants
BA,B and Bc

A,B for all A,B, such that the rules for these constants can be interpreted
as valid equations. In particular we have then that the schema of bar recursion is valid,
with [[ϕ]] = [[BY GH]].

We have seen at the beginning of this section that the full set theoretic model of Gödel’s T
is not a model of bar recursion, due to the existence of functionals (such as Y unbounded
on binary functions) for which the bar recursion is not well-founded. Designing a model
of λB amounts to ruling out such functionals, while maintaining the necessary closure
properties. There are various solutions to this problem. The simplest solution is to take
the closed terms modulo convertibility, which form a model by CR and SN. However,
interpreting terms (almost) by themselves does not explain very much. In Exercise 5.4.24
the reader is asked to prove that the closed term model is extensional. An interesting
model is obtained by using continuity in the form of the Kleene [1959a] and Kreisel [1959]
continuous functionals. Continuity is on one hand a structural property of bar recursive
terms, since they can use only finitely many information about their arguments, and on
the other hand ensures that bar recursion is well-founded, since a continuous Y becomes
eventually constant on increasing initial segments [C]x. In Exercise 5.4.23 the reader
is asked to elaborate this model in detail. Refinements can be obtained by considering
notions of computability on the continuous functionals, such as Kleene’s [1959b] S1-S9
recursive functionals. Computability alone, without uniform continuity on all binary
functions, does not yield a model of bar recursion, see Exercise 5.4.22. The model of
bar recursion we will elaborate in the next paragraphs is based on the same idea as the
proof of strong normalization in the previous section. Here we consider the notion of
hereditary finiteness semantically instead of syntactically. The intuition is that the set of
increasing initial segments is hereditarily finite, so that any hereditarily finite functional
Y is bounded on that set, and hence the bar recursion is well-founded.

5.4.20. Definition (hereditarily finite functionals). Recall the full type structure over
the natural numbers: NN = N and NA→B = NA→NB. A set X ⊆ NN is hereditarily
finite if X is finite. A set X ⊆ NA→B is hereditarily finite if XY ⊆ NB is hereditarily
finite for every hereditarily finite Y ⊆ NA. Here and below, XY denotes the set of all
results that can be obtained by applying functionals from X to functionals from Y. A
functional F is hereditarily finite if the singleton set {F} is hereditarily finite. Let HF be
the substructure of the full type structure consisting of all hereditarily finite functionals.

The proof that HF is a model of λB has much in common with the proof that λB

is SN from the previous paragraph. The essential step is that the interpretation of
the bar recursor is hereditarily finite. This requires the following semantic version of
Lemma 5.4.14:
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5.4.21. Lemma. Let Y,G,H,X,C be hereditarily finite sets of appropriate type. Then
[[B]]YGHXC is well defined and hereditarily finite whenever [[B]]YGH(X + 1)(C ∗X A) is
so for all hereditarily finite A of appropriate type.

The proof proceeds by iterating this lemma in the same way as how the SN proof
proceeds after Lemma 5.4.14. The set of longer and longer initial sequences with elements
taken from hereditarily finite sets (cf. the set D in Lemma 5.4.15) is hereditarily finite
itself. As a consequence, the bar recursion must be well-founded when the set Y is also
hereditarily finite. It follows that the interpretation of the bar recursor is well-defined
and hereditarily finite.

5.4.22. Exercise. This exercise shows that HEO is not a model for bar recursion. Recall
that ∗ stands for partial recursive function application. Consider functionals Y,G,H
defined by G(x,C) = 0, H(Z, x,C) = 1 +Z(0) +Z(1) and Y (F ) is the smallest number
n such that i ∗ i converges in less than n steps for some i < n and, moreover, i ∗ i = 0
if and only if F (i) = 0 does not hold. The crux of the definition of Y is that no total
recursive function F can distinguish between i ∗ i = 0 and i ∗ i > 0 for all i with i ∗ i↓.
But for any finite number of such i’s we do have a total recursive function making the
correct distinctions. This implies that Y , although continuous and well-defined on all
total recursive functions, is not uniformly continuous and not bounded on total recursive
binary functions. Show that all functionals involved can be represented in HEO and that
the latter model of λT is not a model of λB.

5.4.23. Exercise. This exercise introduces the continuous functionals, Kleene [1959a].
Define for f, g ∈N→N the (partial) application of f to g by f(g) = f(g n)− 1, where n
is the smallest number such that f(g n) > 0, provided there is such n. If there is no such
n, then f ∗ g is undefined. The idea is that f uses only finitely many information about
g for determining the value of f ∗g (if any). Define inductively for every type A a set CA
together with an association relation between elements of of N→N and elements of CA.
For the base type we put CN = N and let the constant functions be the associates of the
corresponding natural numbers. For higher types we define that f ∈N→N is an associate
of F ∈CA→CB if for any associate g of G∈CA the function h defined by h(n) = f(n:g)
is an associate of F (G)∈CB. Here n:g is shorthand for the function taking value n at 0
and value g(k− 1) for all k > 0. (Note that we have implicitly required that h is total.)
Now CA→B is defined as the subset of those F ∈CA→CB that have an associate. Show
that C is a model for bar recursion.

Following Troelstra [1973], Section 2.4.5 and 2.7.2, we define the following notion of
hereditary extensional equality. We put ≈N to be =, convertibility of closed terms in
Λø

B(N). For the type A ≡ B→B′ we define M ≈A M ′ if and only if M,M ′ ∈Λø
B(A) and

MN ≈B′ M ′N ′ for all N,N ′ such that N ≈B N ′. By (simultaneous) induction on A one
shows easily that ≈A is symmetric, transitive and partially reflexive, that is, M ≈A M
holds whenever M ≈A N for some N .
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The corresponding axiom of hereditary extensionality is simply stating that ≈A is
(totally) reflexive: M ≈A M , schematic in M ∈Λø

B(A) and A. It follows from the next
exercise that the closed term model is extensional.

5.4.24. Exercise. Show M ≈M for any closed term M ∈Λø
B. Hint: define a predicate

Ext(M(x1, . . . , xn)) for any open term M with free variables among x1, . . . , xn by

M(X1, . . . , Xn) ≈M(X ′
1, . . . , X

′
n)

for all X1, . . . , Xn, X
′
1, . . . , X

′
n ∈Λø

B with X1 ≈ X ′
1, . . . , Xn ≈ X ′

n. Then prove by
induction on terms that Ext holds for any open term, so in particular for closed terms.
For B, prove first the lemma below.

5.4.25. Lemma. For all Y ≈ Y ′, G ≈ G′, H ≈ H ′, X ≈ X ′, C ≈ C ′, if

BY GH(S+X)(C ∗X A) ≈ BY ′G′H ′(S+X ′)(C ′ ∗X′ A′)

for all A ≈ A′, then BY GHXC ≈ BY ′G′H ′X ′C ′.

5.5. Platek’s system Y: fixed point recursion

Platek [1966] introduces a simply typed lambda calculus extended with fixed point
combinators. Here we study Platek’s system as an extension of Gödel’s T . An almost
identical system is called PCF in Plotkin [1977].

A fixed point combinator is a functional Y of type (A→A)→A such that Y F is a fixed
point of F , that is, Y F = F (Y F ), for every F of type A→A. Fixed point combinators
can be used to compute solutions to recursion equations. The only difference with the
type-free lambda calculus is that here all terms are typed, including the fixed point
combinators themselves.

As an example we consider the recursion equations of the schema of higher order
primitive recursion in Gödel’s system T , Section 5.3. We can rephrase these equations
as

RMNn = If n (N(RMN(n− 1))(n− 1))M,

where If nM1M0 = M0 if n = 0 and M1 if n > 0. Hence we can write

RMN = λn. If n (N(RMN(n− 1))(n− 1))M

= (λfn. If n (N(f(n− 1))(n− 1))M)(RMN)

This equation is of the form Y F = F (Y F ) with

F = λfn. If n (N(f(n− 1))(n− 1))M

and Y F = RMN . It is easy to see that Y F satisfies the recursion equation for RMN
uniformly in M,N . This show that, given functionals If and a predecessor function (to
compute n−1 in case n > 0), higher-order primitive recursion is definable by fixed point



250 CHAPTER 5. EXTENSIONS

recursion. However, for computing purposes it is convenient to have primitive recursors
at hand. By a similar argument, one can show bar recursion to be definable by fixed
point recursion.

In addition to the above argument we show that every partial recursive function can
be defined by fixed point recursion, by giving a fixed point recursion for minimization.
Let F be a given function. Define by fixed point recursion GF = λn.If F (n) GF (n+ 1) n.
Then we have GF (0) = 0 if F (0) = 0, and GF (0) = GF (1) otherwise. We have GF (1) = 1
if F (1) = 0, and GF (1) = GF (2) otherwise. By continuing this argument we see that

GF (0) = min{n | F (n) = 0},

that is, GF (0) computes the smallest n such that F (n) = 0, provided that such n exists.
If there exists no n such that F (n) = 0, then GF (0) as well as GF (1), GF (2), . . . are
undefined. Given a function F of two arguments, minimization with respect to the
second argument can now be obtained by the partial function λx.GF (x)(0).

In the paragraph above we saw already that fixed point recursions may be indefinite:
if F does not zero, then GF (0) = GF (1) = GF (2) = . . . does not lead to a definite
value, although one could consistently assume GF to be a constant function in this case.
However, the situation is in general even worse: there is no natural number n that
can consistently be assumed to be the fixed point of the successor function, that is,
n = Y (λx.x+ 1), since we cannot have n = (λx.x+ 1)n = n+ 1. This is the price to be
paid for a formalism that allows one to compute all partial recursive functions.

Syntax of λY

In this section we formalize Platek’s Y as an extension of Gödel’s T called λY .

5.5.1. Definition. The types of λY are the types of λT . The terms of λY are obtained
by adding constants

YA : (A→A)→A

for all types A to the constants of λT . The set of (closed) terms of λY (of type A) is
denoted with Λø

Y (A). The formulas of λY are equations between terms of λY (of the
same type). The theory of λY extends the theory of λT with the schema YF = F (YF )
for all appropriate types. The reduction relation →Y of λY extends →T by adding the
following rule for the constants Y (omitting type annotations A):

Y →Y λf.f(Yf)

The reduction rule for Y requires some explanation, as the rule YF → F (YF ) seems
simpler. However, with the latter rule we would have diverging reductions λf.Yf →η Y

and λf.Yf →Y λf.f(Yf) that cannot be made to converge, so that we would lose CR
of →Y in combination with η-reduction.

The Church-Rosser property for λY with β-reduction and with βη-reduction can be
proved by standard techniques from higher-order rewriting theory, for example, by using
weak orthogonality, see Raamsdonk [1996].
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5.5.2. Exercise. It is possible to define λY as extension of λo
→ using Church numerals

cn ≡ λxN fN→N.fnx. Show that every partial recursive function is also definable in this
version of λY .

Although λY has universal computational strength in the sense that all partial
recursive functions can be computed, not every computational phenomenon can be
represented. In the next section we shall see that λY does not have enumerators.
Moreover, λY is inherently sequential. For example, λY doesn’t have a term P such
that PMN = 0 if and only if M = 0 or N = 0. The problem is that M and N
cannot be evaluated in parallel, and if the argument that is evaluated first happens to
be undefined, then the outcome is undefined even if the other argument equals 0. For a
detailed account of the so-called sequentiality of λY , see Plotkin [1977].

Semantics of λY

In this section we explore the semantics of λY and give one model.

5.5.3. Definition. A model of λY is a model of λT with interpretations of the constants
YA for all A, such that the rules for these constants can be interpreted as valid equations.

Models of λY differ from those of λT , λB in that they have to deal with partiality.
As we saw in the introduction of this section, no natural number n can consistently
be assumed to be the fixed point of the successor function. Nevertheless, we want to
interpret terms like YS+. The canonical way to do so is to add an element ⊥ to the
natural numbers, representing undefined objects like the fixed point of the successor
function. Let N

⊥ denote the set of natural numbers extended with ⊥. Now higher
types are interpreted as function spaces over N

⊥. The basic intuition is that ⊥ contains
less information than any natural number, and that functions and functionals give more
informative output when the input becomes more informative. One way of formalizing
these intuitions is by using partial orderings. We equip N

⊥ with the partial ordering ⊑
such that ⊥ < n for all n∈N. In order to be able to interpret Y, every function must
have a fixed point. This requires some extra structure on the partial orderings, which
can be formalized by the notion of complete partial ordering (cpo). The next lines bear
some similarity to the introductory treatment of ordinals in Section 5.3. We call a set
directed if it contains an upper bound for every two elements of it. Completeness of a
partial ordering means that every directed set has a supremum. A function on cpo’s is
called continuous if it preserves suprema of directed sets. Every continuous function f of
cpo’s is monotone and has a least fixed point lfp(f), being the supremum of the directed
set enumerated by iterating f starting at ⊥. The function lfp is itself continuous and
serves as the interpretation of Y. We are now ready for the following definition.

5.5.4. Definition. Define by induction N
⊥
N

= N
⊥ and N

⊥
A→B is the set of all continuous

mappings N
⊥
A→N

⊥
B.
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Given the fact that cpo’s with continuous mappings form a cartesian closed category
and that the successor, predecessor and conditional can be defined in a continuous way,
the only essential step in the proof of the following lemma is to put [[Y]] = lfp for all
appropriate types.

5.5.5. Lemma. The type structure of cpo’s N
⊥
A is a model for λY .

In fact, as the essential requirement is the existence of fixed points, we could have taken
monotone instead of continuous mappings on cpo’s. This option is elaborated in detail
in van Draanen [1995].

5.6. Exercises

5.6.1. Prove proposition 5.2.9: for all types A one has A ⊳SP Nrank(A).

5.6.2. Let λP be λo
→ extended with a simple (not surjective) pairing. Show that theorem

5.2.42 does not hold for this theory. [Hint show that in this theory the equation
λx o.〈π1x, π2x〉 = λx o.x does not hold by constructing a counter model, but is
nevertheless consistent.]

5.6.3. Does every model of λSP have the same first order theory?

5.6.4. (i) Show that if a pairing function 〈 , 〉 : o→(o→o) and projections L,R : o→o
satisfying L〈x, y〉 = x and R〈x, y〉 = y are added to λo

→, then for a non-trivial
model M one has (see 4.2)

∀A∈TT∀M,N ∈Λø(A)[M |= M = N ⇒ M=βηN ].

(ii) (Schwichtenberg and Berger [1991]) Show that forM a model of λT one has
(see 4.3)

∀A∈TT∀M,N ∈Λø(A)[M |= M = N ⇒ M=βηN ].

5.6.5. Show that F [x1, . . . ,xn] for n ≥ 0 does not have one generator. [Hint. Otherwise
this monoid would be commutative, which is not the case.]

5.6.6. Show that R ⊆ Λø(A)× Λø(B) is equational iff

∃M,N ∈Λø(A→B→1→1)∀F [R(F ) ⇐⇒ MF = NF ].

5.6.7. Show that there is a Diophantine equation lt ⊆ F2 such that for all n,m∈N

lt(Rn, Rm) ⇐⇒ n < m.

5.6.8. Define SeqNk
n (h) iff h = [Rm0 , . . . , Rmn−1 ], for some m0, . . . ,mn−1 < k. Show that

SeqNk
n is Diophantine uniformly in n.

5.6.9. Let B be some finite subset of F . Define SeqBn(h) iff h = [g0, . . . , gn−1], with each
gi ∈B. Show that SeqBn is Diophantine uniformly in n.
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5.6.10. For B ⊆ F define B+ to be the submonoid generated by B. Show that if B is
finite, then B+ is Diophantine.

5.6.11. Show that F ⊆ F [x] is Diophantine.

5.6.12. Construct two concrete terms t(a, b), s(a, b)∈F [a, b] such that for all f ∈F one
has

f ∈{Rn | n∈N} ∪ {L} ⇐⇒ ∃g ∈F [t(f, g) = s(f, g)].

[Remark. It is not sufficient to notice that Diophantine sets are closed under
union. But the solution is not hard and the terms are short.]

5.6.13. Let 2 = {0, 1} be the discrete topological space with two elements. Let Cantor
space be C = 2N endowed with the product topology. Define Z,O : C→C ‘shift
operators’ on Cantor space as follows.

Z(f)(0) = 0;

Z(f)(n+ 1) = f(n);

O(f)(0) = 1;

O(f)(n+ 1) = f(n).

Write 0f = Z(f) and 1f = O(f). If X ⊆ C→C is a set of maps, let X+ be the
closure of X under the rule

A0, A1 ∈X ⇒ A∈X ,

where A is defined by

A(0f) = A0(f);

A(1f) = A1(f).

(i) Show that if X consists of continuous maps, then so does X+.
(ii) Show that A∈{Z,O}+ iff

A(f) = g ⇒ ∃r, s∈N∀t > s.g(t) = f(t− s+ r).

(iii) Define on {Z,O}+ the folllowing.

I = λx∈{Z,O}+.z;
L = Z;

R = O;

x ∗ y = y ◦ x;
〈x, y〉 = x(f), if f(0) = 0;

= y(f), if f(0) = 1.

Then 〈{Z,O}+, ∗, I, L,R, 〈−,−〉〉 is a Cartesian monoid isomorphic to F , via
ϕ : F→{Z,O}+.
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(iv) The Thompson-Freyd-Heller group can be defined by

{f ∈I | ϕ(f) preserves the lexicographical ordering on C}.

Show that the Bn defined in definition 5.2.29 generate this group.

5.6.14. Prove proposition 5.2.9: for all types A one has A ⊳SP Nrank(A).

5.6.15. Let λP be λo
→ extended with a simple (not surjective) pairing. Show that theorem

5.2.42 does not hold for this theory. [Hint show that in this theory the equation
λx o.〈π1x, π2x〉 = λx o.x does not hold by constructing a counter model, but is
nevertheless consistent.]

5.6.16. Does every model of λSP have the same first order theory?

5.6.17. Show that F [x1, . . . ,xn] for n ≥ 0 does not have one generator. [Hint. Otherwise
this monoid would be commutative, which is not the case.]

5.6.18. Show that R ⊆ Λø(A)× Λø(B) is equational iff

∃M,N ∈Λø(A→B→1→1)∀F [R(F ) ⇐⇒ MF = NF ].

5.6.19. Show that there is a Diophantine equation lt ⊆ F2 such that for all n,m∈N

lt(Rn, Rm) ⇐⇒ n < m.

5.6.20. Define SeqNk
n (h) iff h = [Rm0 , . . . , Rmn−1 ], for some m0, . . . ,mn−1 < k. Show

that SeqNk
n is Diophantine uniformly in n.

5.6.21. Let B be some finite subset of F . Define SeqBn(h) iff h = [g0, . . . , gn−1], with each
gi ∈B. Show that SeqBn is Diophantine uniformly in n.

5.6.22. For B ⊆ F define B+ to be the submonoid generated by B. Show that if B is
finite, then B+ is Diophantine.

5.6.23. Show that F ⊆ F [x] is Diophantine.

5.6.24. Construct two concrete terms t(a, b), s(a, b)∈F [a, b] such that for all f ∈F one
has

f ∈{Rn | n∈N} ∪ {L} ⇐⇒ ∃g ∈F [t(f, g) = s(f, g)].

[Remark. It is not sufficient to notice that Diophantine sets are closed under
union. But the solution is not hard and the terms are short.]

5.6.25. Let 2 = {0, 1} be the discrete topological space with two elements. Let Cantor
space be C = 2N endowed with the product topology. Define Z,O : C→C ‘shift
operators’ on Cantor space as follows.

Z(f)(0) = 0;

Z(f)(n+ 1) = f(n);

O(f)(0) = 1;

O(f)(n+ 1) = f(n).
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Write 0f = Z(f) and 1f = O(f). If X ⊆ C→C is a set of maps, let X+ be the
closure of X under the rule

A0, A1 ∈X ⇒ A∈X ,

where A is defined by

A(0f) = A0(f);

A(1f) = A1(f).

(i) Show that if X consists of continuous maps, then so does X+.
(ii) Show that A∈{Z,O}+ iff

A(f) = g ⇒ ∃r, s∈N∀t > s.g(t) = f(t− s+ r).

(iii) Define on {Z,O}+ the folllowing.

I = λx∈{Z,O}+.z;
L = Z;

R = O;

x ∗ y = y ◦ x;
〈x, y〉 = x(f), if f(0) = 0;

= y(f), if f(0) = 1.

Then 〈{Z,O}+, ∗, I, L,R, 〈−,−〉〉 is a Cartesian monoid isomorphic to F , via
ϕ : F→{Z,O}+.

(iv) The Thompson-Freyd-Heller group can be defined by

{f ∈I | ϕ(f) preserves the lexicographical ordering on C}.

Show that the Bn defined in definition 5.2.29 generate this group.
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Chapter 6

Applications

6.1. Functional programming

Lambda calculi are prototype programming languages. As is the case with imperative
programming languages, where several examples are untyped (machine code, assembler,
Basic) and several are typed (Algol-68, Pascal), systems of lambda calculi exist in
untyped and typed versions. There are also other differences in the various lambda
calculi. The lambda calculus introduced in Church [1936] is the untyped λI-calculus in
which an abstraction λx.M is only allowed if x occurs among the free variables of M .
Nowadays, “lambda calculus” refers to the λK-calculus developed under the influence of
Curry, in which λx.M is allowed even if x does not occur in M . There are also typed
versions of the lambda calculus. Of these, the most elementary are two versions of the
simply typed lambda calculus λ→. One version is due to Curry [1934] and has implicit
types. Simply typed lambda calculus with explicit types is introduced in Church [1940]
(this system is inspired by the theory of types of Russell and Whitehead [1910–13] as
simplified by Ramsey [1925]). In order to make a distinction between the two versions
of simply typed lambda calculus, the version with explicit types is sometimes called the
Church version and the one with implicit types the Curry version. The difference is that
in the Church version one explicitly types a variable when it is bound after a lambda,
whereas in the Curry version one does not. So for example in Church’s version one has
IA = (λx A.x) : A→A and similarly IA→B : (A→B)→(A→B), while in Curry’s system
one has I = (λx.x) : A→A but also I : (A→B)→(A→B) for the same term I. See B[92] for
more information about these and other typed lambda calculi. Particularly interesting
are the second and higher order calculi λ2 and λω introduced by Girard [1972] (under
the names ‘system F ’ and ‘system Fω’) for applications to proof theory and the calculi
with dependent types introduced by de Bruijn [1970] for proof verification.

Computing on data types

In this subsection we explain how it is possible to represent data types in a very direct
manner in the various lambda calculi.

Lambda definability was introduced for functions on the set of natural numbers N.

257
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In the resulting mathematical theory of computation (recursion theory) other domains
of input or output have been treated as second class citizens by coding them as natural
numbers. In more practical computer science, algorithms are also directly defined on
other data types like trees or lists.

Instead of coding such data types as numbers one can treat them as first class citizens
by coding them directly as lambda terms while preserving their structure. Indeed, lambda
calculus is strong enough to do this, as was emphasized in Böhm [1963] and Böhm
and Gross [1966]. As a result, a much more efficient representation of algorithms on
these data types can be given, than when these types were represented via numbers.
This methodology was perfected in two different ways in Böhm and Berarducci [1985]
and Böhm et al. [1994] or Berarducci and Bohm [1993]. The first paper does the
representation in a way that can be typed; the other papers in an essentially stronger
way, but one that cannot be typed. We present the methods of these papers by treating
labeled trees as an example.

Let the (inductive) data-type of labeled trees be defined by the following abstract
syntax.

tree = • | leaf nat | tree + tree

nat = 0 | succ nat

We see that a label can be either a bud (•) or a leaf with a number written on it. A
typical such tree is (leaf 3) + ((leaf 5) + •). This tree together with its mirror image
look as follows.

6.2. Logic and proof-checking

The Curry-de Bruijn-Howard correspondence

One of the main applications of type theory is its connection with logic. For several
logical systems L there is a type theorie λ− and a map translating formulas A of L into
types [A] of λ− such that

⊢ LA ⇐⇒ ΓA ⊢λ− M : [A], for some M,

where ΓA is some context ‘explaining’ A. The term M can be constructed canonically
from a natural deduction proof D of A. So in fact one has

⊢L A, with proof D ⇐⇒ ΓA ⊢λ− [D] : [A], (6.1)

where the map [ ] is extended to cover also derivations. For deductions from a set of
assumptions one has

∆ ⊢L A, with proof D ⇐⇒ ΓA, [∆] ⊢λ− [D] : [A].

Curry did not observe the correspondence in this precise form. He noted that
inhabited types in λ→, like A→A or A→B→A, all had the form of a tautology of
(the implication fragment of) propositional logic.
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Howard [1980] (the work was done in 1968 and written down in the unpublished
but widely circulated Howard [1969]), inspired by the observation of Curry and by Tait
[1963], gave the more precise interpretation (6.1). He coined the term propositions-as-
types and proofs-as-terms.

On the other hand, de Bruijn independently of Curry and Howard developed type
systems satisfying (6.1). The work was started also in 1968 and the first publication was
de Bruijn [1970]; see also de Bruijn [1980]. The motivation of de Bruijn was his visionary
view that machine proof checking one day will be feasible and important. The collection
of systems he designed was called the AUTOMATH family, derived from AUTOmatic
MATHematics verification. The type systems were such that the right hand side of (6.1)
was efficiently verifyable by machine, so that one had machine verification of provability.
Also de Bruijn and his students were engaged in developing, using and implementing
these systems.

Initially the AUTOMATH project received little attention from mathematicians.
They did not understand the technique and worse they did not see the need for machine
verification of provability. Also the verification process was rather painful. After five
‘monk’ years of work, van Benthem Jutting [1977] came up with a machine verification
of Landau [1900] fully rewritten in the terse ‘machine code’ of one of the AUTOMATH
languages. Since then there have been developed second generation versions in the
AUTOMATH family, like NUPRL [1979], COQ ([1989]) and LEGO ([1991]), in which
considerable help from the computer environment is obtained for the formalization of
proofs. With these systems a task of verifying Landau [1900] took something like five
months. An important contribution to these second generation systems came from
Scott and Martin-Löf, by adding inductive data-types to the systems in order to make
formalizations more natural.1 In Kahn [1995] methods are developed in order to translate
proof objects automatically into natural language. It is hoped that in the near future
new proofcheckers will emerge in which formalizing is not much more difficult than, say,
writing an article in TeX.

Computer Mathematics

Modern systems for computer algebra (CA) are able to represent mathematical notions
on a machine and compute with them. These objects can be integers, real or complex
numbers, polynomials, integrals and the like. The computations are usually symbolic,
but can also be numerical to a virtually arbitrary degree of precision. It is fair to say—
as is sometimes done—that “a system for CA can represent

√
2 exactly”. In spite of

the fact that this number has an infinite decimal expansion, this is not a miracle. The
number

√
2 is represented in a computer just as a symbol (as we do on paper or in our

1For example, proving Gödel’s incompleteness theorem is difficult for the following reason. The main
step in the proof essentially consists of constructing a compiler from a universal programming language
into arithmetic. For this one needs to describe strings over an alphabet in the structure of numbers
with plus and times. This is difficult and Gödel used the Chinese remainder theorem to do this. Having
available the datatype of strings, together with the corresponding operators, makes the translation much
more natural.
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mind), and the machine knows how to manipulate it. The common feature of these kind
of notions represented in systems for CA is that in some sense or another they are all
computable. Systems for CA have reached a high level of sophistication and efficiency
and are commercially available. Scientists and both pure and applied mathematicians
have made good use of them for their research.

There is now emerging a new technology, namely that of systems for Computer
Mathematics (CM). In these systems virtually all mathematical notions can be represented
exactly, including those that do not have a computational nature. How is this possible?
Suppose, for example, that we want to represent a non-computable object like the co-
Diophantine set

X = {n∈N | ¬∃~x D(~x, n) = 0}.
Then we can do as before and represent it by a special symbol. But now the computer in
general cannot operate on it because the object may be of a non-computational nature.

Before answering the question in the previous paragraph, let us first analyze where
non-computability comes from. It is always the case that this comes from the quantifiers
∀ (for all) and ∃ (exists). Indeed, these quantifiers usually range over an infinite set and
therefore one loses decidability.

Nevertheless, for ages mathematicians have been able to obtain interesting information
about these non-computable objects. This is because there is a notion of proof. Using
proofs one can state with confidence that e.g.

3∈X, i.e., ¬∃~x D(~x, 3) = 0.

Aristotle had already remarked that it is often hard to find proofs, but the verification
of a putative one can be done in a relatively easy way. Another contribution of Aristotle
was his quest for the formalization of logic. After about 2300 years, when Frege had
found the right formulation of predicate logic and Gödel had proved that it is complete,
this quest was fulfilled. Mathematical proofs can now be completely formalized and
verified by computers. This is the underlying basis for the systems for CM.

Present day prototypes of systems for CM are able to help a user to develop from
primitive notions and axioms many theories, consisting of defined concepts, theorems
and proofs.2 All the systems of CM have been inspired by the AUTOMATH project of
de Bruijn (see de Bruijn [1970] and[1990] and Nederpelt et al. [1994]) for the automated
verification of mathematical proofs.

Representing proofs as lambda terms

Now that mathematical proofs can be fully formalized, the question arises how this
can be done best (for efficiency reasons concerning the machine and pragmatic reasons
concerning the human user). Hilbert represented a proof of statement A from a set of
axioms Γ as a finite sequence A0, A1 . . . , An such that A = An and each Ai, for 0 ≤ i ≤ n,
is either in Γ or follows from previous statements using the rules of logic.

2This way of doing mathematics, the axiomatic method, was also described by Aristotle. It was
Euclid [n.d.] who first used this method very successfully in his Elements.
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A more efficient way to represent proofs employs typed lambda terms and is called
the propositions-as-types interpretation discovered by Curry, Howard and de Bruijn.
This interpretation maps propositions into types and proofs into the corresponding
inhabitants. The method is as follows. A statement A is transformed into the type
(i.e., collection)

[A] = the set of proofs of A.

So A is provable if and only if [A] is ‘inhabited’ by a proof p. Now a proof of A⇒ B
consists (according to the Brouwer-Heyting interpretation of implication) of a function
having as argument a proof of A and as value a proof of B. In symbols

[A⇒ B] = [A]→ [B].

Similarly
[∀x∈X.Px] = Πx X.[Px],

where Πx A.[Px] is the Cartesian product of the [Px], because a proof of ∀x∈A.Px
consists of a function that assigns to each element x∈A a proof of Px. In this way proof-
objects become isomorphic with the intuitionistic natural deduction proofs of Gentzen
[1969]. Using this interpretation, a proof of ∀y ∈A.Py ⇒ Py is λy Aλx Py.x. Here
λxA.B(x) denotes the function that assigns to input x∈A the output B(x). A proof of

(A⇒ A⇒ B)⇒ A⇒ B

is
λp (A⇒ A⇒ B)λq A.pqq.

A description of the typed lambda calculi in which these types and inhabitants can be
formulated is given in B[92], which also gives an example of a large proof object. Verifying
whether p is a proof of A boils down to verifying whether, in the given context, the type
of p is equal (convertible) to [A]. The method can be extended by also representing
connectives like and ¬ in the right type system. Translating propositions as types has
as default intuitionistic logic. Classical logic can be dealt with by adding the excluded
middle as an axiom.

If a complicated computer system claims that a certain mathematical statement is
correct, then one may wonder whether this is indeed the case. For example, there may
be software errors in the system. A satisfactory methodological answer has been given
by de Bruijn. Proof-objects should be public and written in such a formalism that
a reasonably simple proof-checker can verify them. One should be able to verify the
program for this proof-checker ‘by hand’. We call this the de Bruijn criterion. The
proof-development systems Lego (see Luo and Pollack [1992]) and Coq (see Coquand
and Huet [1988]) satisfy this criterion.

A way to keep proof-objects from growing too large is to employ the so-called Poincaré
principle. Poincaré [1902], p. 12, stated that an argument showing that 2 + 2 = 4 “is
not a proof in the strict sense, it is a verification” (actually he claimed that an arbitrary
mathematician will make this remark). In the AUTOMATH project of de Bruijn the
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following interpretation of the Poincaré principle was given. If p is a proof of A(t) and
t =R t′, then the same p is also a proof of A(t′). Here R is a notion of reduction
consisting of ordinary β reduction and δ-reduction in order to deal with the unfolding
of definitions. Since βδ-reduction is not too complicated to be programmed, the type
systems enjoying this interpretation of the Poincaré principle still satisfy the de Bruijn
criterion3.

In spite of the compact representation in typed lambda calculi and the use of the
Poincaré principle, proof-objects become large, something like 10 to 30 times the length
of a complete informal proof. Large proof-objects are tiresome to generate by hand. With
the necessary persistence Jutting [1977] has written lambda after lambda to obtain the
proof-objects showing that all proofs (but one) in Landau [1960] are correct. Using a
modern system for CM one can do better. The user introduces the context consisting of
the primitive notions and axioms. Then necessary definitions are given to formulate a
theorem to be proved (the goal). The proof is developed in an interactive session with
the machine. Thereby the user only needs to give certain ‘tactics’ to the machine. (The
interpretation of these tactics by the machine does nothing mathematically sophisticated,
only the necessary bookkeeping. The sophistication comes from giving the right tactics.)
The final goal of this research is that the necessary effort to interactively generate formal
proofs is not more complicated than producing a text in, say, LATEX. This goal has not
been reached yet. See Barendregt [1996] for references, including those about other
approaches to computer mathematics. (These include the systems NuPrl, HOL, Otter,
Mizar and the Boyer-Moore theorem prover. These systems do not satisfy the de Bruijn
criterion, but some of them probably can be modified easily so that they do.)

Computations in proofs

The following is taken from Barendregt and Barendsen [1997]. There are several computations
that are needed in proofs. This happens, for example, if we want to prove formal versions
of the following intuitive statements.

(1) [
√

45] = 6, where [r] is the integer part of a real;

(2) Prime(61);

(3) (x+ 1)(x+ 1) = x2 + 2x+ 1.

A way to handle (1) is to use the Poincaré principle extended to the reduction relation
→→ι for primitive recursion on the natural numbers. Operations like f(n) = [

√
n ] are

primitive recursive and hence are lambda definable (using →→βι) by a term, say F , in
the lambda calculus extended by an operation for primitive recursion R satisfying

RAB zero →ι A

RAB (succx) →ι B x (RAB x).

3The reductions may sometimes cause the proof-checking to be of an unacceptable time complexity.
We have that p is a proof of A iff type(p) =βδ A. Because the proof is coming from a human, the
necessary conversion path is feasible, but to find it automatically may be hard. The problem probably
can be avoided by enhancing proof-objects with hints for a reduction strategy.
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Then, writing 0 = zero, 1 = succ zero, . . ., as

6 = 6

is formally derivable, it follows from the Poincaré principle that the same is true for

F 45 = 6

(with the same proof-object), since F 45 →→βι 6 . Usually, a proof obligation arises
that F is adequately constructed. For example, in this case it could be

∀n (F n)2 ≤ n < ((F n) + 1)2.

Such a proof obligation needs to be formally proved, but only once; after that reductions
like

F n →→βι f(n)

can be used freely many times.
In a similar way, a statement like (2) can be formulated and proved by constructing

a lambda defining term KPrime for the characteristic function of the predicate Prime.
This term should satisfy the following statement

∀n [(Primen ↔ KPrime n = 1 )

(KPrime n = 0 ∨ KPrime n = 1 )].

which is the proof obligation.
Statement (3) corresponds to a symbolic computation. This computation takes

place on the syntactic level of formal terms. There is a function g acting on syntactic
expressions satisfying

g((x+ 1)(x+ 1) ) = x2 + 2x+ 1,

that we want to lambda define. While x+1 : Nat (in context xNat), the expression on a
syntactic level represented internally satisfies ‘x+1’ : term(Nat), for the suitably defined
inductive type term(Nat). After introducing a reduction relation →→ι for primitive
recursion over this data type, one can use techniques similar to those of §3 to lambda
define g, say by G, so that

G ‘(x+ 1)(x+ 1) ’→→βι ‘x2 + 2x+ 1’.

Now in order to finish the proof of (3), one needs to construct a self-interpreter E, such
that for all expressions p : Nat one has

E ‘p’ →→βι p

and prove the proof obligation for G which is

∀t term(Nat) E(Gt) = E t.
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It follows that
E(G ‘(x+ 1)(x+ 1) ’) = E ‘(x+ 1)(x+ 1) ’;

now since

E(G ‘(x+ 1)(x+ 1) ’) →→βι E ‘x2 + 2x+ 1’

→→βι x2 + 2x+ 1

E ‘(x+ 1)(x+ 1) ’ →→βι (x+ 1)(x+ 1),

we have by the Poincaré principle

(x+ 1)(x+ 1) = x2 + 2x+ 1.

The use of inductive types like Nat and term(Nat) and the corresponding reduction
relations for primitive reduction was suggested by Scott [1970] and the extension of the
Poincaré principle for the corresponding reduction relations of primitive recursion by
Martin-Löf [1984]. Since such reductions are not too hard to program, the resulting
proof checking still satisfies the de Bruijn criterion.

In Oostdijk [1996] a program is presented that, for every primitive recursive predicate
P , constructs the lambda termKP defining its characteristic function and the proof of the
adequacy of KP . The resulting computations for P = Prime are not efficient, because
a straightforward (non-optimized) translation of primitive recursion is given and the
numerals (represented numbers) used are in a unary (rather than n-ary) representation;
but the method is promising. In Elbers [1996], a more efficient ad hoc lambda definition
of the characteristic function of Prime is given, using Fermat’s small theorem about
primality. Also the required proof obligation has been given.

Choice of formal systems

There are several possibilities for the choice of a formal system to be used for the
representation of theories in systems of computer mathematics. Since, in constructing
proof-objects, cooperation between researchers is desirable, this choice has to be made
with some care in order to reach an international standard. As a first step towards
this, one may restrict attention to systems of typed lambda calculi, since they provide a
compact representation and meet de Bruijn’s criterion of having a simple proof-checker.
In their simplest form, these systems can be described in a uniform way as pure type
systems (PTS’s) of different strength, see B[92]. The PTS’s should be extended by a
definition mechanism to become DPTS’s (PTS’s with definitions), see Severi and Poll
[1994]. The DPTS’s are good for describing several variants of logic: many sorted
predicate logic in its first, second or higher order versions. As stated before, the default
logic is intuitionistic, but can be made classical by assuming the excluded middle.

The next step consists of adding inductive types (IT’s) and the corresponding reduction
relations in order to capture primitive recursion. We suggest that the right formal
systems to be used for computer mathematics are the type systems (TS), consisting of
DPTS’s extended by IT’s, as described e.g. in Paulin-Mohring [1994]. TS’s come with two
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parameters. The first is the specification A of the underlying PTS specifying its logical
strength, see B[92]. The second is B the collection of inductive types and their respective
notions of reduction→→ι specifying its mathematical and computational strength. In my
opinion, a system for proof-checking should be able to verify proof-objects written in all
the systems TS(A,B) (for a ‘reasonable’ choice spectrum of the parameters). If someone
wants to use it for only a subclass of the choice of parameters—dictated by that person’s
foundational views—then the proof-checker will do its work anyway. I believe that this
generality will not be too expensive in terms of the complexity of the checking.4

Illative lambda calculus

Curry and his students continued to look for a way to represent functions and logic into
one adequate formal system. Some of the proposed systems turned out to be inconsistent,
other ones turned out to be incomplete. Research in TS’s for the representation of logic
has resulted in an unexpected side effect. By making a modification inspired by the
TS’s, it became possible, after all, to give an extension of the untyped lambda calculus,
called Illative Lambda Calculi (ILC; ‘illative’ from the Latin word inferre which means
to infer), such that first order logic can be faithfully and completely embedded into it.
The method can be extended for an arbitrary PTS5, so that higher order logic can be
represented too.

The resulting ILC’s are in fact simpler than the TS’s. But doing computer mathematics
via ILC is probably not very practical, as it is not clear how to do proof-checking for
these systems.

One nice thing about the ILC is that the old dream of Church and Curry came
true, namely, there is one system based on untyped lambda calculus (or combinators) on
which logic, hence mathematics, can be based. More importantly there is a ‘combinatory
transformation’ between the ordinary interpretation of logic and its propositions-as-types
interpretation. Basically, the situation is as follows. The interpretation of predicate logic
in ILC is such that

⊢logic A with proof p ⇐⇒ ∀r ⊢ILC [A]r[p]

⇐⇒ ⊢ILC [A]I[p]

⇐⇒ ⊢ILC [A]K[p] = K[A]′I[p] = [A]′I,

where r ranges over untyped lambda terms. Now if r = I, then this translation is the
propositions-as-types interpretation; if, on the other hand, one has r = K, then the
interpretation becomes an isomorphic version of first order logic denoted by [A]′I. See

4It may be argued that the following list of features is so important that they deserve to be present
in TS’s as primitives and be implemented: quotient types (see Hofmann [1977]), subtypes (see Aspinall
and Compagnoni [1996]) and type inclusion (see Luo and Pollack [1992]). This is an interesting question
and experiments should be done to determine whether this is the case or whether these can be translated
into the more basic TS’s in a sufficiently efficient way (possibly using some macros in the system for
CM).

5For first order logic, the embedding is natural, but e.g. for second order logic this is less so. It is an
open question whether there exists a natural representation of second and higher order logic in ILC.
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Barendregt et al. [1993] and Dekkers et al. [1997] for these results. A short introduction
to ILC (in its combinatory version) can be found in B[84], Appendix B.

6.3. Proof theory

Lambda terms for natural deduction, sequent calculus and cut elimination

It is well-known that there is a good correspondence between natural deduction derivations
and typed lambda terms. Moreover normalizing these terms is equivalent to eliminating
cuts in the corresponding sequent calculus derivations. Several papers have been written
on this topic. The correspondence between sequent calculus derivations and natural
deduction derivations is, however, not a one-to-one map. This causes some syntactic
technicalities. The correspondence is best explained by two extensionally equivalent type
assignment systems for untyped lambda terms, one corresponding to natural deduction
(λN) and the other to sequent calculus (λL). These two systems constitute different
grammars for generating the same (type assignment relation for untyped) lambda terms.
The second grammar is ambiguous, but the first one is not. This fact explains the many-
one correspondence mentioned above. Moreover, the second type assignment system has
a ‘cut–free’ fragment (λLcf). This fragment generates exactly the typeable lambda terms
in normal form. The cut elimination theorem becomes a simple consequence of the fact
that typed lambda terms posses a normal form.

Introduction

It is well-known that there is a good correspondence between natural deduction derivations
and typed lambda terms. The relation between lambda terms and derivations in sequent
calculus, between normal lambda terms and cut–free derivations in sequent calculus
and finally between normalization of terms and cut elimination of derivations has been
observed by several authors (Prawitz [1965], Zucker [1974] and Pottinger [1977]). This
relation is less perfect because several cut–free sequent derivations correspond to one
lambda term. In Herbelin [1995] a lambda calculus with explicit substitution operators
is used in order to establish a perfect match between terms of that calculus and sequent
derivations. We will not avoid the mismatch, but get a satisfactory view of it, by seeing
the sequent calculus as a more intensional way to do the same as natural deduction:
assigning lambda terms to provable formulas.

Next to the well-known system λ→ of Curry type assignment to type free terms,
which here will be denoted by λN , there are two other systems of type assignment: λL
and its cut-free fragment λLcf . The three systems λN , λL and λLcf correspond exactly
to the natural deduction calculus NJ , the sequent calculus LJ and the cut–free fragment
of LJ , here denoted by N , L and Lcf respectively. Moreover, λN and λL generate the
same type assignment relation. The system λLcf generates the same type assignment
relation as λN restricted to normal terms and cut elimination corresponds exactly to
normalization. The mismatch between the logical systems that was observed above, is
due to the fact that λN is a syntax directed system, whereas both λL and λLcf are not.



6.3. PROOF THEORY 267

(A syntax directed version of λL is possible if rules with arbitrarily many assumptions
are allowed, see Capretta and Valentini [1998].)

The type assignment system of this paper is a subsystem of one in Barbanera et
al. [1995] and also implicitly present in Mints [1996]. So our contribution is mainly
expository.

For simplicity the results are presented only for the essential kernel of intuitionistic
logic, i.e. for the minimal implicational fragment. The method probably can be extended
to the full logical system, using the terms as in Mints [1996].

The logical systems N , L and Lcf

6.3.1. Definition. The set form of formulas (of minimal implicational propositional
logic) is defined by the following abstract syntax.

form = atom | form→form

atom = p | atom′

We write p, q, r, . . . for arbitrary atoms and A,B,C, . . . for arbitrary formulas. Sets of
formulas are denoted by Γ,∆, . . . . The set Γ, A stands for Γ ∪ {A}.

6.3.2. Definition. (i) A statement A is derivable in the system N from the set Γ,
notation Γ ⊢N A, if Γ ⊢ A can be generated by the following axiom and rules.

N

A∈Γ

Γ ⊢ A
axiom

Γ ⊢ A→B Γ ⊢ A
Γ ⊢ B

→ elim

Γ, A ⊢ B
Γ ⊢ A→B

→ intr

(ii) A statement A is derivable from assumptions Γ in the system L, notation Γ ⊢L A,
if Γ ⊢ A can be generated by the following axiom and rules.
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L

A∈Γ

Γ ⊢ A
axiom

Γ ⊢ A Γ, B ⊢ C
Γ, A→B ⊢ C

→ left

Γ, A ⊢ B
Γ ⊢ A→B

→ right

Γ ⊢ A Γ, A ⊢ B
Γ ⊢ B

cut

(iii) The system Lcf is obtained from the system L by omitting the rule (cut).

Lcf

A∈Γ

Γ ⊢ A
axiom

Γ ⊢ A Γ, B ⊢ C
Γ, A→B ⊢ C

→ left

Γ, A ⊢ B
Γ ⊢ A→B

→ right

6.3.3. Lemma. Suppose Γ ⊆ Γ′. Then

Γ ⊢ A ⇒ Γ′ ⊢ A

in all systems.

Proof. By a trivial induction on derivations.

6.3.4. Proposition. For all Γ and A we have

Γ⊢NA ⇐⇒ Γ ⊢L A.

Proof. (⇒) By induction on derivations in N . For the rule (→ elim) we need the rule
(cut).
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Γ ⊢L A→B
Γ ⊢L A

(axiom)
Γ, B ⊢L B

(→ left)
Γ, A→B ⊢L B

(cut)
Γ ⊢L B

(⇐) By induction on derivations in L. The rule (→ left) is treated as follows.

Γ ⊢N A
(6.3.3)

Γ, A→B ⊢N A
(axiom)

Γ, A→B ⊢N A→B
(→ elim)

Γ, A→B ⊢N B

Γ, B ⊢N C
(→ intr)

Γ ⊢N B→C
(→ elim)

Γ, A→B ⊢N C

The rule (cut) is treated as follows.

Γ ⊢N A

Γ, A ⊢N B
(→ intr)

Γ ⊢N A→B
(→ elim).

Γ ⊢N B

6.3.5. Definition. Consider the following rule as alternative to the rule (cut).

Γ, A→A ⊢ B
(cut’)

Γ ⊢ B
The system L′ is defined by replacing the rule (cut) by (cut’).

6.3.6. Proposition. For all Γ and A

Γ ⊢L A ⇐⇒ Γ ⊢L′ A.

Proof. (⇒) The rule (cut) is treated as follows.

Γ ⊢L′ A Γ, A ⊢L′ B
(→ left)

Γ, A→A ⊢L′ B
(cut’)

Γ ⊢L′ B

(⇐) The rule (cut’) is treated as follows.

Γ, A→A ⊢L B

(axiom)
Γ, A ⊢L A

(→ right)
Γ ⊢L A→A

(cut).
Γ ⊢L B

Note that we have not yet investigated the role of Lcf .
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The type assignment systems λN , λL and λLcf

6.3.7. Definition. The set term of type–free lambda terms is defined as follows.

term = var | term term | λvar.term
var = x | var′

We write x, y, z, . . . for arbitrary variables in terms and P,Q,R, . . . for arbitrary terms.
Equality of terms (up to renaming of bound variables) is denoted by ≡. The identity is
I ≡ λx.x. A term P is called a β normal form (P is in β-nf ) if P has no redex as part,
i.e. no subterm of the form (λx.R)S. Such a redex is said to reduce as follows

(λx.R)S →β R[x:=S],

where R[x:=S] denotes the result of substituting S for the free occurrences of x. The
transitive reflexive closure of →β is denoted by →→β. If P →→β Q and Q is in β-nf, then
Q is called the β-nf of P (one can show it is unique). A collection A of terms is said to
be strongly normalizing if for no P ∈A there is an infinite reduction path

P →β P1 →β P2 . . . .

6.3.8. Definition. (i) A type assignment is an expression of the form

P : A,

where P is a lambda term and A is a formula.
(ii) A declaration is a type assignment of the form

x : A.

(iii) A context Γ is a set of declarations such that for every variable x there is at most
one declaration x A in Γ.

6.3.9. Definition. (i) A type assignment P : A is derivable from the context Γ in the
system λN (also known as λ→), notation

Γ ⊢λN P : A,

if Γ ⊢ P : A can be generated by the following axiom and rules.

λN

(x A)∈Γ

Γ ⊢ x : A
axiom

Γ ⊢ P : (A→B) Γ ⊢ Q : A

Γ ⊢ (PQ) : B
→ elim

Γ, x A ⊢ P : B

Γ ⊢ (λx.P ) : (A→B)
→ intr
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(ii) A type assignment P : A is derivable form the context Γ in the system λL,
notation

Γ ⊢λL P : A,

if Γ ⊢ P : A can be generated by the following axiom and rules.

λL

(x A)∈Γ

Γ ⊢ x A
axiom

Γ ⊢ Q : A Γ, x B ⊢ P : C

Γ, y : A→B ⊢ P [x:=yQ] : C
→ left

Γ, x A ⊢ P : B

Γ ⊢ (λx.P ) : (A→B)
→ right

Γ ⊢ Q : A Γ, x A ⊢ P : B

Γ ⊢ P [x:=Q] : B
cut

In the rule (→ left) it is required that Γ, y A→B is a context. This is the case if y is
fresh or if Γ = Γ, y A→B, i.e. y A→B already occurs in Γ.

(iii) The system λLcf is obtained from the system λL by omitting the rule (cut).

λLcf

(x A)∈Γ

Γ ⊢ x A
axiom

Γ ⊢ Q : A Γ, x B ⊢ P : C

Γ, y : A→B ⊢ P [x:=yQ] : C
→ left

Γ, x A ⊢ P : B

Γ ⊢ (λx.P ) : (A→B)
→ right

6.3.10. Remark. The alternative rule (cut’) could also have been used to define the
variant λL′. The right version for the rule (cut’) with term assignment is as follows.

Rule cut’ for λL′

Γ, x A→A ⊢ P : B

Γ ⊢ P [x:=I] : B
cut’
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Notation. Let Γ = {A1, . . . , An} and ~x = {x1, . . . , xn}. Write

Γ~x = {x1 A1, . . . , xn An}

and
Λ◦(~x) = {P ∈ term | FV (P ) ⊆ ~x},

where FV (P ) is the set of free variables of P .

The following result has been observed for N and λN by Curry, Howard and de
Bruijn. (See Troelstra and Schwichtenberg [1996] 2.1.5. and Hindley [1997] 6B3, for
some fine points about the correspondence between deductions in N and corresponding
terms in λN .)

6.3.11. Proposition (Propositions—as—types interpretation). Let S be one of the logical

systems N , L or Lcf and let λS be the corresponding type assignment system. Then

Γ ⊢S A⇔ ∃~x ∃P ∈Λ◦(~x) Γ~x ⊢λS P : A.

Proof. (⇒) By an easy induction on derivations, just observing that the right lambda
term can be constructed. (⇐) By omitting the terms.

Since λN is exactly λ→, the simply typed lambda calculus, we know the following
results whose proofs are not hard, but are omitted here. From corollary 6.3.15 it follows
that the results also hold for λL.

6.3.12. Proposition. (i) (Normalization theorem for λN)

Γ⊢λNP : A ⇒ P has a β-nf Pnf.

(ii) (Subject reduction theorem for λN)

Γ⊢λNP : AP →→β P
′ ⇒ Γ⊢λNP

′ : A.

(iii) (Generation lemma for λN) Type assignment for terms of a certain syntactic
form is caused in the obvious way.

(1) Γ ⊢λN x : A ⇒ (x A) ∈ Γ.
(2) Γ ⊢λN PQ : B ⇒ Γ ⊢λN P : (A→B)Γ ⊢λN Q : A,

for some type A.
(3) Γ ⊢λN λx.P : C ⇒ Γ, x A ⊢λN P : BC ≡ A→B,

for some types A,B.

Proof. See e.g. Gandy [1980a] for (i) and Barendregt [1992] for (ii) and (iii).

Actually, even strong normalization holds for terms typeable in λN (see e.g. de Vrijer
[1987] or Barendregt [1992]).



6.3. PROOF THEORY 273

Relating λN , λL and λLcf

Now the proof of the equivalence between systems N and L will be ‘lifted’ to that of λN
and λL.

6.3.13. Proposition. Γ⊢λNP : A ⇒ Γ⊢λLP : A.

Proof. By inductions on derivations in λN . Modus ponens (→ elim) is treated as
follows.

Γ ⊢λL P : A→B
Γ ⊢λL Q : A Γ, x B ⊢λL x B

(→ left)
Γ, y A→B ⊢λL yQ : B

(cut).
Γ ⊢λL PQ : B

6.3.14. Proposition. (i) Γ⊢λLP : A ⇒ Γ⊢λNP
′ : A, for some P ′ →→β P .

(ii) Γ⊢λLP : A ⇒ Γ⊢λNP : A.

Proof. (i) By induction on derivations in λL. The rule (→ left) is treated as follows
(the justifications are left out, but they are as in the proof of 6.3.4).

Γ ⊢λN Q : A

Γ, y A→B ⊢λN Q : A Γ, y A→B ⊢λN y A→B
Γ, y A→B ⊢λN yQ : B

Γ, x B ⊢λN P : C

Γ ⊢λN (λx.P ) : B→C
Γ, y A→B ⊢λN (λx.P )(yQ) : C

Now (λx.P )(yQ)→β P [x:=yQ] as required. The rule (cut) is treated as follows.

Γ ⊢λN Q : A

Γ, x A ⊢λN P : B
(→ intr)

Γ ⊢λN (λx.P ) : A→B
(→ elim)

Γ ⊢λN (λx.P )Q : B

Now (λx.P )Q→β P [x:=Q] as required.
(ii) By (i) and the subject reduction theorem for λN (6.3.12(ii)).

6.3.15. Corollary. Γ⊢λLP : A ⇐⇒ Γ⊢λNP : A.

Proof. By propositions 6.3.13 and 6.3.14(ii).

Now we will investigate the role of the cut–free system.

6.3.16. Proposition.

Γ ⊢
λLcf P : A ⇒ P is in β-nf.



274 CHAPTER 6. APPLICATIONS

Proof. By an easy induction on derivations.

6.3.17. Lemma. Suppose

Γ ⊢
λLcf P1 : A1, . . . , Γ ⊢

λLcf Pn : An.

Then
Γ, x A1→ . . .→An→B ⊢λLcf xP1 . . . Pn : B

for those variables x such that Γ, x A1→ . . .→An→B is a context.

Proof. We treat the case n = 2, which is perfectly general. We abbreviate ⊢
λLcf as ⊢.

Γ ⊢ P1 : A1

Γ ⊢ P2 : A2

(axiom)
Γ, z B ⊢ z : B

(→ left)
Γ, y A2→B ⊢ yP2 ≡ z[z:=yP2] : B

(→ left)
Γ, x A1→A2→B ⊢ xP1P2 ≡ (yP2)[y:=xP1] : B

Note that x may occur in some of the Pi.

6.3.18. Proposition. Suppose that P is a β-nf. Then

Γ⊢λNP : A ⇒ Γ ⊢
λLcf P : A.

Proof. By induction on the following generation of normal forms.

nf = var | var nf+ | λvar.nf

The cases P ≡ x and P ≡ λx.P1 are easy. The case P ≡ xP1 . . . Pn follows from the
previous lemma, using the generation lemma for λN (6.3.12(iii)).

Now we get as bonus the Hauptsatz of Gentzen [1936] for minimal implicational
sequent calculus.

6.3.19. Theorem (Cut elimination).

Γ ⊢L A ⇒ Γ ⊢Lcf A.

Proof. Γ ⊢L A ⇒ Γ~x ⊢λL P : A, for some P ∈Λ◦(~x), by 6.3.11,
⇒ Γ~x ⊢λN P : A, by 6.3.14(ii),

⇒ Γ~x ⊢λN Pnf : A, by 6.3.12(i),(ii),

⇒ Γ~x ⊢λLcf P
nf : A, by 6.3.18,

⇒ Γ ⊢Lcf A, by 6.3.11.

As it is clear that the proof implies that cut-elimination can be used to normalize
terms typable in λN = λ→, Statman [1979] implies that the expense of cut-elimination
is beyond elementary time (Grzegorczyk class 4). Moreover, as the cut-free deduction is
of the same order of complexity as the corresponding normal lambda term, the size of the
cut-free version of a derivation is non elementary in the size of the original derivation.
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Discussion

The main technical tool is the type assignment system λL corresponding exactly to
sequent calculus (for minimal propositional logic). The type assignment system λL is a
subsystem of a system studied in Barbanera et al. [1995]. The terms involved in λL are
also in Mints [1996]. The difference between the present approach and the one by Mints
is that in that paper derivations in L are first order citizens, whereas in λL the provable
formulas and the lambda terms are.

In λN typeable terms are built up as usual (following the grammar of lambda terms).
In λLcf only normal terms are typeable. They are built up from variables by transitions
like

P 7−→ λx.P

and
P 7−→ P [x:=yQ]

This is an ambiguous way of building terms, in the sense that one term can be built up
in several ways. For example, one can assign to the term λx.yz the type C→B (in the
context z A, y A→B) via two different cut–free derivations:

x C, z A ⊢ z : A x C, z A, u B ⊢ u : B
(→ left)

x C, z A, y A→B ⊢ yz : B
(→ right)

z A, y A→B ⊢ λx.yz : C→B
and

z A ⊢ z A
x C, z A, u B ⊢ u : B

(→ right)
z A, u B ⊢ λx.u : C→B

(→ left)
z A, y A→B ⊢ λx.yz : C→B

These correspond, respectively, to the following two formations of terms

u 7−→ yz 7−→ λx.yz,

u 7−→ λx.u 7−→ λx.yz.

Therefore there are more sequent calculus derivations giving rise to the same lambda
term. This is the cause of the mismatch between sequent calculus and natural deduction
as described in Zucker [1974], Pottinger [1977] and Mints [1996]. See also Dyckhoff and
Pinto [1997], Schwichtenberg [1997] and Troelstra [1998].

In Herbelin [1995] the mismatch between L-derivations and lambda terms is repaired
by translating these into terms with explicit substitution:

λx.(u < u:=yz >),

(λx.u) < u:=yz > .

In our paper lambda terms are considered as first class citizens also for sequent calculus.
This gives an insight into the mentioned mismatch by understanding it as an intensional
aspect how the sequent calculus generates these terms.
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It is interesting to note, how in the full system λL the rule (cut) generates terms not
in β–normal form. The extra transition now is

P 7−→ P [x:=F ].

This will introduce a redex, if x occurs actively (in a context xQ) and F is an abstraction
(F ≡ λx.R), the other applications of the rule (cut) being superfluous. Also, the
alternative rule (cut’) can be understood better. Using this rule the extra transition
becomes

P 7−→ P [x:=I].

This will have the same effect (modulo one β–reduction ) as the previous transition, if x
occurs in a context xFQ. So with the original rule (cut) the argument Q (in the context
xQ) is waiting for a function F to act on it. With the alternative rule (cut’) the function
F comes close (in context xFQ), but the ‘couple’ FQ has to wait for the ‘green light’
provided by I.

Also, it can be observed that if one wants to manipulate derivations in order to obtain
a cut–free proof, then the term involved gets reduced. By the strong normalization
theorem for λN (= λ→) it follows that eventually a cut–free proof will be reached.

We have not studied in detail whether cut elimination can be done along the lines of
this paper for the full system of intuitionistic predicate logic, but there seems to be no
problem. More interesting is the question, whether there are similar results for classical
and linear logic.

6.4. Grammars, terms and types

Typed lambda calculus is widely used in the study of natural language semantics, in
combination with a variety of rule-based syntactic engines. In this section, we focus
on categorial type logics. The type discipline, in these systems, is responsible both for
the construction of grammatical form (syntax) and for meaning assembly. We address
two central questions. First, what are the invariants of grammatical composition,
and how do they capture the uniformities of the form/meaning correspondence across
languages? Secondly, how can we reconcile grammatical invariants with structural
diversity, i.e. variation in the realization of the form/meaning correspondence in the
6000 or so languages of the world?

The grammatical architecture to be unfolded below has two components. Invariants
are characterized in terms of a minimal base system: the pure logic of residuation for
composition and structural incompleteness. Viewing the types of the base system as
formulas, we model the syntax-semantics interface along the lines of the Curry-Howard
interpretation of derivations. Variation arises from the combination of the base logic with
a structural module. This component characterizes the structural deformations under
which the basic form-meaning associations are preserved. Its rules allow reordering
and/or restructuring of grammatical material. These rules are not globally available,
but keyed to unary type-forming operations, and thus anchored in the lexical type
declarations.
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It will be clear from this description that the type-logical appraoch has its roots in
the type calculi developed by Jim Lambek in the late Fifties of the last century. The
technique of controlled structural options is a more recent development, inspired by the
modalities of linear logic.

Grammatical invariants: the base logic

Compared to the systems used elsewhere in this chapter, the type system of categorial
type logics can be seen as a specialization designed to take linear order and phrase
structure information into account.

F ::= A | F/F | F • F | F\F

The set of type atoms A represents the basic ontology of phrases that one can think of
as grammatically ‘complete’. Examples, for English, could be np for noun phrases, s for
sentences, n for common nouns. There is no claim of universality here: languages can
differ as to which ontological choices they make. Formulas A/B, B\A are directional
versions of the implicational type B → A. They express incompleteness in the sense
that expressions with slash types produce a phrase of type A in composition with a
phrase of type B to the right or to the left. Product types A •B explicitly express this
composition.

Frame semantics provides the tools to make the informal description of the interpretation
of the type language in the structural dimension precise. Frames F = (W,R•), in this
setting, consist of a set W of linguistic resources (expressions, ‘signs’), structured in
terms of a ternary relation R•, the relation of grammatical composition or ‘Merge’ as
it is known in the generative tradition. A valuation V : S 7→ P(W ) interprets types
as sets of expressions. For complex types, the valuation respects the clauses below,
i.e. expressions x with type A • B can be disassembled into an A part y and a B part
z. The interpretation for the directional implications is dual with respect to the y
and z arguments of the Merge relation, thus expressing incompleteness with respect to
composition.

x∈V (A •B) iff ∃yz.R•xyz and y ∈V (A) and z ∈V (B)

y ∈V (C/B) iff ∀xz.(R•xyz and z ∈V (B)) implies x∈V (C)

z ∈V (A\C) iff ∀xy.(R•xyz and y ∈V (A)) implies x∈V (C)

Algebraically, this interpretation turns the product and the left and right implications
into a residuated triple in the sense of the following biconditionals:

A −→ C/B ⇐⇒ A •B −→ C ⇐⇒ B −→ A\C (Res)

In fact, we have the pure logic of residuation here: (Res), together with Reflexivity
(A −→ A) and Transitivity (from A −→ B and B −→ C, conclude A −→ C), fully
characterizes the derivability relation, as the following completeness result shows.
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completeness A −→ B is provable in the grammatical base logic iff for every
valuation V on every frame F we have V (A) ⊆ V (B) (Došen 1992, Kurtonina 1995).

Notice that we do not impose any restrictions on the interpretation of the Merge
relation. In this sense, the laws of the base logic capture grammatical invariants:
properties of type combination that hold no matter what the structural particularities
of individual languages may be. And indeed, at the level of the base logic important
grammatical notions, rather than being postulated, can be seen to emerge from the type
structure.

– Valency. Selectional requirements distinguishing intransitive np\s, transitive (np\s)/np,
ditransitive ((np\s)/np)/np, etc verbs are expressed in terms of the directional implications.
In a context-free grammar, these would require the postulation of new non-terminals.

– Case. The distinction between phrases that can fulfill any noun phrase selectional
requirement versus phrases that insist on playing the subject s/(np\s), direct object
((np\s)/np)\(np\s), prepositional object (pp/np)\pp, etc role, is expressed through
higher-order type assignment.

– Complements versus modifiers. Compare exocentric types (A/B with A 6= B)
versus endocentric types A/A. The latter express modification; optionality of A/A type
phrases follows.

– Filler-gap dependencies. Nested implications A/(C/B), A/(B\C), etc, signal the
withdrawal of a gap hypothesis of type B in a domain of type C.

Parsing-as-deduction For automated proof search, one turns the algebraic presentation
in terms of (Res) into a sequent presentation enjoying cut elimination. Sequents for the
grammatical base logic are statements Γ ⇒ A with Γ a structure, A a type formula.
Structures are binary branching trees with formulas at the leaves: S ::= F | (S,S). In
the rules, we write Γ[∆] for a structure Γ containing a substructure ∆. Lambek (1958,
1961) proves that Cut is an admissible rule in this presentation. Top-down backward-
chaining proof search in the cut-free system respects the subformula property and yields
a decision procedure.

A⇒ A
Ax

∆⇒ A Γ[A]⇒ B

Γ[∆]⇒ B
Cut

Γ⇒ A ∆⇒ B
(Γ,∆)⇒ A •B (•R)

Γ[(A,B)]⇒ C

Γ[A •B]⇒ C
(•L)

∆⇒ B Γ[A]⇒ C

Γ[(∆, B\A)]⇒ C
(\L)

(B,Γ)⇒ A

Γ⇒ B\A (\R)

∆⇒ B Γ[A]⇒ C

Γ[(A/B,∆)]⇒ C
(/L)

(Γ, B)⇒ A

Γ⇒ A/B
(/R)

To specify a grammar for a particular language it is enough now to give its lexicon.
Lex ⊆ Σ × F is a relation associating each word with a finite number of types. A
string belongs to the language for lexicon Lex and goal type B, w1 · · ·wn ∈L(Lex, B)
iff for 1 ≤ i ≤ n, (wi, Ai)∈Lex, and Γ ⇒ B where Γ is a tree with yield A1 · · ·An.
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Buszkowski and Penn (1990) model the acquisition of lexical type assignments as a proces
of solving type equations. Their unification-based algorithms take function-argument
structures as input (binary trees with a distinguised daughter); one obtains variations
depending on whether the solution should assign a unique type to every vocabulary item,
or whether one accepts multiple assignments. Kanazawa (1998) studies learnable classes
of grammars from this perspective, in the sense of Gold’s notion of identifiability ‘in the
limit’; the formal theory of learnability for type-logical grammars has recently developed
into a quite active field of research.

Meaning assembly Lambek’s original work looked at categorial grammar from a
purely syntactic point of view, which probably explains why this work was not taken into
account by Richard Montague when he developed his theory of modeltheoretic semantics
for natural languages. In the 1980-ies, Van Benthem played a key role in bringing the
two traditions together, by introducing the Curry-Howard perspective, with its dynamic,
derivational view on meaning assembly rather than the static, structure-based view of
rule-based approaches.

For semantic interpretation, we want to associate every type A with a semantic
domain DA, the domain where expressions of type A find their denotations. It is
convenient to set up semantic domains via a mapping from the directional syntactic
types used so far to the undirected type system of the typed lambda calculus. This
indirect approach is attractive for a number of reasons. On the level of atomic types, one
may want to make different basic distinctions depending on whether one uses syntactic
or semantic criteria. For complex types, a map from syntactic to semantic types makes
it possible to forget information that is relevant only for the way expressions are to be
configured in the form dimension. For simplicity, we focus on implicational types here
— accommodation of product types is straightforward.

For a simple extensional interpretation, the set of atomic semantic types could consist
of types e and t, with De the domain of discourse (a non-empty set of entities, objects),
and Dt = {0, 1}, the set of truth values. DA→B, the semantic domain for a functional
type A → B, is the set of functions from DA to DB. The mapping from syntactic to
semantic types (·)′ could now stipulate for basic syntactic types that np′ = e, s′ = t,
and n′ = e → t. Sentences, in this way, denote truth values; (proper) noun phrases
individuals; common nouns functions from individuals to truth values. For complex
syntactic types, we set (A/B)′ = (B\A)′ = B′ → A′. On the level of semantic types,
the directionality of the slash connective is no longer taken into account. Of course, the
distinction between numerator and denominator — domain and range of the interpreting
functions — is kept. Below some common parts of speech with their corresponding
syntactic and semantic types.
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determiner (s/(np\s))/n (e→ t)→ (e→ t)→ t
intransitive verb np\s e→ t
transitive verb (np\s)/np e→ e→ t
reflexive pronoun ((np\s)/np)\(np\s) (e→ e→ t)→ e→ t
relative pronoun (n\n)/(np\s) (e→ t)→ (e→ t)→ e→ t

Formulas-as-types, proofs as programs Curry’s basic insight was that one can see
the functional types of type theory as logical implications, giving rise to a one-to-one
correspondence between typed lambda terms and natural deduction proofs in positive
intuitionistic logic. Translating Curry’s ‘formulas-as-types’ idea to the categorial type
logics we are discussing, we have to take the differences between intuitionistic logic
and the grammatical resource logic into account. Below we give the slash rules of the
base logic in natural deduction format, now taking term-decorated formulas as basic
declarative units. Judgements take the form of sequents Γ ⊢M : A. The antecedent Γ is
a structure with leaves x1 : A1, . . . , xn : An. The xi are unique variables of type A′

i. The
succedent is a term M of type A′ with exactly the free variables x1, . . . , xn, representing
a program which given inputs k1 ∈DA′

1
. . . , kn ∈DA′

n
produces a value of type A′ under

the assignment that maps the variables xi to the objects ki. The xi in other words are the
parameters of the meaning assembly procedure; for these parameters we will substitute
the actual lexical meaning recipes when we rewrite the leaves of the antecedent tree
to terminal symbols (words). A derivation starts from axioms x : A ⊢ x : A. The
Elimination and Introduction rules have a version for the right and the left implication.
On the meaning assembly level, this syntactic difference is ironed out, as we already saw
that (A/B)′ = (B\A)′. As a consequence, we don’t have the isomorphic (one-to-one)
correspondence between terms and proofs of Curry’s original program. But we do read
off meaning assembly from the categorial derivation.

(Γ, x : B) ⊢M : A

Γ ⊢ λx.M : A/B
I/

(x : B,Γ) ⊢M : A

Γ ⊢ λx.M : B\A I\

Γ ⊢M : A/B ∆ ⊢ N : B

(Γ,∆) ⊢MN : A
E/ Γ ⊢ N : B ∆ ⊢M : A

(Γ,∆) ⊢MN : A
E\

A second difference between the programs/computations that can be obtained in
intuitionistic implicational logic, and the recipes for meaning assembly associated with
categorial derivations has to do with the resource management of assumptions in a
derivation. In Curry’s original program, the number of occurrences of assumptions (the
‘multiplicity’ of the logical resources) is not critical. One can make this style of resource
management explicit in the form of structural rules of Contraction and Weakening,
allowing for the duplication and waste of resources.

Γ, A,A ⊢ B
Γ, A ⊢ B C

Γ ⊢ B
Γ, A ⊢ B W
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In contrast, the categorial type logics are resource sensitive systems where each
assumption has to be used exactly once. We have the following correspondence between
resource constraints and restrictions on the lambda terms coding derivations:

1. no empty antecedents: each subterm contains a free variable;

2. no Weakening: each λ operator binds a variable free in its scope;

3. no Contraction: each λ operator binds at most one occurrence of a variable in its
scope.

Taking into account also word order and phrase structure (in the absense of Associativity
and Commutativity), the slash introduction rules responsible for the λ operator can only
reach the immediate daughters of a structural domain.

These constraints imposed by resource-sensitivity put severe limitations on the expressivity
of the derivational semantics. There is an interesting division of labour here in natural
language grammars between derivational and lexical semantics. The proof term associated
with a derivation is a uniform instruction for meaning assembly that fully abstracts from
the contribution of the particular lexical items on which it is built. At the level of the
lexical meaning recipes, we do not impose linearity constraints. Below some examples
of non-linearity; syntactic type assignment for these words was given above. The lexical
term for the reflexive pronoun is a pure combinator: it identifies the first and second
coordinate of a binary relation. The terms for relative pronouns or determiners have a
double bind λ to compute the intersection of their two (e → t) arguments (noun and
verb phrase), and to test the intersection for non-emptiness in the case of ‘some’.

a, some (determiner) (e→ t)→ (e→ t)→ t λPλQ.(∃ λx.((P x) ∧ (Q x)))
himself (reflexive pronoun) (e→ e→ t)→ e→ t λRλx.((R x) x)
that (relative pronoun) (e→ t)→ (e→ t)→ e→ t λPλQλx.((P x) ∧ (Q x)))

The interplay between lexical and derivational aspects of meaning assembly is illustrated
with the natural deduction below. Using variables x1, . . . , xn for the leaves in left to right
order, the proof term for this derivation is ((x1 x2) (x4 x3)). Substituting the above
lexical recipes for ‘a’ and ‘himself’ and non-logical constants boye→t and hurte→e→t,
we obtain, after β conversion, (∃ λy.((boy y) ∧ ((hurt y) y))). Notice that the proof
term reflects the derivational history (modulo directionality); after lexical substitution
this transparency is lost. The full encapsulation of lexical semantics is one of the strong
attractions of the categorial approach.

a
(s/(np\s))/n

boy
n

(a, boy) ⊢ s/(np\s) (/E)

hurt
(np\s)/np

himself
((np\s)/np)\(np\s)

(hurt, himself) ⊢ np\s (\E)

((a, boy), (hurt, himself)) ⊢ s (/E)

(note insert an example of derivational ambiguity: one structure, multiple proofs =
multiple readings)
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Structural variation

A second source of expressive limitations of the grammatical base logic is of a more
structural nature. Consider situations where a word or phrase makes a uniform semantic
contribution, but appears in contexts which the base logic cannot relate derivationally.
In generative grammar, such situations are studied under the heading of ‘displacement’,
a suggestive metaphor from our type-logical perspective. Displacement can be overt (as
in the case of question words, relative pronouns and the like: elements that enter into
a dependency with a ‘gap’ following at a potentially unbounded distance, cf. ‘Who do
you think that Mary likes (gap)?’), or covert (as in the case of quantifying expressions
with the ability for non-local scope construal, cf. ‘Alice thinks someone is cheating’,
which can be construed as ‘there is a particular x such that Alice thinks x is cheating’).
We have seen already that such expressions have higher-order types of the form (A →
B) → C. The Curry-Howard interpretation then effectively dictates the uniformity of
their contribution to the meaning assembly process as expressed by a term of the form
(M (A→B)→C λxA.NB)C , where the ‘gap’ is the λ bound hypothesis. What remains to
be done, is to provide the fine-structure for this abstraction process, specifying which
subterms of NB are in fact ‘visible’ for the λ binder.

LP

uuuuuuuuu

HH
HH

HH
HH

H

NLP L

NL

IIIIIIIII

vvvvvvvvv

To work out this notion of visibility or structural accessibility, we introduce structural
rules, in addition to the logical rules of the base logic studied so far. From the pure
residuation logic, one obtains a hierarchy of categorial calculi by adding the structural
rules of Associativity, Commutativity or both. For reasons of historical precedence, the
system of Lambek (1958), with an associative composition operation, is known as L; the
more fundamental system of Lambek (1961) as NL, i.e. the non-associative version of
L. Addition of commutativity turns these into LP and NLP, respectively. For linguistic
application, it is clear that global options of associativity and/or commutativity are too
crude: they would entail that arbitrary changes in constituent structure and/or word
order cannot affect wellformedness of an expression. What is needed, is a controlled form
of structural reasoning, anchored in lexical type assignment.

Control operators The strategy is familiar from linear logic: the type language is
extended with a pair of unary operators (‘modalities’). They are constants in their own
right, with logical rules of use and of proof. In addition, they can provide controlled
access to structural rules.

F ::= A | ♦F | 2F | F\F | F • F | F/F
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Consider the logical properties first. The truth conditions below characterize the control
operators ♦ and 2 as inverse duals with respect to a binary accessibility relation R⋄.
This interpretation turns them into a residuated pair, just like composition and the left
and right slash operations, i.e. we have ♦A −→ B iff A −→ 2B (Res).

x∈V (♦A) iff ∃y.R⋄xy and y ∈V (A) x∈V (2A) iff ∀y.R⋄yx implies y ∈V (A)

We saw that for composition and its residuals, completeness with respect to the frame
semantics doesn’t impose restrictions on the interpretation of the merge relation R•.
Similarly, for R⋄ in the pure residuation logic of ♦,2. This means that consequences of
(Res) characterize grammatical invariants, in the sense indicated above. From (Res) one
easily derives the fact that the control operators are monotonic (A −→ B implies ♦A −→
♦B and 2A −→ 2B), and that their compositions satisfy ♦2A −→ A −→ 2♦A. These
properties can be put to good use in refining lexical type assignment so that selectional
dependencies are taken into account. Compare the effect of an assignment A/B versus
A/♦2B. The former will produce an expression of type A in composition both with
expressions of type B and ♦2B, the latter only with the more specific of these two, ♦2B.
An expression typed as 2♦B will resist composition with either A/B or A/♦2B.

For sequent presentation, the antecedent tree structures now have unary in addition
to binary branching: S ::= F | (S) | (S,S). The residuation pattern then gives rise to
the following rules of use and proof. Cut elimination carries over straightforwardly to
the extended system, and with it decidability and the subformula property.

Γ[(A)]⇒ B

Γ[♦A]⇒ B
♦L Γ⇒ A

(Γ)⇒ ♦A ♦R

Γ[A]⇒ B

Γ[(2A)]⇒ B
2L

(Γ)⇒ A

Γ⇒ 2A
2R

Controlled structural rules Let us turn then to use of ♦,2 as control devices,
providing restricted access to structural options that would be destructive in a global
sense. Consider the role of the relative pronoun ‘that’ in the phrases below. The (a)
example, where the gap hypothesis is in subject position, is derivable in the structurally-
free base logic with the type-assignment given. The (b) example might suggest that
the gap in object position is accessible via rebracketing of (np, ((np\s)/np, np)) under
associativity. The (c) example shows that apart from rebracketing also reordering would
be required to access a non-peripheral gap.

(a) the paper that appeared today (n\n)/(np\s)
(b) the paper that John wrote (n\n)/(s/np) + Ass
(c) the paper that John wrote today (n\n)/(s/np) + Ass,Com??

The controlled structural rules below allow the required restructuring and reordering only
for ♦ marked resources. In combination with a type assignment (n\n)/(s/♦2np) to the
relative pronoun, they make the right branches of structural configurations accessible
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for gap introduction. As long as the gap subformula ♦2np carries the licensing ♦,
the structural rules are applicable; as soon as it has found the appropriate structural
position where it is selected by the transitive verb, it can be used as a regular np, given
♦2np −→ np.

(P1) (A •B) • ♦C −→ A • (B • ♦C) (P2) (A •B) • ♦C −→ (A • ♦C) •B

Frame constraints, term assignment Whereas the structural interpretation of
the pure residuation logic does not impose restrictions on the R♦ and R• relations,
completeness for structurally extended versions requires a frame constraint for each
structural postulate. In the case of (P2) above, the constraint guarantees that whenever
we can connect root r to leaves x, y, z via internal nodes s, t, one can rewire root and
leaves via internal nodes s′, t′.

∀rstxyz r

s

x y

t

z

; ∃s′t′ r

s′

x t′

z

y

As for term assignment and meaning assembly, we have two options. The first is to
treat ♦,2 purely as syntactic control devices. One then sets (♦A)′ = (2A)′ = A′, and
the inference rules affecting the modalities leave no trace in the term associated with a
derivation. The second is to actually provide denotation domains D♦A, D2A for the new
types, and to extend the term language accordingly. This is done in Wansing (2002),
who develops a set-theoretic interpretation of minimal temporal intuitionistic logic. The
temporal modalities of future possibility and past necessity are indistinguishable from the
control operators ♦,2, prooftheoretically and as far as their relational interpretation is
concerned, which in principle would make Wansing’s approach a candidate for linguistic
application.

Embedding translations A general theory of substructural communication in terms
of ♦,2 is worked out in Kurtonina and Moortgat (1996). Let L and L′ be neighbours in
the landscape of Figure NN. We have translations ·♮ from F(/, •, \) of L to F(♦,2, /, •, \)
of L′ such that

L ⊢ A −→ B iff L′ ⊢ A♮ −→ B♮

The ·♮ translation decorates formulas of the source logic L with the control operators
♦,2. The modal decoration has two functions. In the case where the target logic L′ is
more discriminating than L, it provides access to controlled versions of structural rules
that are globally available in the source logic. This form of communication is familiar
from the embedding theorems of linear logic, showing that no expressivity is lost by
removing free duplication and deletion (Contraction/Weakening). The other direction
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of communication obtains when the target logic L′ is less discriminating than L. The
modal decoration in this case blocks the applicability of structural rules that by default
are freely available in the more liberal L.

As an example, consider the grammatical base logic NL and its associative neighbour
L. For L = NL and L′ = L, the ·♮ translation below affectively removes the conditions
for applicability of the associativity postulate A•(B•C)←→ (A•B)•C (Ass), restricting
the set of theorems to those of NL. For L = L and L′ = NL, the ·♮ translation provides
access to a controlled form of associativity (Ass⋄) ♦(A•♦(B •C))←→ ♦(♦(A•B)•C),
the image of (Ass) under ·♮.

p♮ = p (p∈A)
(A •B)♮ = ♦(A♮ •B♮)
(A/B)♮ = 2A♮/B♮

(B\A)♮ = B♮\2A♮

Generative capacity, computational complexity The embedding results discussed
above allow one to determine the Cartesian coordinates of a language in the logical space
for diversity. Which regions of that space are actually populated by natural language
grammars? In terms of the Chomsky hierarchy, recent work in a variety of frameworks
has converged on the so-called mildly context-sensitive grammars: formalisms more
expressive than context free, but strictly weaker than context-sensitive, and allowing
polynomial parsing algorithms. The minimal system in the categorial hierarchy NL is
strictly context-free and has a polynomial recognition problem, but, as we have seen,
needs structural extensions. Such extensions are not innocent, as shown in Pentus (1993,
2003): whereas L remains strictly context-free, the addition of global associativity makes
the derivability problem NP complete. Also for LP, coinciding with the multiplicative
fragment of linear logic, we have NP completeness. Moreover, Van Benthem (1995)
shows that LP recognizes the full permutation closure of context-free languages, a lack of
structural discrimination making this system unsuited for actual grammar development.
The situation with♦ controlled structural rules is studied in Moot (2002), who establishes
a PSPACE complexity ceiling for linear (for •), non-expanding (for ♦) structural rules
via simulation of lexicalized context-sensitive grammars. The identification of tighter
restrictions on allowable structure rules, leading to mildly context-sensitive expressivity,
is an open problem.

For a grammatical framework assigning equal importance to syntax and semantics,
strong generative capacity is more interesting that weak capacity. Tiede (1999, 2002)
studies the natural deduction proof trees that form the skeleton for meaning assembly
from a tree-automata perspective, arriving at a strong generative capacity hierarchy.
The base logic NL, though strictly context-free at the string level, can assign non-
local derivation trees, making it more expressive than context-free grammars in this
respect. Normal form NL proof trees remain regular; the proof trees of the associative
neighbour L can be non-regular, but do not extend beyond the expressivity of indexed
grammars, generally considered to be an upper bound for the complexity of natural
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language grammars.

Variants, further reading

The material discussed in this section is covered in greater depth in Moortgat and
Buszkowski’s chapters in the Handbook of Logic and Language. Van Benthem (1995) is
an indispensible monograph for the relations between categorial derivations, type theory
and lambda calculus. and for discussion of the place of type-logical grammars within
the general landscape of resource-sensitive logics. Morrill (1994) provides a detailed
type-logical analysis of syntax and semantics for a rich fragment of English grammar,
and situates the type-logical approach within Richard Montague’s Universal Grammar
framework. A versatile computational tool for categorial exploration is the the grammar
development environment GRAIL of Moot (2002). The kernel is a general type-logical
theorem prover based on proof nets and structural graph rewriting. The system is
publicly available, or can be accessed online at http://grail.let.uu.nl. Bernardi
(2002) and Vermaat (2006) are recent PhD theses studying syntactic and semantic
aspects of cross-linguistic variation for a wide variety of languages.

This section has concentrated on the Lambek-style approach to type-logical deduction.
The framework of Combinatory Categorial Grammar, studied by Steedman and his co-
workers, takes its inspiration more from the Curry-Feys tradition of combinatory logic.
The particular combinators used in CCG are not so much selected for completeness with
respect to some structural model for the type-forming operations (such as the frame
semantics introduced above) but for their computational efficiency, which places CCG
among the mildly context-sensitive formalisms. Steedman (2000) is a good introduction
to this line of work, whereas Baldrigde (2002) shows how one can fruitfully import the
technique of lexically anchored modal control into the CCG framework.

Another variation elaborating on Curry’s distinction between an abstract level of
tectogrammatical organization and its concrete phenogrammatical realizations is the
framework of Abstract Categorial Grammar (ACG, De Groote, Muskens). An abstract
categorial grammar is a structure (Σ1,Σ2,L, s), where the Σi are higher-order linear
signatures, the abstract vocabulary Σ1 versus the object vocabulary Σ2, L a mapping
from the abstract to the object vocabulary, and s the distinguished type of the grammar.
In this setting, one can model the syntax-semantics interface in terms of the abstract
versus object vocabulary distinction. But one can also study the composition of natural
language syntax from the perspective of non-directional linear implicational types, using
the canonical λ term encodings of strings and trees and operations on them discussed
elsewhere in this book. Expressive power for this framework can be measured in terms
of the maximal order of the constants in the abstract vocabulary and of the object types
interpreting the atomic abstract types. A survey of results for the ensuing complexity
hierarchy can be found in De Groote (2006). Ironically, Lambek categorial grammars
themselves have eluded characterization in terms of ACGs so far. Whether one approaches
natural language grammars from the top (non-directional linear implications at the LP

level) or from the bottom (the structurally-free base logic NL) of the categorial hierarchy
is to a certain extent a matter of taste, reflecting the choice, for the structural regime,
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between allowing everything except what is explicitly forbidden, or forbidding everything
except what is explicitly allowed. The Kurtonina-Moortgat theory of structural control
shows that the two viewpoints are feasible.
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