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1. Overview

The phenomenon of reflection will be introduced and clarified by examples.
Reflection plays in several ways a fundamental rôle for our existence. Among
other places the phenomenon occurs in life, in language, in computing and in
mathematical reasoning. A fifth place in which reflection occurs is our spiritual
development. In all of these cases the effects of reflection are powerful, even
downright dramatic. We should be aware of these effects and use them in a
responsible way.

A prototype situation where reflection occurs is in the so called lambda
calculus. This is a formal theory that is capable of describing algorithms, logical
and mathematical proofs, but also itself. We will focus1 on the mechanism that
allows this self-reflection. This mechanism is quite simple, in the (intuitive)
order of complexity of a computation like

(x2 + xy + y2)(x − y) = x3 − y3,

but—as argued above—it has quite dramatic effects.

Reflection: domain, coding and interaction

Reflection occurs in situations in which there is a domain of objects that all
have active meaning, i.e. specific functions within the right context. Before
turning to the definition itself, let us present the domains relevant for the four
examples. The first domain is the class of proteins. These have indeed spe-
cific functions within a living organism, from bacterium to homo sapiens. The
second domain consists of sentences in natural language. These are intended,
among other things, to make statements, to ask questions, or to influence others.
The third domain consists of (implemented) computable functions. These per-
form computations—sometimes stand alone, sometimes interactively with the
user—so that an output results that usually serves us in one way or another.
The fourth domain consists of mathematical theorems. These express valid
phenomena about numbers, geometric figures or other abstract entities. When
interpreted in the right way, these will enable us to make correct predictions.

Now let us turn to reflection itself. Besides having a domain of meaningful
objects it needs coding and interaction. Coding means that for every object
of the domain there is another object, the (not necessarily unique) code, from
which the original object can be reconstructed exactly. This process of recon-
struction is called decoding. A code C of an object O does not directly possess
the active meaning of O itself. This happens only after decoding. Therefore
the codes are outside the domain, and form the so-called code set. Finally, the
interaction needed for reflection consists of the encounter of the objects and
their codes. Hereby some objects may change the codes, after decoding giving

1A different focus on reflection is given in the Honours Program ‘Reflection and
its use, from Science to Meditation’ (February 3 — March 30, 2004). The lec-
ture notes for that course put the emphasis more on mathematics and meditation, see
<ftp://ftp.cs.kun.nl/pub/CompMath/honours.pdf>.
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rise to modified objects. This process of global feedback (in principle on the
whole domain via the codes) is the essence of reflection2.

Examples of reflection

Having given this definition, four examples of reflection will be presented.

1. Proteins. The first example has as domain the collection of proteins. A
typical protein is shown in the following picture denoting in a stylized way
human NGF, important for the development of the nervous system.

Figure 1: A schematic display of the protein NGF Homo Sapiens, a nerve growth

factor. Courtesy of the Swiss Institute of Bioinformatics, see Peitsch at al. [1995].

<ftp://ftp.expasy.org/databases/swiss-3dimage/IMAGES/JPEG/S3D00467.jpg>

The three dimensional structure of the protein can be perceived by looking at
the picture with crossed eyes such that the left and right images overlap. Each
protein is essentially a linear sequence of elements of a set of 20 amino acids.
Because some of these amino acids attract one another, the protein assumes
a three dimensional shape that provides its specific chemical meaning. The
sequence of amino-acids for the NGF protein is shown in Fig.2.

2It should be emphasized that just the coding of elements of a domain is not sufficient
for reflection. A music score may code for a symphony, but the two are on different levels:
playing a symphony usually does not alter the written music. However, in aleatory music—the
deliberate inclusion of chance elements as part of a composition—the performance depends
on dice that the players throw. In most cases, the score (the grand plan of the composition)
will not alter. But music in which it really does alter is a slight extension of this idea.
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Protein: 241 amino acids; molecular weight 26987 Da.
www.ebi.ac.uk/cgi-bin/expasyfetch?X52599

MSMLFYTLIT AFLIGIQAEP HSESNVPAGH TIPQVHWTKL QHSLDTALRR ARSAPAAAIA 60

ARVAGQTRNI TVDPRLFKKR RLRSPRVLFS TQPPREAADT QDLDFEVGGA APFNRTHRSK 120

RSSSHPIFHR GEFSVCDSVS VWVGDKTTAT DIKGKEVMVL GEVNINNSVF KQYFFETKCR 180

DPNPVDSGCR GIDSKHWNSY CTTTHTFVKA LTMDGKQAAW RFIRIDTACV CVLSRKAVRR 240

A 241

Figure 2: Amino acid sequence of NGF Homo Sapiens.

To mention just two possibilities, some proteins may be building blocks for
structures within or between cells, while other ones may be enzymes that en-
able life-sustaining reactions. The code-set of the proteins consists of pieces of
DNA, a string of elements from a set of four ‘chemical letters’ (nucleotides).
Three such letters uniquely determine a specific amino acid and hence a string
of amino acids is uniquely determined by a sequence of nucleotides, see Alberts
[1997]. A DNA string does not have the meaning that the protein counterparts
have, for one thing because it has not the specific three dimensional folding.

ACGT-chain: length 1047 base pairs.
www.ebi.ac.uk/cgi-bin/expasyfetch?X52599

agagagcgct gggagccgga ggggagcgca gcgagttttg gccagtggtc gtgcagtcca 60

aggggctgga tggcatgctg gacccaagct cagctcagcg tccggaccca ataacagttt 120

taccaaggga gcagctttct atcctggcca cactgaggtg catagcgtaa tgtccatgtt 180

gttctacact ctgatcacag cttttctgat cggcatacag gcggaaccac actcagagag 240

caatgtccct gcaggacaca ccatccccca agtccactgg actaaacttc agcattccct 300

tgacactgcc cttcgcagag cccgcagcgc cccggcagcg gcgatagctg cacgcgtggc 360

ggggcagacc cgcaacatta ctgtggaccc caggctgttt aaaaagcggc gactccgttc 420

accccgtgtg ctgtttagca cccagcctcc ccgtgaagct gcagacactc aggatctgga 480

cttcgaggtc ggtggtgctg cccccttcaa caggactcac aggagcaagc ggtcatcatc 540

ccatcccatc ttccacaggg gcgaattctc ggtgtgtgac agtgtcagcg tgtgggttgg 600

ggataagacc accgccacag acatcaaggg caaggaggtg atggtgttgg gagaggtgaa 660

cattaacaac agtgtattca aacagtactt ttttgagacc aagtgccggg acccaaatcc 720

cgttgacagc gggtgccggg gcattgactc aaagcactgg aactcatatt gtaccacgac 780

tcacaccttt gtcaaggcgc tgaccatgga tggcaagcag gctgcctggc ggtttatccg 840

gatagatacg gcctgtgtgt gtgtgctcag caggaaggct gtgagaagag cctgacctgc 900

cgacacgctc cctccccctg ccccttctac actctcctgg gcccctccct acctcaacct 960

gtaaattatt ttaaattata aggactgcat ggtaatttat agtttataca gttttaaaga 1020

atcattattt attaaatttt tggaagc 1047

Figure 3: DNA code of NGF Homo Sapiens.

A simple calculation (1047/3 6= 241) shows that not all the letters in the DNA
sequence are used. In fact, some proteins (RNA splicing complex) make a selec-
tion as to what substring should be used in the decoding toward a new protein.

The first advantage of coding is that DNA is much easier to store and
duplicate than the protein itself. The interaction in this example is caused by
a modifying effect of the proteins upon the DNA.
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The decoding of DNA takes place by making a selection of the code (splicing)
and then replacing (for technical reasons) the t’s by u’s, e different nucleotide.
In this way m-RNA is obtained. At the ribosomes the triplets from the alpha-
bet {a, c, g, u} in the RNA string are translated into aminoacids following the
following table.

U C A G

U

UUU Phe

UUC Phe

UUA Leu

UUG Leu

UCU Ser

UCC Ser

UCA Ser

UCG Ser

UAU Tyr

UAC Tyr

UAA stop

UAG stop

UGU Cys

UGC Cys

UGA stop

UGG Trp

C

CUU Leu

CUC Leu

CUA Leu

CUG Leu

CCU Pro

CCC Pro

CCA Pro

CCG Pro

CAU His

CAC His

CAA Gln

CAG Gln

CGU Arg

CGC Arg

CGA Arg

CGG Arg

A

AUU Ile

AUC Ile

AUA Ile

AUG Met

ACU Thr

ACC Thr

ACA Thr

ACG Thr

AAU Asn

AAC Asn

AAA Lys

AAG Lys

AGU Ser

AGC Ser

AGA Arg

AGG Arg

G

GUU Val

GUC Val

GUA Val

GUG Val

GCU Ala

GCC Ala

GCA Ala

GCG Ala

GAU Asp

GAC Asp

GAA Glu

GAG Glu

GGU Gly

GGC Gly

GGA Gly

GGG Gly

A Ala

C Cys

D Asp

E Glu

G Gly

F Phe

H His

I Ile

K Lys

L Leu

M Met

N Asn

P Pro

Q Gln

R Arg

S Ser

T Thr

V Val

W Trp

Y Tyr

Figure 4: The ‘universal’ genetic code and the naming convention for
aminoacids. Three codons (UAA, UAG and UGA) code for the end of a protein
(‘stop’).

2. Language. The domain of the English language is well-known. It consists
of strings of elements of the Roman alphabet extended by the numerals and
punctuation marks. This domain has a mechanism of coding, called quoting
in this context, that is so simple that it may seem superfluous. A string in
English, for example

Maria

has as code the quote of that string, i.e.

‘Maria’.

In Tarski [1933/1995] it is explained that of the following sentences

1. Maria is a nice girl

2. Maria consists of five letters

3. ‘Maria’ is a nice girl

4. ‘Maria’ consists of five letters

the first and last one are meaningful and possibly valid, whereas the second
and third are always incorrect, because a confusion of categories has been made
(Maria consist of cells, not of letters; ‘Maria’ is not a girl, but a proper name).
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We see the simple mechanism of coding, and its interaction with ordinary lan-
guage. Again, we see that the codes of the words do not possess the meaning
that the words themselves do.

3. Computable functions. A third example of reflection comes from com-
puting. The first computers made during WW2 were ad hoc machines, each
built for a specific use. Since hardware at that time was a huge investment, it
was recycled by rewiring the parts after each completed job.

3
Input��

� | | �

M1(x) = 2 · x =
Output

// 6

� �

3
Input��

� | | �

M2(x) = x2 =
Output

// 9

� �

Figure 5: Two ad hoc machines: M1 for doubling and M2 for squaring.

Based on ideas of Turing this procedure was changed. In Turing [1936] the idea
of machines that nowdays are called Turing machines were introduced. These
are idealized computers in the sense that they have an unlimited memory, in
order to make the theory technology independent. Among these there is the
universal Turing machine that can simulate all the other machines via an extra
argument, the program.

p1

Program��

3
Input��

� | | | | �

UM(p1, x) = 2 · x =
Output

// 6

� �

p2

Program��

3
Input��

� | | | | �

UM(p2, x) = x2 =
Output

// 9

� �

Figure 6: Universal machine UM with programs p1, p2

simulating M1, M2 respectively.

Under the influence of J. von Neumann, who knew Turings work, one particu-
lar computer was constructed, the universal machine, and for each particular
computing job one had to provide two inputs: the instructions (the software)
and the data that this recipe acts upon. This has become the standard for all
subsequent computers. So p1 is a code for M1 and p2 for M2. Since we can
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consider M1(p2) and M2(p2), there is interaction: agents acting on a code, in
the second case even their own code.

The domain in this case consists of implemented computable functions, i.e.
machines ready for a specific computing job to be performed. A code for an ele-
ment of this domain consists of a program that simulates the job on a universal
machine. The program of a computable function is not yet active, not yet exe-
cutable in computer science terminology. Only after decoding does a program
come into action. Besides coding, interaction is also present. In the universal
machine the program and the data are usually kept strictly separate. But this
is not obligatory. One can make the program and the input data overlap so
that after running for a while on the universal computer, the initial program is
modified.

4. Mathematical theorems. A final example in this section is concerned
with mathematics. A mathematical theorem is usually about numbers or other
abstract entities. Gödel introduced codes for mathematical statements and used
as code-set the collection {0, 1, 2, 3, . . .} of natural numbers, that do not have
any assertive power. As a consequence, one can formulate in mathematics not
only statements about numbers, but via coding also about other such state-
ments. There are even statements that speak about themselves. Again we see
that both the coding and interaction aspects of reflection are present.

The power of reflection

The mentioned examples of reflection all have quite powerful consequences.
We know how dramatically life has transformed our planet. Life essentially

depends on the DNA coding of proteins and the fact that these proteins can
modify DNA. This modification is necessary in order to replicate DNA or to
proof-read it preventing fatal errors.

One particular species, homo sapiens, possesses language. We know its
dramatic effects. Reflection using quoting is an essential element in language
acquisition. It enables a child to ask questions like: “Mother, what is the
meaning of the word ‘curious’?”

Reflection in computing has given us the universal machine. Just one design3

with a range of possibilities through software. This has had a multi-trillion US$
impact on the present stage of the industrial revolution of which we cannot yet
see all the consequences.

The effects of reflection in mathematics are less well-known. In this disci-
pline there are statements of which one can see intuitively that they are true,
but a formal proof is not immediate. Using reflection, however, proofs using
intuition can be replaced by formal proofs4, see Howe [1992] and Barendregt
[1997], pp. 21-23. Formal provability is important for the emerging technology

3That there are several kinds of computers on the market is a minor detail: this has to do
with speed and user-friendliness.

4Often an opposite claim is based on Gödel’s incompleteness result. Given a mathematical
theory T containing at least arithmetic that is consistent (expressed as Con(T )), incomplete-
ness states the following. There is a statement G (equivalent to ‘G is not provable’) within the
language of T that is neither provable nor refutable in T , but nevertheless valid, see Smullyan
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of interactive (human-computer) theorem proving and proof verification. Such
formal and machine-checked proofs are already changing the way hardware is
being constructed5 and in the future probably also on the way one will develop
software. As to the art of mathematics itself, it will bring the technology of
Computer Algebra (dealing exactly with equations between symbolic expres-
sions involving elements like

√
2 and π) to the level of arbitrary mathematical

statements (involving more complex relations than just equalities between ar-
bitrary mathematical concepts).

The other side of reflection

Anything that is useful and powerful (like fire), can also have a different usage
(such as arson). Similarly the power of reflection in the four given examples
can be used in different ways.

Reflection in the chemistry of life has produced the species, but also it has as
consequence the existence of viruses. Within natural language reflection gives
rise to learning a language, but also to paradoxes6. The universal computer
has as a consequence that there are unsolvable problems, notably the ones we
are most interested in7. Reflection within mathematics has as a consequence
that for almost all interesting consistent axiomatic theories, there are state-
ments that cannot be settled (proved or refuted) within that theory (Gödel’s
incompleteness result mentioned above).

We see that reflection may be compared to the forbidden fruit: it is powerful,
but at the same time, it entails dangers and limitations as well. A proper view
of these limitations will make us more modest.

Reflection in spirituality

Insight (vipassana) meditation, which stems from classical Buddhism, concerns
itself with our consciousness. When impressions come to us through our senses,
we obtain a mental representation (e.g. an object in front of us). Now this
mental image may be recollected : this means that we obtain the awareness of
the awareness, also called mindfulness. In order to develop the right mindfulness
it should be applied to all aspects of consciousness. Parts that usually are not
seen as content, but as a coloring of consciousness, become just as important as
the object of meditation. If a leg hurts during meditation, one should be mindful
of it. Moreover, one learns not only to see the pain, but also the feelings and
reactions in connection to that pain. This fine-grained mindfulness will have an
‘intuitive analytic’ effect: our mind becomes decomposed into its constituents

[1992]. It is easy to show that G is unprovable if T is consistent, hence by construction G

is true. So we have informally proved that G follows from Con(T ). Our (to some unconven-
tional) view on Gödel’s theorem is based on the following. By reflection one also can show
formally that Con(T )→G. Hence it comes not as a surprise, that G is valid on the basis of
the assumed consistency. This has nothing to do with the specialness of the human mind, in
which we believe but on different grounds, see the section ‘Reflection in spirituality’.

5Making it much more reliable.
6Like ‘This sentence is false.’
7‘Is this computation going to halt or run forever?’ See Yates [1998].
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(input, feeling, cognition, conditioning and awareness). Seeing this, we become
less subject to various possible vicious circles in our body-mind system that
often push us into greed, hatred or compulsive thinking.

Because mindfulness brings the components of consciousness to the open in
a disconnected, bare form, they are devoid of their usual meaning. The total
information of ordinary mental states can be reconstructed from mindfulness.
That is why it works like coding with the contents of our consciousness as
domain.

The reflective rôle of mindfulness on our consciousness is quite similar to
that of quoting in ordinary language. As proteins can purify part of our DNA,
the insight into the constituents of consciousness can purify our mind. Mind-
fulness makes visible processes within consciousness, hitherto unseen. After
that, mindfulness serves as a protection by not letting the components of con-
sciousness exercise their usual meaning. Finally, the presence of mindfulness
reorganizes consciousness, giving it a degree of freedom greater than before.
Using mindfulness one may act, even if one does not dare; or, one may abstain
from action, even if one is urged. Then wisdom will result: morality not based
on duty but on virtue. This is the interaction of consciousness and mindfulness.
Therefore, by our definition, one can speak of reflection.

This power of reflection via mindfulness also has another side to it. The
splitting of our consciousness into components causes a vanishing of the usual
view we hold of ourselves and the world. If these phenomena are not accom-
panied in a proper way, they may become disturbing. But during the intensive
meditation retreats the teacher pays proper attention to this. With the right
understanding and reorganization, the meditator obtains a new stable balance,
as soon as one knows and has incorporated the phenomena.

Mental disorders related to stress can cause similar dissociations. Although
the sufferers appear to function normally, to them the world or worse their per-
son does not seem real. This may be viewed as an incomplete and unsystematic
use of mindfulness. Perhaps this explains the enigma of why some of the suffer-
ers become ‘weller than well’, as was observed in Menninger and Pruyser [1963].
These cured patients might very well have obtained the mental purification that
is the objective of vipassana meditation.

Pure Consciousness

In Hofstadter [1979] the notion of ‘strange loop’ is introduced: ‘Something that
contains a part that becomes a copy of the total when zoomed out. ‘Reflec-
tion’ in this paper is inspired by that notion, but focuses on a special aspect:
zooming out in reflection works via the mechanism of coding. The main the-
sis of Hofstadter is that ‘strange loops’ are at the basis of self-consciousness.
I partly agree with this thesis and would like to add that mindfulness serves
as the necessary zooming mechanism in the strange loop of self-consciousness.
On the other hand, the thesis only explains the ‘self’ aspect, the consciousness
part still remains obscure. I disagree with the title of Dennet [1993]: ‘Con-
sciousness explained’. No matter how many levels of cognition and feedback
we place on top of sensory input in a model of the mind, it a priori seems not
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able to account for experiences. We always could simulated these processes on
an old-fashioned computer consisting of relays, or even play it as a social game
with cards. It is not that I object to base our consciousness on outer agents
like the card players (we depend on nature in a similar way). It is the claimed
emergence of consciousness as a side effect of the card game that seems absurd.
See Blackmore [2004] for a good survey of theories about consciousness.

Spiritual reflection introduces us to awareness beyond ordinary conscious-
ness, which is without content, but nevertheless conscious. It is called pure
consciousness. This phenomenon may be explained by comparing our person-
ality to the images on a celluloid film, in which we are playing the title role of
our life. Although everything that is familiar to us is depicted on the film, it is
in the dark. We need light to see the film as a movie. It may be the case that
this pure consciousness is the missing explanatory link between the purely neu-
rophysiological activity of our brain and the conscious mind that we (at least
think to) possess. This pure light is believed to transcends the person. The
difference between you and me is in the matter (cf. the celluloid of the film).
That what gives us awareness is said to come from a common source: the pure
consciousness acting as the necessary ‘light’.

To understand where this pure consciousness (our inner light) comes from
we may have to look better into nature (through a new kind of physics, see
e.g. Chalmers [1996] or Stapp [1996]) or better into ourselves (through insight
meditation, see e.g. Goldstein [1983]). Probably we will need to do both.

Acknowledgement. Based on the chapter ‘Reflection and its use, from Sicence
to Meditation’, in Spiritual Information, edited by Charles L. Harper, Jr., c©
2004, Templeton Foundation Press.
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2. Languages

Describing and generating languages is an important subject of study.
Formal languages are precisely defined via logical rules. See e.g. Kozen

[1997] for a textbook. These languages are introduced for special purposes.
For example the programming languages describe algorithms, i.e. calculation
recipes, used to make computers do all kinds of (hopefully) useful things. Other
formal languages can express properties of software, the so-called specification
languages, or properties part of some mathematical theory. Finally, some formal
languages are used in order to express proves of properties, for example the proof
that a certain program does what you would like it to do8.

Natural languages occur in many places on earth and are used by people
to communicate. Part of linguistics uses ideas of formal languages in order to
approach better and better the natural languages. The hope cherished by some
is to be able to come up with a formal description of a large part, if not the
total, of the natural languages. We will discuss mainly formal languages, giving
only a hint how this study is useful for natural ones.

A language is a collection of words. A word is a string of symbols taken
from a predefined alphabet. A typical questions are

• Does word w belong to language L?

• Are the languages L and L′ equal?

Words over an alphabet

2.1. Definition. (i) An alphabet Σ is a set of symbols. Often this set is finite.
(ii) Given an alphabet Σ, a word over Σ is a finite sequence w = s1 . . . sn of

elements si∈Σ. It is allowed that n = 0 in which case w = ǫ the empty word.
(iii) We explain the notion of an abstract syntax by redefining the collection

of words over Σ as follows:

word := ǫ | word s ,

where s∈Σ.
(iv) Σ∗ is the collection of all words over Σ.

2.2. Example. (i) Let Σ1 = {0, 1}. Then

1101001∈Σ∗

1.

(ii) Let Σ2 = {a, b}. Then

abba ∈ Σ∗

2.
abracadabra /∈ Σ∗

2.

(iii) abracadabra∈Σ∗

3, with Σ3 = {a, b, c, d, r}.
8If software is informally and formally specified, tested and proven correct, i.e. that it

satisfies the specification it obtains five stars. The informal specification and tests serve to
convince the reader that the requirements are correctly stated. There is very little five star
software.
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(iv) ǫ∈Σ∗ for all Σ.
(v) Let Σ4 = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. Then the fol-

lowing is a word in Σ∗

4.

MSMLFYTLITAFLIGIQAEPHSESNVPAGHTIPQVHWTKLQHSLDTALRRARSAPAAAIA

ARVAGQTRNITVDPRLFKKRRLRSPRVLFSTQPPREAADTQDLDFEVGGAAPFNRTHRSK

RSSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCR

DPNPVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRRA

We have encountered it in Fig. 2 of section 1.
(vi) Let Σ5 = {a, c, g, t}. Then an element of Σ∗

5 is given in Fig. 3.
(vii) Let Σ6 = {a, c, g, u}. Then Σ6 is “isomorphic to” Σ5.

Operations on words

2.3. Definition. (i) Let a∈Σ, w∈Σ∗. Define a.w ‘by induction on w’.

a.ǫ = a

a.(us) = (a.u)s

(ii) If w, v∈Σ∗, then their concatenation

w++v

in Σ∗ is defined by induction on v:

w++ǫ = w

w++us = (w++u)s.

We write wv ≡ w++v as abbreviation.
(iii) Let w∈Σ∗. Then w∨ is w “read backward” and is formally defined by

ǫ∨ = ǫ;

(wa)∨ = a(w∨).

For example (abba)∨ = abba, and (abb)∨ = bba.

Languages

2.4. Definition. Let Σ be an alphabet. A language over Σ is just a subset
L ⊆ Σ∗ (defined in one way or another).

2.5. Example. Let Σ = {a, b}. Define the following languages over Σ.
(i) L1 = {w | w starts with a and ends with b}. Then

ab, abbab∈L1, but ǫ, abba, bab /∈ L1.

(ii) L2 = {w | abba is part of w}. Then

abba, abbab∈L2, but ǫ, ab, bab /∈ L2.
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(iii) L3 = {w | aa is not part of w}. Then

aa, abbaab /∈ L3, but ǫ, a, ab, bab∈L3.

(iv) L4 = {ǫ, ab, aabb, aaabbb, . . . , anbn, . . .}
= {anbn | n ≥ 0}.

Then ǫ, aaaabbbb∈L4 but aabbb, bbaa /∈ L4.
(v) L5 = {w | w is a palindrome, i.e. w = w∨}. For example abba∈L5, but

abb /∈ L5.

Operations on languages

2.6. Definition. Let L, L1, L2 be languages over Σ. We define

L1L2 = {w1w2∈Σ∗ | w1∈L1 & w2∈L2}.
L1 ∪ L2 = {w∈Σ∗ | w∈L1 or w∈L2}.

L∗ = {w1w2 . . . wn | n ≥ 0 & w1, . . . , wn∈L}.
L+ = {w1w2 . . . wn | n > 0 & w1, . . . , wn∈L}.

Some concrete languages

2.7. Definition. Let Σ1 = {M, I, U}. Define the language L1 over Σ1 by the
following grammar, where x, y∈Σ∗

1.

axiom MI

rules xI ⇒ xIU

Mx ⇒ Mxx
xIIIy ⇒ xUy

xUUy ⇒ xy

This means that by definition MI∈L1;
if xI∈L1, then also xIU∈L1,
if Mx∈L1, then also Mxx,
if xIIIy∈L1, then also xUy,
if xUUy∈L1, then also xy.

2.8. Example. (i) MI, MII, MU, MUU, IMMIU, . . .∈Σ∗

1

(ii) MI, MIU, MIUIU, MII, MIIII, . . .∈L1.

2.9. Problem (Hofstadter’s MU puzzle9). MU∈L1?
How would you solve this?

2.10. Definition. (i) Σ2 = {p, q,−}
(ii) The language L2 over Σ2 is defined as follows (x, y, z∈Σ∗

2).

axioma’s xpqx if x consists only of −s

rule xpyqz ⇒ xpy−qz−
9See Hofstadter [1979].
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Languages over a single letter alphabet can be interesting.

2.11. Definition. Laat Σ4 = {a}.
(i) Define L41 as follows.

axiom a

rule w ⇒ waa

Then L41 = {an | n is an odd number}. Here one has a0 = λ and an+1 = ana.
In other words an = a . . . a

︸ ︷︷ ︸

n times

.

(ii) L42 = {ap | p is a prime number}.
(iii) Define L43 as follows.

axiom a

rule w ⇒ ww
wwwa ⇒ w

How can one decide whether Σ4 is in L41? The question ‘w∈L42?
′ is more

difficult. The difficulty is partly due to the specification of L42. Language L43

has an easy grammar, but a difficult decision problem. For example it requires
several steps to show that aaa∈L43.
Challenge. Do we have L43 = {an | n ≥ 1}? The first person who sends via
email the proof or refutation of this to <henk@cs.kun.nl> will obtain 100 C= .
Closing time 1.05.2004.

Open problem. (Collatz’ conjecture) Define L44 as follows.

axiom a

rule w ⇒ ww
wwwaa ⇒ wwa

Prove or refute Collatz’ conjecture

L44 = {an | n ≥ 1}.

The first correct solution with convincing proof sent by email before 01.01.2010
earns 1000 C= . Is there a relation bewteen L43 and L44?

Regular languages

Some of the languages of Example2.5 have a convenient notation.

2.12. Example. Let Σ = {a, b}. Then
(i) L1 is denoted by a(a ∪ b)∗b.
(ii) L2 is denoted by (a ∪ b)∗abba(a ∪ b)∗.

2.13. Definition. Let Σ be an alphabet.
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(i) The regular expressions over Σ are defined by the following grammar

re := ∅ | ǫ | s | (re.re) | (re ∪ re) | re∗.

here s is an element of Σ. A more consice version of this grammar is said to be
an abstract syntax :

re := ∅ | ǫ | s | re.re | re ∪ re | re∗.

(ii) Given a regular expression e we define a language L(e) over Σ as follows.

L(∅) = ∅;
L(ǫ) = {ǫ};
L(s) = {s};

L(e1e2) = L(e1)L(e2);

L(e1 ∪ e2) = L(e1) ∪ L(e2);

L(e∗) = L(e)∗

(iii) A language L over Σ is called regular if L = L(e) for some regular
expression e.

Note that L+ = L.L∗ so that it one may make use of + in the formation of
regular languages. Without a proof we state the following.

2.14. Proposition. (i) L3 of Example 2.5 is regular:

L3 = L((b ∪ ab)∗(a ∪ ǫ)).

(ii) L4 = {anbn | n ≥ 0} is not regular.

There is a totally different definition of the class of regular languages, namely
those that are “accepted by a finite automaton”. The definition is not compli-
cated, but beyond the scope of these lectures.

Context-free languages

There is another way to introduce languages. We start with an intuitive ex-
ample. Consider the following production system (grammar) over the alphabet
Σ = {a, b}.

S → ǫ | aSb

This is nothing more or less than the grammar

exp := ǫ | a exp b

The S stands for start. With this auxiliary symbol we start. Then we follow the
arrow. There are two possibilities: ǫ and aSb. Since the first does not contain
the auxiliary symbol any longer, we say that we have reached a terminal state
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and therefore the word ǫ has been produced. The second possibility yields aSb,
containing again the ‘non-terminal’ symbol S. Therefore this production has
not yet terminated. Continuing we obtain

ab = aǫb and aaSbb.

And then
aabb and aaaSbbb.

Etcetera. Therefore this grammar generates the language

L5 = {ǫ, ab, aabb, aaabbb, a4b4, . . . , anbn, . . .},

also written as
L5 = {anbn | n ≥ 0}.

The productions can be depicted as follows.

S → ǫ;
S → aSb → ab;
S → aSb → aaSbb → aabb;
S → aSb → aaSbb → aaaSbbb → aaabbb.

L5 as defined above is called a contextfree language and its grammar a
contextfree grammar

A variant is

S → ab | aSb

generating
L′

5 = {anbn | n > 0}.

2.15. Definition. A contextfree grammar consists of the following.
(i) An alphabet Σ.
(ii) A set V of auxiliary10 symbols. Among them S, the start symbol.
(iii) A finite collection production rules of the form

X → w

where X is an auxiliary symbol and w a word consisting of letters from the
alphabet and the auxiliary symbols together; otherwise said w∈(Σ∪V )∗, where
∪ denotes the union of two sets.

(iv) If there are two production rules with the same auxiliary symbol as its
left hand side, for example X → w1 and X → w2, then we notate this in the
grammar as

X → w1 | w2.

For the auxiliary symbols we use upper case letters like S, A, B. For the
elements of the alphabet we use lower case letters like a, b, c etcetera.

10These are also called non-terminal symbols.
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2.16. Example. (i) L5, L
′

5 above are contextfree languages. Indeed, the con-
textfree grammars are given.

(ii) L41 = {an | n odd} over Σ = {a} is context-free. Take V = {S} and as
production-rules

S → aaS | a

(iii) Define L7 over Σ = {a, b} using V = {S, A, B} and the production-rules

S → AB

A → Aa | ǫ

B → Bb | ǫ

Then L7 = L(a∗b∗), i.e. all string a’s followed by a string b’s.

Note that the auxiliary symbols can be determined from the production- rules.
The name ‘Context-free grammars’ refers to the fact that the left-hand side

of the production rules consist of single auxiliary symbols. (For example the
rule Sa → Sab is not allowed.) One never needs to look at the context in which
the auxiliary symbol is standing.

An important restriction on the context-free grammars consists of the right-
linear grammars.

2.17. Definition. A right-linear grammar is a context-free grammar such that
in every production rule

X → w

one has that w is of one of the following forms
(i) w = ǫ
(ii) w = vY with v∈Σ∗ and Y an auxiliary symbol.

That is to say, in a right-linear grammar auxiliary symbols on the right of a
rule only stand at the end and only as a single occurrence.

2.18. Example. (i) In Example 2.16 only L41 is a right-linear grammar.
(ii) Sometimes it is possible to transform a context-free grammar in an equiv-

alent right-linear one. The following right-linear grammar (over Σ = {a, b}) also
produces L7 example 2.16 (iii).

S → aS | B

B → bB | ǫ

Without a proof we state the following.

2.19. Theorem. Let L be a language over Σ. Then

L is regular ⇔ L has a right-linear grammar.
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Hence every regular language is context-free.

Now we give a grammar for a small part of the English language.

2.20. Definition. Let LEnglish be defined by the following grammar.

S = 〈sentence〉 → 〈noun − phrase〉〈verb − phrase〉.
〈sentence〉 → 〈noun − phrase〉〈verb − phrase〉〈object − phrase〉.

〈noun − phrase〉 → 〈name〉 | 〈article〉〈noun〉
〈name〉 → John | Jill

〈noun〉 → bicycle | mango

〈article〉 → a | the

〈verb − phrase〉 → 〈verb〉 | 〈adverb〉〈verb〉
〈verb〉 → eats | rides

〈adverb〉 → slowly | frequently

〈adjective − list〉 → 〈adjective〉〈adjective − list〉 | ǫ

〈adjective〉 → big | juicy | yellow

〈object − phrase〉 → 〈adjective − list〉〈name〉
〈object − phrase〉 → 〈article〉〈adjective − list〉〈noun〉

In this language we have for example as element

John slowly rides the yellow bike.

Do exercise 2.10 to produce more sentences and to contemplate what is the
alphabet of this language.

Other classes of languages: the Chomsky hierarchy

2.21. Definition. Let Σ be an alphabet.
(i) A context-sensitive language over Σ is introduced like a context-free lan-

guage by production rules of the form

uXv → uwv,

where u, v, w∈Σ∗ and w 6= ǫ. Here X is an auxiliary symbol. The difference
between these languages and the context-free ones is that now the production
of

X → w

only is allowed within the context

u . . . v.

19



(ii) The enumerable languages over Σ are also introduced by similar gram-
mars, but now the production rules are of the form

uXv → uwv,

where w = ǫ is allowed.
(iii) A language L over Σ is called computable if and only if both L and L

are enumerable. Here L is the complement of L:

L = {w∈Σ∗ | w /∈ L}.
A typical context-sensitive language is

{anbncn | n ≥ 0}.
A typical computable language is

ap | p is a prime number.

A typical enumerable language is L44.
The following families of languages are strictly increasing:

1. The regular languages;

2. The context-free languages;

3. The context-sensitive languages;

4. The computable languages;

5. The enumerable languages.

Let us abbreviate these classes of languages as RL,CFL, CSL, CL, EL, respec-
tively. Then we have the proper inclusions can be depicted in the following
diagram.

RL

CFL

CSL

CL

EL

Figure 7: The Chomsky hierarchy

In Chomsky [1956] the power of these definition mechanisms is discussed
for the generation of natural languages. He argues that a natural language is
too complex to be described by a context-free grammar. Moreover, Chomsky
argues that the computable and enumerable languages are too complex to be
able to learn by three year old children. The open problem of linguistics is
whether a natural language can be described as a context-sensitive language.
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Reflection over the classes of languages

There is a uniform way to describe the regular languages. By definition a
language L is regular if and only if there is a regular expression e such that
L = L(e). This set of regular expressions is itself not a regular language.
Reflection over the regular languages pushes us outside this class.

2.22. Definition. Let T ⊆ P(Σ∗) be a class of languages. Let (C, U) be a
couple of languages such that the words of U are pairs c • w with c∈C and w
arbitrary.

(i) Define for c∈C
Lc

U = {w∈Σ∗ | c • w∈U}.
(ii) The pair (C, U) is called a universal coding system for T if

T = {Lc
U | c∈C}.

(iii) T is reflexive if it has a universal coding system (C, U) with C, U∈T .

We assume that Σ is fixed alphabet and consider only languages over it, that
is, subsets of Σ∗. We assume that Σ has “enough” symbols, in the sense that,
given some candidate language of codes C, we freely presume that we can find
a symbol ⊥ not contained in any word of C.

2.23. Proposition. The class of enumerable universal languages is reflexive.

Proof. (Sketch) The reason is that the enumerable languages are those lan-
guages that are accepted by a Turing machine. Turing machines take as input
a string w and start a computation, that can halts or not. Now L is enumerable
if and only if there is a Turing machine ML such that

w∈L ⇔ ML(w) halts.

There is an universal Turing machine Mu, see section 1. This means that for
every Turing machine M there is a code cM such that

M(w) = Mu(cMw).

Define f(c) = {w | M(cw) halts}. Then given an enumerable language L one
has

w∈L ⇔ ML(w) halts

⇔ M(cML
w) halts

⇔ w∈d(cML
),

hence
L = d(cL).

Therefore Lu = {cM | M a Turing machine} with decoding d is a universal
notation mechanism for the enumerable languages. Moreover, the notation
system is itself enumerable:

{cw | w∈d(c)} = {cw | Mu(cw) halts},
which is the languages accepted by LMu

and hence enumerable.
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2.24. Proposition (Barendregt-Capretta). None of the classes of the Chomsky
hierarchy, except that of the enumerable languages, is reflexive.

We will not give a proof here, but it is not difficult.
We end this section by observing that the reflection of the enumerable lan-

guages is a different from the one that is present in the natural language like
English, see section 1. The first one has as domain the collection of enumer-
able languages; the second one has as domain the collection of strings within
a language. We will encounter this second form of reflection quite precisely in
section 5.

Exercises

2.1. (i) Show that MUI∈L1

(ii) Show that IMUI /∈ L1

2.2. Which words belong to L2? Motivate your answers.

1. −−p−−p−−q−−−−
2. −−p−−q−−q−−−−
3. −−p−−q−−−−
4. −−p−−q−−−−−−

2.3. Let Σ3 = {a, b, c}. Define L3 by

axiom ab

rule xyb ⇒ yybx

The following should be answered by ‘yes’ or ‘no’, plus a complete mo-
tivation why this is the right answer.
(i) Do we have ba∈L3?
(ii) Do we have bb∈L3?

2.4. (i) Show that ǫ /∈ L44.
(ii) Show that aaa∈L44.

2.5. Given is the grammar

S → aSb | A | ǫ

A → aAbb | abb

This time V = {S, A} and Σ = {a, b}.
Can one produce abb and aab?
What is the collection of words in the generated language?

2.6. Produce the language of 2.5 with axioms and rules as in 2.7.
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2.7. (i) Consider the context-free grammar over {a, b, c}

S → A | B

A → abS | ǫ

B → bcS | ǫ

Which of the following words belong to the corresponding language
L8?

abab, bcabbc, abba.

(ii) Show that L8 is regular by giving the right regular expression.
(iii) Show that L8 has a right-linear grammar.

2.8. Let Σ = {a, b}.
(i) Show that L41 = {an | n is odd}, see 2.16, is regular. Do this both

by providing a regular expression e such that L41 = L(e) and by
providing a right-linear grammar for L41.

(ii) Describe the regular language L(a(ab∗)∗) by a context-free gram-
mar.

(iii) Let L9 consists of words of the form

aba . . . aba

(i.e. a’s b’s alternating, starting with an a and ending with one; a
single a is also allowed). Show in two ways that L9 is regular.

2.9. Let Σ = {a, b, c}. Show that

L = {w∈Σ∗ | w is a palindrome}

is context-free.

2.10. (i) Show how to produce in LEnglish the sentence

Jill frequently eats a big juicy yellow mango.

(ii) Is the generated language context-free?
(iii) Is this grammar right-linear?
(iv) Produce some sentences of your own.
(v) What is the alphabet Σ?
(vi) What are the auxiliary symbols?
(vii)Extend the alphabet with a symbol for ‘space’ and adjust the gram-

mar accordingly.
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3. Combinatory Logic

In this section we introduce the theory of combinators, also called Combinatory
Logic or just CL. It was introduced by Schönfinkel [1924] and Curry [1930].

3.1. Definition. We define the following finite alphabet

ΣCL = {I,K,S, x, ′, ), (}

3.2. Definition. We introduce two simple regular grammars over ΣCL.

(i) constant := I | K | S

(ii) variable := x | variable′

Therefore we have the following collection of variables: x, x′, x′′, x′′′, . . . .

3.3. Notation. We use

x, y, z, . . . , x′, y′, z′, . . . , x0, y0, z0, . . . , x1, y1, z1, . . .

to denote arbitrary variables.

3.4. Definition. We now introduce the main (conextfree-)language over ΣCL

consisting of CL-terms (that we may call simply “terms” if there is little danger
of confusion).

term := constant | variable | (term term)

3.5. Definition. A combinator is a term without variables.

The intended interpretation of (PQ), where P, Q are terms is: P considered
as function applied to Q considered as argumnent. These functions are allowed
to act on any argument, including themselves!

3.6. Proposition. (i) Binary functions can be simulated by unary functions.
(ii) Functions with n-arguments can be simulated by unary functions.

Proof. (i) Consider f(x, y), if you like f(x, y) = x2 + y. Define

Fx(y) = f(x, y);

F (x) = Fx.

Then

F (x)(y) = Fx(y)

= f(x, y).

(ii) Similarly.
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In order to economize on parentheses we will write F (x)(y) as Fxy giving it
the intended interpretation (Fx)y (association to the left).

3.7. Example. Examples of CL-terms.
(i) I;
(ii) x;
(iii) (Ix);
(iv) (IK);
(v) (KI);
(vi) ((KI)S);
(vii) (K(IS));
(viii) (K(I(SS)));
(ix) (((KI)S)S);
(x) (((Sx)y)z);
(xi) (x(S(yK))).

3.8. Notation. We use

M, N, L, . . . , P, Q, R, . . . , X, Y, Z, . . .

to denote arbitrary terms. Also c to denote a constant I,K or S.

3.9. Definition. For a term M we define a “tree” denoted by tree(M).

M tree(M)

x x

c c

(PQ) •

ww
ww

ww
ww

w

GG
GG

GG
GG

G

tree(P ) tree(Q)

3.10. Example. (i) tree(Ix) = •
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??

??
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I x

(ii) tree((I(Sx))(Kx)) = •
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K x

S x

25



3.11. Notation. In order to save parentheses we make the following convention
(“association to the left”):

PQ1 . . . Qn stands for (..((PQ1)Q2) . . . Qn).

For example KPQ stands for ((KP )Q) and SPQR for (((SP )Q)R). We also
write this as

PQ1 . . . Qn ≡ (..((PQ1)Q2) . . . Qn);

KPQ ≡ ((KP )Q);

SPQR ≡ (((SP )Q)R).

The CL-terms are actors, acting on other terms.

3.12. Definition. We postulate the following (here P, Q, R are arbitrary)

IP = P (I)
KPQ = P (K)

SPQR = PR(QR) (S)

Figure 8: Axioms of CL.
If P = Q can be derived from these axioms we write P =CL Q. (If there is
little danger of confusion we will write simply P = Q.)

We will show some consequences of the axioms.

3.13. Proposition. (i) SKKx =CL x.
(ii) SKKP =CL P .
(iii) KIxy =CL y.
(iv) SKxy =CL y.

Proof. (i) SKKx = Kx(Kx), by axiom (S)
= x, by axiom (K).

(ii) SKKP = KP (KP ), by axiom (S)
= P, by axiom (K).

(iii) KIxy = Iy, by axiom (K)
= y, by axiom (I).

(iv) SKxy = Ky(xy), by axiom (S)
= y, by axiom (K).

The second result shows that we did not need to introduce I as a primitive
constant, but could have defined it as SKK. Results (iii) and (iv) show that
different terms can have the same effect. Comparing result (i) and (ii) one sees
that variables serve as generic terms. If an equation holds for a variable, it
holds for all terms. This gives the following principle of substitution.

3.14. Definition. Let M, L be terms and let x be a variable. The result of
substitution of L for x in M , notation

M [x: = L]
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is defined by recursion on M .

M M [x: = L]

x L
y y, provided x 6≡ y

c c

PQ (P [x: = L])(Q[x: = L])

3.15. Proposition. If P1 =CL P2, then P1[x: = Q] =CL P2[x: = Q].

3.16. Example.

xI[x: = S] ≡ SI.

KIxx[x: = S] ≡ KISS.

KIyx[x: = S] ≡ KIyS.

Now we will perform some magic.

3.17. Proposition. (i) Let D ≡ SII. Then (doubling)

Dx =CL xx.

(ii) Let B ≡ S(KS)K. Then (composition)

Bfgx =CL f(gx).

(iii) Let L ≡ D(BDD). Then (self-doubling, life!)

L =CL LL.

Proof. (i) Dx ≡ SIIx
= Ix(Ix)
= xx.

(ii) Bfgx ≡ S(KS)Kfgx
= KSf(Kf)gx
= S(Kf)gx
= Kfx(gx)
= f(gx).

(iii) L ≡ D(BDD)
= BDD(BDD)
= D(D(BDD))
≡ DL

= LL.

We want to understand and preferably also to control this!
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Exercises

3.1. Rewrite to a shorter form KISS.

3.2. Rewrite SIDI.

3.3. Draw tree(L).

3.4. Given the terms I, xI, yS and xyK.
(i) Choose from these terms P, Q, R such that

P [x: = Q][y: = R] ≡ P [x: = R][y: = Q] 6≡ P.

(ii) Now choose other terms P, Q, R such that

P [x: = Q][y: = R] 6≡ P [x: = R][y: = Q].

3.5. Which of the terms in Example 3.7 have as trees respectively
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3.6. Construct a combinator F such that (F says: “You do it with S”)

Fx =CL xS.

3.7.+ Construct a combinator C such that (“You do it with the next two in
reverse order”)

Cxyz =CL xzy.

3.8.* Construct a combinator G such that (G says: “You do it with me”)

Gx =CL xG.

3.9.* Construct a combinator O (the “Ogre”: ‘I eat everything!’) such that

Ox =CL O.

3.10.* Construct a combinator P (the “Producer”) such that

P =CL P I.

+ More difficult.
∗ Needs theory from later sections.
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4. Lambda calculus

The intended meaning of an expression like

λx.3x

is the function
x 7−→ 3x

that assigns to x (that we think for this explanation to be a number) the value
3x (3 times x). So according to this intended meaning we have

(λx.3x)(6) = 18.

The parentheses around the 6 are usually not written: (λx.3x)6 = 18. But
this example requires that we have numbers and multiplication. The lambda
calculus, to be denoted by λ, does not require any pre-defined functions at all.
The system was introduced in Church [1932] and in an improved way in Church
[1936]. For a modern overview, see Barendregt [1984].

4.1. Definition. We define the following finite alphabet

Σλ = {x, ′, λ, ), (}

4.2. Definition. We introduce the following grammar over Σλ.

variable := x | variable′

Therefore we have the following collection of variables: x, x′, x′′, x′′′, . . . .

4.3. Definition. We now introduce the main language over Σλ consisting of
λ-terms (that we may call simply “terms” if there is little danger of confusion).

term := variable | (λvariable term) | (term term)

4.4. Notation. We use for λ the same convention for naming arbitrary vari-
ables and terms as for CL: x, y, z, . . . and M, N, L, . . . denote arbitrary variables
and terms respectively. M ≡ N means that M, N are literally the same lambda
term.

4.5. Notation. Again we use association to the left to save parentheses:

PQ1 . . . Qn ≡ (..((PQ1)Q2) . . . Qn).

Another saving of parentheses is by “associating to the right”:

λx1 . . . xn.M ≡ (λx1(λx2(..(λxn(M))..)))).

Outer parentheses are omitted (or added) for higher readability. For example

(λx.x)y ≡ ((λxx)y).
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4.6. Convention. Consider the term x.x. This will have the following effect

(λx.x)P = P.

But also one has
(λy.y)P = P.

It will be useful to identify λx.x and λy.y, writing

λx.x ≡ λy.y.

We say that these two terms are equal up to naming of bound variables. Note

x(λx.x) 6≡ y(λy.y),

as the first x is not a bound but a free occurrence of this variable. We will
take care to use different names for free and bound variables, hence will not use
x(λx.x) but rather x(λy.y).

4.7. Definition. We postulate for λ-terms

(λx.M)N = M [x: = N ] (β-rule)

Here we only substitute for the free (occurences of the) variable x. If we can
derive from this axiom that M = N , we write M =λ N (or simply M = N).

4.8. Proposition. Define I ≡ λp.p;
K ≡ λpq.p;
S ≡ λpqr.pr(qr).

Then IP =λ P ;
KPQ =λ P ;

SPQR =λ PR(QR).

Proof. IP ≡ (λp.p)P
=λ p[p: = P ]
≡ P ;

KPQ ≡ (λp(λq.p))PQ
=λ (λq.p)[p: = P ]Q
=λ (λq.P )Q
=λ P [q: = Q]
≡ P.

SPQR ≡ (λpqr.pr(qr))PQR
= (λqr.pr(qr))[p: = P ]QR
≡ (λqr.Pr(qr))QR
= (λr.Pr(qr))[q: = Q]R
≡ (λr.Pr(Qr))R
= (Pr(Qr))[r: = R]
≡ PR(QR).

4.9. Definition. Let M be a term, ~x = x1, . . . , xn a list of variables and ~N =
N1, . . . , Nn a coresponding list of terms. Then the result of simultaneously
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substituting ~N for ~x in M , notation M [~x: = ~N ], is defined as follows.

M M [~x: = ~N ]

xi Ni

y y, provided y is not one of the xi’s

PQ (P [~x: = ~N ])(Q[~x: = ~N ])

λy.P λy.(P [~x: = ~N ])

4.10. Proposition. (i) M [x: = x] ≡ M .
(ii) Suppose the variable y is not in ~N . Write P ∗ ≡ P [~x: = ~N ]. Then

(P [y := Q])∗ ≡ P ∗[y := Q∗].

(iii) M1 =λ M2 ⇒ M1[~x: = ~N ] =λ M2[~x: = ~N ].
(iv) (λ~x.M)~x =λ M .
(v) (λ~x.M) ~N =λ M [~x: = ~N ].

Proof. (i) Obvious. Or by induction

M M [x: = x]

x x[x: = x] ≡ x
y y[x: = x] ≡ y

PQ (P [x: = x])(Q[x: = x]) ≡ PQ

λx.P (λz.P )[x: = x] ≡ λz.(P [x: = x]) ≡ λz.P

(ii) By induction on P .

P P [y := Q] (P [y := Q])∗ P ∗[y := Q∗]

y Q Q∗ Q∗

xi xi[y := Q] ≡ xi x∗

i ≡ Ni Ni[y := Q] ≡ Ni

z z (6= y, xi) z z

P1P2 P1[y := Q](P2[y := Q]) (P1[y := Q])∗(P2[y := Q])∗ ≡ (P ∗

1 P ∗

2 )[y := Q∗]
(P ∗

1 [y := Q∗])(P ∗

2 [y := Q∗])

λz.P1 λz.(P1[y := Q]) λz.(P ∗

1 [y := Q∗]) (λz.P1)
∗[y := Q∗] ≡

(λz.P ∗

1 )[y := Q∗]
λz.(P ∗

1 [y := Q∗])

(iii) Given a proof of M1 =λ M2 we can perform in all equations the simul-
taneous substitution [~x: = ~N ]. For an axiom (the β-rule) we use (ii):

((λx.P )Q) ≡ (λx.P ∗)Q∗

= P ∗[y := Q∗]

≡ (P [y := Q])∗, by (ii).

(iv) We do this for ~x = x1, x2.

(λ~x.M)~x ≡ (λx1(λx2.M))x1x2

≡ (λx1x2.M)x1x2

≡ ((λx1(λx2.M))x1)x2

= (λx2.M)x2

= M.
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(v) By (iv) (λ~x.M)~x = M and hence (λ~x.M) ~N = M [x: = ~N ], by (iii).

4.11. Theorem (Fixedpoint theorem). Let F be a lambda term. Define X ≡
WW with W ≡ λx.F (xx). Then

FX = X.

Hence every term F has a fixed-point.

Proof. We have
X ≡ WW

≡ (λx.F (xx))W

= F (WW )

≡ FX.

4.12. Application. There exists a self-doubling lambda term D:

D = DD.

Proof. Let F ≡ λx.xx. Now apply the fixedpoint theorem: there exists a
term X suxh that FX = XX. Taking D ≡ X one has

D ≡ X

= FX

= XX

≡ DD.

4.13. Application. There exists an ‘ogre’ O, a lambda term monster that eats
everything (and does not even get any fatter):

OM = O,

for all terms M .

Proof. Define O to be the fixedpoint of K. Then O = KO, hence

OM = KOM

= O.

How do we do this systematically? We would like a solution for X in an
expression like

Xabc = bX(c(Xa)).

At the left hand side X is the ‘boss’. At the right hand side things that happen
depend on the arguments of X. We solve this as follows.

Xabc = bX(c(Xa)) ⇐ X = λabc.bX(c(Xa))

⇐ X = (λxabc.bx(c(xa)))X

⇐ X is fixedpoint of λxabc.bx(c(xa)).
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The consequence is that for this X one has for all A, B, C

XABC = BX(C(XA)).

In order to formulate a general theorem, we like to abbreviate an expression
like bX(c(Xa)) as C[a, b, c, X]. Such an expression C[. . .] is called a context.
An expression like C[y1, . . . , yn, x] will be abbreviated as C[~y, x].

4.14. Theorem. Given a context C[~y, x]. Then there exists a term X such that

X~y = C[~y, X].

Hence for all terms ~P = P1, . . . , Pn

X ~P = C[~P , X].

Proof. Define F ≡ λx~y.C[~y, x] and let FX = X. Then

X~y = FX~y

≡ (λx~y.C[~y, x])X~y, by definition of F ,

= C[~y, X].

4.15. Application. There exists a ‘slave’ term P such that for all its arguments
A

PA = AP.

Proof. Take C[a, p] = ap. Then

PA = C[A, P ] = AP.

4.16. Definition. (i) A lambda term of the form (λx.M)N is called a redex.
(ii) A lambda term without a redex as part is said to be in normal form

(nf).
(iii) A lambda term M has a nf if M =λ N and N is in nf.

It is the case that every lambda term has at most one nf. We omit the
details of the proof. See e.g. Barendregt [1984] for a proof.

4.17. Fact. Let M be a lambda term. Then M may or may not have a nf. If
it does have one, then that nf is unique.

SK has as nf λxy.y. The term Ω ≡ ωω with ω ≡ λx.xx does not have a nf.

4.18. Remark. In writing out one should restore brackets:

KΩ = K(ωω)

= K((λx.xx)(λx.xx))

= λy.Ω

The following is wrong: KΩ ≡ Kωω = ω (do not memorize!).
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Simulating lambda terms with combinators

4.19. Definition. Let P be a CL-term. Define the CL-term λ∗x.P as follows.

P λ∗x.P

x I

y Ky
c Kc

QR S(λ∗x.Q)(λ∗x.R)

4.20. Theorem. For all CL-terms P one has

(λ∗x.P )x =CL P.

Hence
(λ∗x.P )Q =CL P [x := Q].

Proof.
P λ∗x.P (λ∗x.P )x

x I Ix = x
y Ky Kyx = y

c Kc Kcx = c

QR S(λ∗x.Q)(λ∗x.R) S(λ∗x.Q)(λ∗x.R)x =
(λ∗x.Q)x((λ∗x.R)x) =
QR

The second result now follows from Porposition 3.15.

Now the attentive reader can solve exercises 3.7-3.10

4.21. Definition. (i) Now we can translate a lambda term M into a CL-term
MCL as follows.

M MCL

x x
PQ PCLQCL

λx.P λ∗x.PCL

(ii) A translation in the other direction, from a CL-term P to a lambda
term Pλ, is as follows.

P Pλ

x x
I I

K K

S S

PQ PCLQCL

This makes it possible to translate results from CL-terms to lambda terms and
vice versa. The self-reproducing CL-term L with L = LL can be found by first
constructing it in lambda calculus.
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Exercises

4.1. Write 〈~a〉 ≡ λz.z~a. For example, 〈a〉 ≡ λz.za, 〈a, b〉 ≡ λz.zab. Sim-
plify
(i) 〈a〉〈b〉;
(ii) 〈a〉〈b, c〉;
(iii) 〈a, b〉〈c〉;
(iv) 〈a, b〉〈c, d〉;
(v) 〈〈a, b, c〉〉〈f〉.

4.2. Simplify
(i) (λa.aa)(λb.(λcd.d)(bb));
(ii) (λabc.bca)cab.

4.3. Construct a λ-term A such that for all variables b one has

Ab = AbbA.

4.4. Find two λ-terms B such that for all variables a one has

Ba = BaaB.

[Hint. One can use 4.14 to find one solution. Finding other solutions is
more easy by a direct method.]

4.5. Define for two terms F, A and a natural number n the term FnA as
follows.

F 0A = A;

Fn+1A = F (FnA).

Now we can represent a natural number n as a lambda term cn, its so
called Church numeral.

cn ≡ λfa.fna.

Define

A+ ≡ λnmfa.nf(mfa);

A× ≡ λnmfa.n(mf)a;

Aexp ≡ λnmfa.nmfa.

Show that
(i) A+cncm = cn+m;
(ii) A×cncm = cn×m;
(iii) Aexpcncm = cmn .

Moral: one can do computations via lambda calculus.

4.6. Another well known and useful term is C ≡ λxyz.xzy. Express C in
terms of I, K and S, only using application of these terms.
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5. Self-reflection

We present the following fact with a proof depending on another fact.

5.1. Fact. Let x, y be to distinct variables (e.g. x, x′ or x′′, x′′′). Then

x 6=λ y.

Proof. Use Fact 4.17. If x =l y, then x has two normal forms: itself and y.

5.2. Application. K 6=λ I.

Proof. Suppose K = I. Then

x = Kxy

= I Kxy

= K Ixy

= Iy

= y,

a contradiction.

5.3. Application. There is no term P1 such that P1(xy) =λ x.

Proof. If P1 would exist, then as Kxy = x = Ix one has

Kx = P1((Kx)y) = P1(Ix) = I.

Therefore we obtain the contradiction

x = Kxy = Iy = y.

In a sense this is a pity. The agents, that lambda terms are, cannot separate
two of them that are together. When we go over to codes of lambda terms the
situation changes. The situation is similar for proteins that cannot always cut
into parts another protein, but are able to have this effect on the code of the
proteins, the DNA.

Data types

Before we enter the topic of coding of lambda terms, it is good to have a look
at some datatypes.

Context-free languages can be considered as algebraic data types. Consider
for example

S → 0
S → S+

This generates the language

Nat = {0, 0+, 0++, 0+++, . . .}
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that is a good way to represent the natural numbers

0, 1, 2, 3, . . .

Another example generates binary trees.

S → ♠
S → •SS

generating the language that we call Tree. It is not necessary to use parentheses.
For example the words

•♠ • ♠♠
• • ♠♠♠
• • ♠♠ • ♠♠

are in Tree. With parentrheses and commas these expressions become more
readable for humans, but these auxiliary signs are not necessary:

•(♠, •(♠,♠))
•(•(♠,♠),♠)
•(•(♠,♠), •(♠,♠))

These expressions have as ‘parse trees’ respectively the following:

•

{{
{{

{{
{{

AA
AA

AA
AA

♠ •

~~
~~

~~
~~

AA
AA

AA
AA

♠ ♠

•

}}
}}

}}
}}

EE
EE

EE
EE

•

~~
~~

~~
~~

@@
@@

@@
@@

♠

♠ ♠

•

wwwwwwwwwwww

EE
EE

EE
EE

EE
EE

•

��
��
��
��

33
33

33
33

•

��
��
��
��

33
33

33
33

♠ ♠ ♠ ♠
One way to represent as lambda terms such data types is as follows.

5.4. Definition. (Böhm and Berarducci)
(i) An element of Nat, like 0++ will be represented first like

s(sz)

and then like
λsz.s(sz).

If n is in Nat we write n for this lambda term. So 2 ≡ λsz.s(sz),
3 ≡ λsz.s(s(sz)). Note that n ≡ λsz.snz ≡ Cn.
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(ii) An element of Tree, like •♠ • ♠♠ will be represented first by

bs(bss)

and then by
λbs.bs(bss).

This lambda term is denoted by •♠ • ♠♠ , in this case. In general a tree t in
Tree will be represented as lambda term t .

Now it becomes possible to compute with trees. For example making the
mirror image is performed by the term

Fmirror ≡ λtbs.t(λpq.bqp)s.

The operation of enting one tree at the endpoints of another tree is performed
by

Fenting ≡ λt1t2bs.t1b(t2bs).

The attentive reader is advised to make exercises 5.4 and 5.5.

Tuples and projections

For the efficient coding of lambda terms as lambda terms a different represen-
tation of datatypes is needed. First we find a way to connect terms together in
such a way, that the components can be retrieved easily.

5.5. Definition. Let ~M ≡ M1, . . . , Mn be a sequence of lambda terms. Define

〈M1, . . . , Mn〉 ≡ λz.zM1, . . . , Mn.

Here the variable z should not be in any of the M ’s. Define

Un
i ≡ λx1, . . . , xn.xi.

5.6. Proposition. For all natural numbers i, n with 1 ≤ i ≤ n, one has

〈M1, . . . , Mn〉Un
i = Mi.

5.7. Corollary. Define Pn
i ≡ λz.zUn

i . Then Pn
i 〈M1, . . . , Mn〉 = Mi.

Now we introduce a new kind of binary trees. At the endpoints there is not a
symbol ♠ but a variable x made into a leaf Lx. Moreover, any such tree may
get ornamented with a !. Such binary trees we call labelled trees or simply
ltrees.

5.8. Definition. The data type of ltrees is defined by the following context-free
grammar. The start symbol is ltree.

ltree → L var

ltree → P ltree ltree

ltree → ! ltree
var → x
var → var′
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A typical ltree is !P !Lx!!P !LxLy or more readably !P (!Lx, !!P (!Lx, Ly)). It can
be representated as a tree as follows.

!P

yy
yy

yy
yy

EE
EE

EE
EE

!Lx !!P

zz
zz

zz
zz

CC
CC

CC
CC

!Lx Ly

We say that for ltree there are three constructors. A binary constructor P that
puts two trees together, and two unary constructors L and !. L makes from a
variable an ltree and ! makes from an ltree another one.

Now we are going to represent these expressions as lambda terms.

5.9. Definition. (Böhm, Piperno and Guerrini)
(i) We define three lambda terms FL, FP , F! to be used for the representation
of ltree.

FL ≡ λxe.eU3
1 xe;

FP ≡ λxye.eU3
2 xye;

F! ≡ λxe.eU3
3 xe.

These definitions are a bit more easy to understand if written according to their
intended use (do exercise 5.7).

FLx = λe.eU3
1 xe;

FP xy = λe.eU3
2 xye;

F!x = λe.eU3
3 xe.

(ii) For an element t of ltree we define the representing lambda term t .

Lx = FLx;

Pt1t2 = FP t1 t2 ;

!t = F! t .

Actually this is just a mnemonic. We want that the representations are normal
forms, do not compute any longer.

Lx ≡ λe.eU3
1 xe;

Pt1t2 ≡ λe.eU3
2 t1 t2 e;

!t ≡ λe.eU3
3 t e.

The representation of the data was chosen in such a way that computable
function on them can be easily represented. The following result states that
there exist functions on the represented labelled trees such that their action on
a composed tree depend on the components and that function in a given way.
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5.10. Proposition. Let A1, A2, A3 be given lambda terms. Then there exists a
lambda term H such that11.

H(FLx) = A1xH

H(FP xy) = A2xyH

H(F!x) = A3xH

Proof. We try H ≡ 〈〈B1, B2, B3〉〉 where the ~B are to be determined.

H(FLx) = 〈〈B1, B2, B3〉〉(FLx)

= FLx〈B1, B2, B3〉
= 〈B1, B2, B3〉U3

1 x〈B1, B2, B3〉
= U3

1 B1, B2, B3x〈B1, B2, B3〉
= B1x〈B1, B2, B3〉
= A1xH,

provided that B1 ≡ λxb.A1x〈b〉. Similarly

H(FP xy) = B2xy〈B1, B2, B3〉
= A2xyH,

provided that B2 ≡ λxyb.A2xy〈b〉. Finally,

H(F!x) = B3x〈B1, B2, B3〉
= A3xH,

provided that B3 ≡ λxb.A3x〈b〉.

Stil we have as goal to represent lambda terms as lambda terms in nf, such
that decoding is possible by a fixed lambda term. Moreover, finding the code of
the components of a term M should be possible from the code of M , again using
a lambda term. To this end the (represented) constructors of ltree, FL, FP , F!,
will be used.

5.11. Definition. (Mogensen) Define for a lambda term M its code M as
follows.

x ≡ λe.eU3
1 xe = FLx;

MN ≡ λe.eU3
2 M N e = FP M N ;

λx.M ≡ λe.eU3
3 (λx. M )e = F!(λx. M ).

11A weaker requirement is the following, where H of a composed ltree depends on H of the
components in a given way:

H(FLx) = A1x(Hx)

H(FP xy) = A2xy(Hx)(Hy)

H(F!x) = A3x(Hx)

This is called primitive recursion, whereas the proposition provides (general) recursion.
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The trick here is to code the lambda with lambda itself, one may speak of
an inner model of the lambda calculus in itself. Putting the ideas of Mogensen
[1992] and Böhm et al. [1994] together, as done by Berarducci and Böhm [1993],
one obtains a very smooth way to create the mechanism of reflection the lambda
calculus. The result was already proved in Kleene [1936]12.

5.12. Theorem. There is a lambda term E (evaluator or self-interpreter) such
that

E x = x;

E MN = E M (E N );

E λx.M = λx.(E M ).

It follows that for all lambda terms M one has

E M = M.

Proof. By Proposition 5.10 for arbitary A1, . . . , A3 there exists an E such that

E(FLx) = A1xE;

E(FP mn) = A2mnE;

E(F!p) = A3pE.

If we take A1 ≡ K, A2 ≡ λabc.ca(cb) and A3 ≡ λabc.b(ac), then this becomes

E(FLx) = x;

E(FP mn) = Em(En);

E(F!p) = λx.(E(px)).

But then (do exercise 5.9)

E( x ) = x;

E( MN ) = E M (E N );

E( λx.M ) = λx.(E( M )).

That E is a self-interpreter, i.e. E M = M , now follows by induction on M .

5.13. Corollary. The term 〈〈K, S, C〉〉 is a self-interpreter for the lambda cal-
culus with the coding defined in Definition 5.11.

Proof. E ≡ 〈〈B1, B2, B3〉〉 with the ~B coming from the A1 ≡ K, A2 ≡
λabc.ca(cb) and A3 ≡ λabc.b(ac). Looking at the proof of 5.10 one sees

B1 = λxz.A1x〈z〉
= λxz.x

= K;

12But only valid for lambda terms M without free variables.
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B2 = λxyz.A2xy〈z〉
= λxyz.〈z〉x(〈z〉y)

= λxyz.xz(yz)

= S;

B3 = λxz.A3x〈z〉
= λxz.(λabc.b(ac))x〈z〉
= λxz.(λc.xcz)

≡ λxzc.xcz

≡ λxyz.xzy

≡ C, see exercise 4.6.

Hence E = 〈〈K, S, C〉〉.

This term
E = 〈〈K, S, C〉〉

is truly a tribute to

Kleene, Stephen Cole

(1909-1994)

(using the family-name-first convention familiar from scholastic institutions)
who invented in 1936 the first self-interpreter for the lambda calculus13.

The idea of a language that can talk about itself has been heavily used with
higher programming languages. The way to translate (‘compile’) these into ma-
chine languages is optimized by writing the compiler in the language itself (and
run it the first time by an older ad hoc compiler). This possibility of efficiently
executed higher programming languages was first put into doubt, but was re-
alized by mentioned reflection since the early 1950-s and other optimalizations.
The box of Pandora of the world of IT was opened.

The fact that such extremely simple (compared to a protein like titin with
slightly less than 27000 aminoacids) self interpreter is possible gives hope to
understand the full mechanism of cell biology and evolution. In Buss and
Fontana [1994] evolution is modelled using lambda terms.

Exercises

5.1. Show that

K 6=λ S;

I 6=λ S.
.

13Kleene’s construction was much more involved. In order to deal with the ‘binding effect’
of λx lambda terms where first translated into CLbefore the final code was obtained. This
causes some technicalities that make the original E more complex.
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5.2. Show that there is no term P2 such that P2(xy) =λ y.

5.3. Construct all elements of Tree with exactly four ♠s in them.

5.4. Show that

Fmirror •♠ • ♠♠ = • • ♠♠♠ ;

Fmirror • • ♠♠♠ = •♠ • ♠♠ ;

Fmirror • • ♠♠ • ♠♠ = • • ♠♠ • ♠♠ .

5.5. Compute Fenting •♠ • ♠♠ • • ♠♠♠ .

5.6. Define terms Pn
i such that for 1 ≤ i ≤ n one has

Pn
i 〈M1, . . . , Mn〉 = Mi.

5.7. Show that the second set of three equations in definition 5.9 follows from
the first set.

5.8. Show that given terms A1, A2, A3 there exists a term H such that the
scheme of primitive recurion, see footnote 5.10 is valid.

5.9. Show the last three equations in the proof of Theorem 5.12.

5.10. Construct lambda terms P1 and P2 such that for all terms M, N

P1 MN = M & P2 MN = N.
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Schönfinkel, M. [1924]. Über die Bausteine der mathematischen Logik, Mathe-
matische Annalen 92, pp. 305–316.
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