
Introduction to Complexity

Week 5

The Quest for Intelligence

Alexandra Silva & Henk Barendregt

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Living and computing 1
——————————————————————————————————–

Although animals are not computers

for the simplest actions (like catching a fly) computations are needed

Nature has evolved a chemo-electrical computational model

Neural Net Synapse

These are not programmed using intention, but by trial and error

They run in parallel, and can be remarkably efficient

They need to be trained (by evolution via genes, taking a long time)

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Artificial Neural Nets 2
——————————————————————————————————–

These from an approximation (an abstraction) of the NN in the brain

Netwerks are taught e.g. supervised or trial-and-error to fulfill a certain task

Equivalent to ordinary computability, but with different efficiency

Metaphor of the plastic tablecloth

This is a different computational model

Our complexity does not refer to this

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Homo Sapiens and computing 3
——————————————————————————————————–

A faster way is to compute using rules (mental programs, memes)

Many numerical problems can be answered by computing

“What is the area of a circle with radius 4m?”

Answer: 42πm2 = 50.2654824m2

Also many qualitative problems may be answered by computing

“Are points A = (x1, y1), B = (x2, y2) and C = (x3, y3) in R
2 collinear

i.e. do they lie on a straight line?”

Answer: if and only if (x1 − x3)(y2 − y3) = (x2 − x3)(y1 − y3)

Also for daily life actions or in the performing arts and sports one needs computations

Musicians can train themselves to be accurate to less than 100ms

This type of learning comes from mental programs using neural nets

Bartok: Sonata, Ivry Gitlis violin

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Leibniz’s Ideal 4
——————————————————————————————————–

Leibniz (1646-1716) conjectured:

Properly stated problems can be answered by computing (calculemus!)

He wanted to construct:

a universal language L for stating problems precisely

a machine M answering all these problems by computing

The first question Leibniz wanted to ask to such a machine is said to be

“Does God exist?”

Quite daring around 1700 to ask this question to a machine!

Science Fiction by Fredric Brown (1908-1972): Answer [1954]

Yes, now there is a God.

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Leibniz’s Ideal 5
——————————————————————————————————–

Restricted to mathematical problems, there is such a universal language L

Restricted to numerical problems there is such a machine M

A computer with a software package like Mathematica or Maple

However, Turing [1936]:

For qualitative mathematical problems M is impossible

E.g. “Are there twin primes (differing by 2 like {11, 13}) greater than googolplex 1010
100

?”

is an example of such a qualitative problem

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Approximation of Leibniz’s ideal 6
——————————————————————————————————–

Turing [1936]: For qualitative mathematical problems M is impossible

Turing’s negative answer about the qualitative problems

made possible the positive answer for the numerical problems

There is also a positive answer for a subclass of the qualitative problems

(symbolic computing, e.g. “Are points A,B,C collinear?”)

So we have

numerical, symbolic, and qualitative mathematical problems

the latter involving quantifiers “for all” (∀), “there exists” (∃)

These have to do with mathematical infinity

Still we can answer some problems about infinity, by proving

Euclid: There are infinitely many primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .

Hilbert believed that eventually everything can be known (by proving or computing)

“Instead of the sad ‘We don’t know’, my attitude is: ‘We have to know, we will know’!”

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Gödel and Turing 7
——————————————————————————————————–

Let PA ⊢ . . . denote provability in arithmetic as axiomatized by Peano

We suppose that PA is consistent. We are interested in the set

TPA = {P | PA ⊢ P}

One year after Hilbert’s statement Gödel proved in [1931]

Theorem (Incompleteness of Arithmetic)

There is a statement G such that neither G∈TPA nor ¬G∈TPA

Turing proved in [1937]

Theorem (Undecidability of Arithmetic)

There is no algorithm deciding whether for a P∈LPA one has P∈TPA

Proposition. Undecidability implies incompleteness

Proof. Suppose PA is complete: always either P∈TPA or ¬P∈TPA.

Then for P we can decide: just try to prove P or try to refute P

This is an enumerable process. By completeness we can wait until one succeeds.

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Turing’s results 8
——————————————————————————————————–

How did Turing prove his negative result?

How could it have so much positive spin off?

Turing did the following

• ! Gave a well-motivated analysis of computability via Turing Machines (TM)

an idealized class of machines (with infinite memory)

• !! Constructed a universal Turing Machine UTM that can simulate any TM

via software (programs)

• ! Formulated the halting problem (HP) that cannot be decided by any TM

argument like liar paradox

• ! Concluded qualitative mathematical problems cannot be decided by any TM

as the HP is one of them

Therefore Leibniz’s ideal cannot be fulfilled for mathematical problems
only be approximated, leave alone for philosophical problems

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Turing Machine model by Mike Davey 9
——————————————————————————————————–

YouTube

www.youtube.com/watch?v=E3keLeMwfHY

www.youtube.com/watch?v=E3keLeMwfHY

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Step 1. The Turing Machine: phase 1 10
——————————————————————————————————–

Based on introspection: computing is done in discrete steps

A computational process goes from input to output (action)

Let M be a TM. It has

a finite set I of input

a finite set A of actions

The machine M transforms an input (i in I) into an action (a in A)

i
M

// a

As the same input may give rise at different times to different actions

Turing introduced a set S of states indicating how to react to an input

(i, s)
M

// (a, s′)

The machine, given input and state, may choose action and (a new) state

M is given as a finite table of transitions (i, s; a, s′)

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Step 1: Turing machine phase 2 11
——————————————————————————————————–

M and has a two-sided infinite memory tape

with cells containing nothing (a blank) or a symbol i∈I

and also has a Read/Write device (‘head’) placed on one of the cells

An (instantaneous) configuration (at a given moment)

is the information on the tape & the position of the head

b e

↑

c

⇑

b

↑

c b

⇑ position of read/write head Actions
↑ potential next position of head L ⇑ goes left
red letter present focus R ⇑ goes right
pink letters possible next focus W(c’) overwrite c by c’
yellow letters potential focus

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Step 2: The Universal Turing Machine UM 12
——————————————————————————————————–

Two ad hoc machines M1,M2

UM simulating M1,M2

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Step 3: The Halting Problem cannot be computable (liar paradox argument) 13
——————————————————————————————————–

Write M(n)↓ (resp. (M(n)↑) if machine M with input n does (doesn’t) halt

Theorem. The problem UM(p, n)↓ is non-computable (undecidable)

Proof. Suppose UM(p, n)↓ is computable: then there is a machine H such that

UM(p, n)↓ ⇐⇒ H(p, n) = 1

UM(p, n)↑ ⇐⇒ H(p, n) = 0

Modify H into H ′ making H ′(p, n) run forever if H(p, n) = 1. Then

UM(p, n)↓ ⇐⇒ H ′(p, n)↑

UM(p, n)↑ ⇐⇒ H ′(p, n)↓

Now define D(n) = H ′(n, n). It has a program pD as UM is universal:

D(n) = UM(pD, n) for all n

We get a contradiction

D(pD)↓ ⇐⇒ UM(pD, pD)↓ ⇐⇒ H ′(pD, pD)↑ ⇐⇒ D(pD)↑

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Step 4: the Halting Problem is a qualitative mathematics 14
——————————————————————————————————–

UM(p, n)↓ ⇐⇒ there exists a number k such that after k cycles UM(p, n) halts

The ‘quantifiers’

exits (∃)

for all (∀)

ranging over the infinite set N usually cause undecidability

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Impatient Halting Problem 15
——————————————————————————————————–

Theorem. Let f : N →N be computable. Define

Hf (n) = UM(n, n) + 1 if UM(n, n) stops in ≤ f(n) steps;

= 0 otherwise.

Then Hf is computable. For each program p of Hf one has Tp(p) > f(p)

Proof. Let p be an algorithm for Hf . Then for all n∈N

Hf (n) = UM(p, n)

If UM(p, p) stops in ≤ f(p) steps, then UM(p, p) = Hf (p) = UM(p, p) + 1

Therefore Hf (p) = UM(p, p) = 0 takes more than f(p) steps.

This function Hf is such that for every program p the cost of computing Hf

via this program at p is more than f(p). We can do better

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

A function without a simple algorithm (Bas Westerbaan) 16
——————————————————————————————————–

Thm. Let f be a computable function. There exists a function G = Gf such that

for all algorithms p for G one has Tp(n) > f(n) for all n ≥ p

Notation. (i) Sequences of numbers like a0, a1, . . . , an can be coded as

〈a1, . . . , an〉 = 2a0+1 · · · pan+1
n , where pn is the n-th prime

and we can find computably the components

〈a1, . . . , an〉k = ak for 1 ≤ k ≤ n

(ii) UM(p, n, s) = UM(p, n), if it stops in ≤ s steps

= 0 otherwise

Proof. Define G(n) = 〈UM(0, n, f(n))0 + 1, . . . ,UM(n, n, f(n))n + 1〉

Let p be a program of G: for all n one has UM(p, n) = G(n). Then for n ≥ p

UM(p, n)p = G(n)p = UM(p, n, f(n))p + 1 = UM(p, n)p + 1

if Tp(n) ≤ f(n), impossible; so Tp(n) > f(n)

It is easy to improve this so that TG∈Ω(f)

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Some theories are decidable 17
——————————————————————————————————–

We will consider only (classical) propositional logic

Suppose the following is given

(i) If it is autumn or it is misty, then the trees get leaves

(ii) If the trees get leaves, then it rains and there is no sun

(iii) There is sun

(iv) If it is not autumn, then it is hot

Conclude: It is hot and it is not misty

The truth is independent of the meaning of the words

The words are chosen a bit counter-intuitive

Proof. Let us first introduce abstract names (to avoid confusion)

(i) A ∨M → TL

(ii) TL → R & ¬S
(iii) S

(iv) ¬A → H

We must show H & ¬M

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Example 18
——————————————————————————————————–
From

(i) A ∨M → TL

(ii) TL → R & ¬S
(iii) S

(iv) ¬A → H

conclude

H & ¬M

S
5

¬(R & ¬S)
(ii), 1

¬TL
(i), 1

¬(A ∨M)
2, 3a

¬A
(iv)

H

S
5

¬(R & ¬S)
(ii), 1

¬TL
(i), 1

¬(A ∨M)
2, 3b

¬M
6

H & ¬M

Steps used

A→B
1

¬B→¬A

¬(A ∨B)
2

¬A & ¬B

A & B
3a

A

A & B
3b

B

A
4

¬¬A

and since (A & ¬B)→¬B, one has ¬¬B→¬(A & ¬B), by 1, so

B
5

¬(A & ¬B)
Also we have

A B
6

A & B

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Truth tables 19
——————————————————————————————————–

Propositions (abstract grammar)

var ::= p | var′

prop ::= var | prop & prop | prop ∨ prop | prop → prop | ¬prop

The variables are p, p′, p′′, . . . but we write x, y, z, . . .

For propositions we use P,Q,R, . . .

A valuation is a map v : var→{0, 1}

Such a v can be extended to v : : prop→{0, 1}

v(x) = v(x)

v(¬P) = 1− v(P)

v(P & Q) = v(P).v(Q)

v(P ∨Q) = max{v(P), v(Q)}

v(P→Q) = max{1− v(P), v(Q)}

A proposition P is valid iff v(P) = 1 for all v

E.g. p ∨ ¬p is valid and p ∨ q is not valid

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

More on propositional logic 20
——————————————————————————————————–

A proposition P is satisfiable if for some v one has v(P) = 1

E.g. p ∨ q is satisfiable, but p & ¬p not

Definition Let Γ = {P1, . . . , Pn}. We say Γ entails (implies) Q, notation

Γ |= Q

if for all v such that v(P1) = . . . = v(Pn) = 1 one has v(Q) = 1

The following is not difficult to show

Proposition. {P1, . . . , Pn} |= Q ⇐⇒ (P1 & . . . & Pn)→Q is valid

So validity is an interesting notion

Proposition. ¬P is valid iff P is not satisfiable

(ii) P is valid iff ¬P is not satisfiable

So satisfiability is an interesting notion

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Example 21
——————————————————————————————————–

Let us check that ¬(P→Q)→P is valid

P Q P→Q ¬(P→Q) ¬(P→Q)→P

0 0 1 0 1

0 1 1 0 1

1 0 0 1 1

1 1 1 0 1

In particular ¬(P→Q) |= P

——————————————————————————————————–
Alexandra & Henk Complexity Winter 2012

Expense of validity and satisfiability 22
——————————————————————————————————–

Proposition. There are algorithms in O(2n) to test validity and satisfiability

Proof. Try all the 2n many v, where n is the number of atoms in a prop.

Open problem. (Worth one million dollar)

Can we do better?

It may be the case that satisfiability is polynimial:

we need only one v and checking that it works is polynomial

This is the famous P=NP problem

NP means non-deterministic polynomial (I’d prfer to call it ‘Parallel Polynomial’)

