The Impact of the Lambda Calculus

Henk Barendregt

Radboud University
Nijmegen, The Netherlands

Mathematics: computing, deduction, modelling

1/24

Mathematical activity (stylised): modelling, computing, deduction

Computing Deduction
(algorithms) (proofs)

Modelling

(structures)

HB Computability Theory

Fall 2014

Ancient Babylonean mathematics: computing

2/24

Solving equations (modern notation) by computing
Egyptian ar+b=20
Babylonian az? +bx +c=0

This belongs to arithmetic

Also geometry was computational: computing areas

Using Pythagoras’ theorem to construct right angles

One already knows some structures:

numbers: learned at age 1-3

geometry: we live in a locally Euclidean space
our brains are embedded in it
(Kant's a priori)

HB Computability Theory

Fall 2014

Ancient Greek mathematics: deduction 3/24

‘There are infinitely many primes’ Vndp>n.p is prime

Less emphasis on computing

Euclid could prove:
(z+y)* =2 + 22y +y°

but not
(z 4+ y)* = 2* + 423y + 62%y* + day® + y*

And the Babylonians didn't have deductions

Thesis: Deduction
Antithesis: Computing

Synthesis: Archimede, al-Khowarizmi combined proving and computing

THEOREM (7)) 3.14 <7 < 3.15

(ii) 8976 x 968 = 8688768

(231) n'x, ' m'='nxm

HB Computability Theory Fall 2014

Classical mathematics 4/24

Thesis: Newton’s Principia is based on geometry (deduction)
‘It stiffled British mathematics for two centuries’
Antithesis: Euler, using Leibniz's version of analysis
made many computational contributions
Synthesis: Newton partially combined computing and deduction (r in > 30 decimals)
Augustin-Louis Cauchy (1789-1857)
made precise ‘dealing with arbitrarily small quantities’

providing an interface between computing and proving

Then mathematics bloomed as never before, leading to applications like
Maxwell's Equations, Relativity Theory and Quantum Physics

Robert Musil (In: Der Mann ohne Eigenschaften) about mathematics:

Die Genauigkeit, Kraft und Sicherheit dieses Denkens,
die nirgends im Leben ihresgleichen hat, erfiillte ihn fast mit Schwermut
The precision, force and certainty of this thinking,

unequaled in life, almost filled him with melancholy
HB Computability Theory Fall 2014

Modelling: Mathematical Structures 5/24

Also in the 19-th century the need of structures came up

Solving (using root-expressions)

ax® + bx* + cx + d = 0 (del Ferro, Tartaglia)

axt + ba3 + cx® + dx + e = 0 (Descartes)

Polynomials of degree 5 could not be solved similarly (Abel)

Galois made it clear when solutions of polynomials can be expressed as roots
using group theory

Non-Euclidean geometry was invented

The wealth of mathematical structures started

to be studied with help of deduction and computation

Concepts (structures like groups) became multi-interpretable

HB Computability Theory Fall 2014

Foundations: charting deduction, modelling, computing 6/24

Systems for
deduction Aristotle, Leibniz, Boole, Peirce, Frege [1879] (predicate logic)
modelling Cantor, Zermelo-Fraenkel [1922] (set theory)
Whitehead-Russell, de Bruijn, Girard, Coquand-Huet (type theory)
Eilenberg-MacLane, ..., (category theory)
computing Thue, Hilbert, Skolem, Herbrand, Kleene,
Church, Turing [1936] (computability)

HB Computability Theory Fall 2014

Alonzo Church 7/24

Supervisor Oswald Veblen

Suggested topic find an algorithm for the genus
of a manifold {Ze K" | p(¥) = 0}
(e.g. K =R, n=23)

O P@

Church (1903-1995) Church could not do it
Studying mathematics at Started to wonder what computability is after all
Princeton 1922 or 1924 Invented lambda calculus

Formulated Church’s Thesis:
Given a function f: N¥—=N
Then f is computable iff f is lambda definable

HB Computability Theory Fall 2014

First [1932] version of A-calculus 8/24

Church tried to use ‘functions’ to capture both computing and deduction
Lambda calculus terms (A-terms)
term ::= var | term term | Avar term

var ::= x | var’

Lambda calculus axiom (computational)

(Az.M)N =z Ml[z:= N]

For example (A\z.2? + 1)3 = 3% + 1(= 10).

Lambda calculus axiom (deductional); I' is a set of terms, O is a new constant

I'-(A>B) T'HA T,AFB

'+ B '+ (ADB)
fMer 1HA A=DB
L= I'+ B

HB Computability Theory Fall 2014

Fixed point theorem 9/24

Proposition. There exist D, B such that

Dx = xx take D = \zv.xx = Az (xx)

Bfgr = f(gr) take B = Afgz.f(gx) = Af(Ag(Az(f(g2))))

Fixed point theorem. For every F' there exists an X such that F'X = X
Proof. Take W = (BFD) and X = DW. Then

X=DW=WW=BFDW =F(DW)=FX®

HB Computability Theory Fall 2014

Inconsistency 10/24

Kleene and Rosser showed the system was inconsistent

Curry simplified the proof

Proposition. Any term is provable.

Proof. (Curry's paradox) Given A, let X = (XDA), by the fixed point theorem. Now
XFHFX XFX

XFXDA XEFX

XEFA

- XDA

=X
- A]

HB Computability Theory Fall 2014

Consistent part

11/24

Proposition. Without the deductive part the system is consistent

Lambda terms can express:

e Computations)
- on numbers

functional programmin
- on data types Prog 5

languages like ML, Haskell, Clean
e Infinite processes

/

Reason for its power:
‘meaning/notational-complexity’ arbitrarily high,

with an easy error-correcting interface (typed application)

HB Computability Theory

Fall 2014

Numerals and computations 12/24

Church’'s numerals

0 = MNuoux = (Af(Axx))
1 = Mfa.fo = (Af(Az(fz)))
2 = AMaf(fz) =AfQx(f(f2))))
n =)\f:z:.f(”)(.r.)“
There are terms A, A, satisfying
AL 'n''m' =5 ‘n+m
Ax'n''m' =5 n-m
Take
AL & dnmAfr.anf(mfz) then A.nm = Mfznf(mfz)
Ay = dnmAfr.m(Ay.nfy)z Aynm = Afem(Aynfy)z
Then

AL 'n 'm! =X fe. ' n' f('m'fo) = fa. fT(f2) = fr.f"T"r = Crpm

HB Computability Theory Fall 2014

Lambda definability 13/24

A function f: N* — N is \-definable

if there exists a lambda term I such that for all ieN¥*
Fey, ---cp, = Cf(7)

The function p~ predecessor is defined by p~(0) =0, p~(n+1) =

and is A\-defined via
P~ £ (An.nTcy, colsnd),

where
[M,N] = MXz.zMN
fst = ab.a (M, N]fst=M
snd = Aab.b (M, N|snd =N
T = Mp[ST(fst),pfst] Tlen, em] = [Cnt1;cnl
T"[co, col = [Cn, cp_(n)]

Aabe.b(abe) Ste, =cpa

>

S—I—

HB Computability Theory Fall 2014

Data types 14 /24

O\
rlw/ \FQT

A function that mirrors trees is represented as mirror t = A\bl.t(Axy.byx)l:

A tree like becomes AL (1'3)(b(1'1)(1'2Y)

mirror(AbL.b (I'3) (B (I (12) = Abb(b(127) (I'1) (I'3)

A higher order function ‘map’ distributing an f over leafs of the tree

map t = Abl.tb(l o f), where (l o f) x=1[(fx). Then
map(square)(Ab.b(b(1'2)(1'1))(I'3"))=Xb.b(b(1I'4")(1'1))(1'9"),

where square = \z. A xx

HB Computability Theory Fall 2014

Processes 15/24

computations ~» termination
processes ~» continuation

Simplest continuation

Let A = A\x.xx. Then

AA = (Az.xz)A
= AA
This can be done in more interesting ways
Given C(, f)=...2... f..., there is a term [such that (general recursion)
Fr=C(Z, F)

Take F'= AA, with
A=\fZ.C(Z, 1)

then
AA=)\2.C(Z,AA)

SO
F#=C(Z, F)

HB Computability Theory Fall 2014

Types for lambda terms (Curry [1934], Church [1940]) 16/24

Let A be a set of symbols. Types over A, notation T = T,

T = A|T—->T

Type assignment

(axiom) T'Fax: A, if (z:A)el

'-M:(A—-B) TEN:A I'o:AFM: B
(—E) (=)
I'-(MN):B ' (\x.M): (A— B)
Examples
I (A—A)
FK : (A—-B—A) for all A, B,CeT
S : (A—-B—(C)—(A—B)—(A—=C)

Theorem. H M : A = MEeESN (typable terms are strongly normalizing)
Theorem. Type checking is decidable; type reconstruction is computable

Theorem. WM : A& M — N = F N : A (type checking only at compile time)

HB Computability Theory Fall 2014

Curry: combinators, correspondence with logic 17/24

| £ Jzx . A—A
K 2 Jzyz . A—-B—A
S & Jayzaz(yz) : (A—-B—=C)—=(A—B)—A-=C

From these all closed lambda terms can be defined applicatively

Also with types

Curry: “Hey, these are tautologies” — Curry-Howard correspondence

HB Computability Theory Fall 2014

Genzten's Natural Deduction

18/24

Introduction Rules

Elimination Rules

'e:A+- M : B

' (Az:A.M) : (A—B)

''kp:A T'qg: B

I'-(p,q): (A& B)

'Fp: A I'-p: B

I'-F:(A—»B) T'FpA

'+ (Fp): B
'2z: (A& B) T'kz: (A& B)
'-21: A I'-2.2:B

'Fp:(AvB) T'he : AFq:C T'yy:BFr:C

'+ (inyip):(AVB) I'k (ingp): (AV B)

I' = ([Ax:A.q, \y:B.r|p) : C

Absurdum Rule

Classical Negation

I'Ep: L

' (absa p): A

T, —AF L
here ~A:=(A—_1)

r-A

Intuitionistic/Classical Propositional Logic Natural Deduction Style

Red proofs as A\-terms
For example

- Ary.xyy - (A—-A—B)—(A—B)

HB Computability Theory

Fall 2014

The Curry-Howard-de Bruijn correspondence 19/24

PROPOSITION (Curry-Howard-de Bruijn)
AM by =M : A <— |_MLA7
where 1, denotes probability in minimal propositional logic

The A\-term M is seen as formalized proof

Can be extended to systems (\-cube) capturing most mathematics

Proof-checking becomes type-checking (Coq)

HB Computability Theory Fall 2014

Curry: linguistics 20/24

Inspired by Ajdukiewicz (and indirectly by Le$niewski)

Curry gave types to syntactic categories

n noun/subject s sentence

n—n ‘red hat' (adjective) (n—s)—(n—s) adverbs
(n—n)—n ‘redness’ (n—s)—s quantifiers
n—(n—n) ‘(John and Henry) are brothers’

n—s ‘Mary sleeps’

n—n—s ‘Mary kisses John'

S—s ‘not(Mary kisses John)’

More complex cases

(n—n)—(n—n)—(n—n) ‘slightly large’
((n—n)—(n—n))—(n—n)—(n—n) ‘slightly too large’

Do not know whether Montague had seen this

HB Computability Theory Fall 2014

20'" and 215 century mathematics

21/24

1900-2000
The computing and deduction traditions again diverged:

Computer Algebra systems versus Proof Checking systems

2000-2100

Certified Mathematics/Computer Science, will unify the two

Interface computation—deduction: two styles

I'p: At) t 'Ep:Alt) THC:t=s
Y = S

I'Fp: A(s) L' f(p,C) : A(s)

Poincaré Principle (Coq) Ephemeral proof-objects (HOL)

2+ 2 = 4 doesn’t need a proof looong proofs are checked but not stored

HB Computability Theory

Fall 2014

The triangle collapses

22/24

Computing Proving Modeling
A—term A—term type
I'-M : A

- AM : IIT'A

HB

Computability Theory

Fall 2014

Case Studies 23/24

Certifications

Fundamental Theorem of Algebra Geuvers, Wiedijk, Zwanenburg,

Pollack and Niqui Coq
Fundamental Theorem of Calculus Cruz-Filipe Coq
Correctness Buchberger's algorithm Person, Théry Coq
Primality of Oostdijk, Caprotti Coq
9026258083384996860449366072142307801963
Correctness of Fast Fourier Transform Capretta Coq
Book “Continuous lattices” (in part) Bancerek et al. Mizar
Impossibility of trisecting angles Harrison HOL-light
> ey T = %2 Harrison HOL-light
Prime Number Theorem Avigad, Harrison Isabelle-HOL
Four Colour Theorem Gonthier Coq
Jordan Curve Theorem Hales HOL
Primality of >100 digit numbers Grégoire, Théry, Werner Coq
ABMSP conservative over A\(3n Stoevring Twelve
Proof of the Kepler conjecture Hales [2014] HOL-light
ARMG6 processor Fox [2003] HOL
seL4 Operating system Klein et al [2009]
C-compiler Leroy et al [2009] Coq

HB Computability Theory Fall 2014

Book: Lambda Calculi with Types 24 /24

Cambridge University Press, June 2013
Summary in < 20 words of 698 pages

This handbook with exercises reveals in formalisms
hitherto mainly used for designing and verifying software and hardware

unexpected mathematical beauty

HB Computability Theory Fall 2014

Exercises

1. Let g, h be A-definable functions Define

f(O,f) — g(a_f)
fin+1,%2) = h(n,Z, f(n,7))

Show that f is A-definable. [Hint. First find a term P such that
Pcpci = [Coin,m)» Cnl.]

2. Let g be A-definable, such that Vmidn.g(n,m) = 0. Define
f(m) = pz.g(x,m) = 0.

Show that f is A-definable. [Hint. Use the fixed point theorem.]
3. Sketch a proof that all A-definable functions are computable.

4. Conclude that the computable and A-definable functions form the same class.

HB Computability Theory Fall 2014

