
The Impact of the Lambda Calculus

Henk Barendregt

Radboud University
Nijmegen, The Netherlands

——————————————————————————————————–
HB Computability Theory Fall 2014

Mathematics: computing, deduction, modelling 1/24
——————————————————————————————————–

Mathematical activity (stylised): modelling, computing, deduction

Computing

(algorithms)

Deduction

(proofs)

44
44

44
44

44
44

44
44

44
44

4

Modelling

(structures)

——————————————————————————————————–
HB Computability Theory Fall 2014

Ancient Babylonean mathematics: computing 2/24
——————————————————————————————————–

Solving equations (modern notation) by computing

Egyptian ax+ b = 0

Babylonian ax2 + bx+ c = 0

This belongs to arithmetic

Also geometry was computational: computing areas

Using Pythagoras’ theorem to construct right angles

One already knows some structures:

numbers: learned at age 1-3
geometry: we live in a locally Euclidean space

our brains are embedded in it
(Kant’s a priori)

——————————————————————————————————–
HB Computability Theory Fall 2014

Ancient Greek mathematics: deduction 3/24
——————————————————————————————————–

‘There are infinitely many primes’ ∀n∃p>n.p is prime

Less emphasis on computing

Euclid could prove:
(x+ y)2 = x2 + 2xy + y2

but not
(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

And the Babylonians didn’t have deductions

Thesis: Deduction

Antithesis: Computing

Synthesis: Archimede, al-Khôwarizm̂ı combined proving and computing

Theorem (i) 3.14 < π < 3.15

(ii) 8976× 968 = 8688768

(iii) n ×a m = n×m

——————————————————————————————————–
HB Computability Theory Fall 2014

Classical mathematics 4/24
——————————————————————————————————–

Thesis: Newton’s Principia is based on geometry (deduction)

‘It stiffled British mathematics for two centuries’

Antithesis: Euler, using Leibniz’s version of analysis

made many computational contributions

Synthesis: Newton partially combined computing and deduction (π in > 30 decimals)

Augustin-Louis Cauchy (1789-1857)

made precise ‘dealing with arbitrarily small quantities’

providing an interface between computing and proving

Then mathematics bloomed as never before, leading to applications like

Maxwell’s Equations, Relativity Theory and Quantum Physics

Robert Musil (In: Der Mann ohne Eigenschaften) about mathematics:

Die Genauigkeit, Kraft und Sicherheit dieses Denkens,

die nirgends im Leben ihresgleichen hat, erfüllte ihn fast mit Schwermut

The precision, force and certainty of this thinking,

unequaled in life, almost filled him with melancholy

——————————————————————————————————–
HB Computability Theory Fall 2014

Modelling: Mathematical Structures 5/24
——————————————————————————————————–

Also in the 19-th century the need of structures came up

Solving (using root-expressions)

ax3 + bx2 + cx+ d = 0 (del Ferro, Tartaglia)

ax4 + bx3 + cx2 + dx+ e = 0 (Descartes)

Polynomials of degree 5 could not be solved similarly (Abel)

Galois made it clear when solutions of polynomials can be expressed as roots

using group theory

Non-Euclidean geometry was invented

....

The wealth of mathematical structures started

to be studied with help of deduction and computation

Concepts (structures like groups) became multi-interpretable

——————————————————————————————————–
HB Computability Theory Fall 2014

Foundations: charting deduction, modelling, computing 6/24
——————————————————————————————————–

Systems for

deduction Aristotle, Leibniz, Boole, Peirce, Frege [1879] (predicate logic)

modelling Cantor, Zermelo-Fraenkel [1922] (set theory)

Whitehead-Russell, de Bruijn, Girard, Coquand-Huet (type theory)

Eilenberg-MacLane, ..., (category theory)

computing Thue, Hilbert, Skolem, Herbrand, Kleene,

Church, Turing [1936] (computability)

——————————————————————————————————–
HB Computability Theory Fall 2014

Alonzo Church 7/24
——————————————————————————————————–

Supervisor Oswald Veblen

Suggested topic find an algorithm for the genus

of a manifold {~x∈Kn | p(~x) = 0}

(e.g. K = R, n = 3)

Church (1903-1995)
Studying mathematics at
Princeton 1922 or 1924

Church could not do it
Started to wonder what computability is after all
Invented lambda calculus
Formulated Church’s Thesis:

Given a function f : N k→N

Then f is computable iff f is lambda definable

——————————————————————————————————–
HB Computability Theory Fall 2014

First [1932] version of λ-calculus 8/24
——————————————————————————————————–

Church tried to use ‘functions’ to capture both computing and deduction

Lambda calculus terms (λ-terms)

term ::= var | term term | λvar term

var ::= x | var′

Lambda calculus axiom (computational)

(λx.M)N =β M [x: = N]

For example (λx.x2 + 1)3 = 32 + 1(= 10).

Lambda calculus axiom (deductional); Γ is a set of terms, ⊃ is a new constant

Γ ⊢ (A⊃B) Γ ⊢ A

Γ ⊢ B

Γ, A ⊢ B

Γ ⊢ (A⊃B)

, if M∈Γ
Γ ⊢ M

Γ ⊢ A A = B

Γ ⊢ B

——————————————————————————————————–
HB Computability Theory Fall 2014

Fixed point theorem 9/24
——————————————————————————————————–

Proposition. There exist D , B such that

Dx = xx take D = λx.xx = λx(xx)

Bfgx = f(gx) take B = λfgx.f(gx) = λf(λg(λx(f(gx))))

Fixed point theorem. For every F there exists an X such that FX = X

Proof. Take W = (BF D) and X = DW. Then

X = DW = WW = BF DW = F (DW) = FX

——————————————————————————————————–
HB Computability Theory Fall 2014

Inconsistency 10/24
——————————————————————————————————–

Kleene and Rosser showed the system was inconsistent

Curry simplified the proof

Proposition. Any term is provable.

Proof. (Curry’s paradox) Given A, let X = (X⊃A), by the fixed point theorem. Now

X ⊢ X X ⊢ X

X ⊢ X⊃A X ⊢ X

X ⊢ A

⊢ X⊃A

⊢ X

⊢ A

——————————————————————————————————–
HB Computability Theory Fall 2014

Consistent part 11/24
——————————————————————————————————–

Proposition. Without the deductive part the system is consistent

Lambda terms can express:

• Computations
- on numbers
- on data types

• Infinite processes



















⇒
functional programming
languages like ML, Haskell, Clean

Reason for its power:

‘meaning/notational-complexity’ arbitrarily high,

with an easy error-correcting interface (typed application)

——————————————————————————————————–
HB Computability Theory Fall 2014

Numerals and computations 12/24
——————————————————————————————————–

Church’s numerals

0 = λfx.x = (λf(λxx))
1 = λfx.fx = (λf(λx(fx)))
2 = λfx.f(fx) = (λf(λx(f(fx))))

. . .

n = λfx.f (n)(x)

There are terms A+, A× satisfying

A+ n m =β n+m

A× n m =β n ·m

Take

A+ , λnmλfx.nf(mfx) then A+nm = λfx.nf(mfx)

A× , λnmλfx.m(λy.nfy)x A×nm = λfx.m(λy.nfy)x

Then

A+ n m = λfx. n f(m fx) = λfx.fn(fmx) = λfx.fn+mx= cn+m

——————————————————————————————————–
HB Computability Theory Fall 2014

Lambda definability 13/24
——————————————————————————————————–

A function f : N k → N is λ-definable

if there exists a lambda term F such that for all ~n∈N k

Fcn1
· · · cnk

= cf(~n)

The function p− predecessor is defined by p−(0) = 0, p−(n+ 1) = n

and is λ-defined via
P− , (λn.nT [c0, c0]snd),

where

[M,N] , λz.zMN

fst , λab.a [M,N]fst =M

snd , λab.b [M,N]snd=N

T , λp.[S+(p fst), p fst] T [cn, cm] = [cn+1, cn]

Tn[c0, c0] = [cn, cp−(n)]

S+ , λabc.b(abc) S+
cn = cn+1

——————————————————————————————————–
HB Computability Theory Fall 2014

Data types 14/24
——————————————————————————————————–

A tree like •

??
??

??

��
��

��

•

??
??

??

��
��

��

2

3

1

becomes λbl.b (l 3)(b (l 1) (l 2))

A function that mirrors trees is represented as mirror t= λbl.t(λxy.byx)l:

mirror(λbl.b (l 3)(b (l 1) (l 2))) = λb.b (b (l 2) (l 1)) (l 3)

A higher order function ‘map’ distributing an f over leafs of the tree

map t= λbl.tb(l ◦ f), where (l ◦ f) x= l(fx). Then

map(square)(λb.b (b (l 2) (l 1)) (l 3)) = λb.b (b (l 4) (l 1)) (l 9),

where square= λx.A×xx

——————————————————————————————————–
HB Computability Theory Fall 2014

Processes 15/24
——————————————————————————————————–

computations ❀ termination
processes ❀ continuation

Simplest continuation

Let ∆= λx.xx. Then

∆∆ = (λx.xx)∆

= ∆∆

This can be done in more interesting ways

Given C(~x, f) = . . . ~x . . . f . . ., there is a term F such that (general recursion)

F~x= C(~x, F)

Take F =AA, with
A= λf~x.C(~x, ff)

then
AA= λ~x.C(~x,AA)

so
F~x= C(~x, F)

——————————————————————————————————–
HB Computability Theory Fall 2014

Types for lambda terms (Curry [1934], Church [1940]) 16/24
——————————————————————————————————–

Let A be a set of symbols. Types over A , notation TT = TTA
→:

TT = A |TT→TT

Type assignment

(axiom) Γ ⊢ x : A, if (x:A)∈Γ

(→E)
Γ ⊢ M : (A → B) Γ ⊢ N : A

Γ ⊢ (MN) : B
(→I)

Γ, x:A ⊢ M : B

Γ ⊢ (λx.M) : (A → B)

Examples

⊢ I : (A→A)
⊢ K : (A → B → A)
⊢ S : (A→B→C)→(A→B)→(A→C)







for all A,B,C∈TT

Theorem. ⊢ M : A ⇒ M∈SN (typable terms are strongly normalizing)

Theorem. Type checking is decidable; type reconstruction is computable

Theorem. ⊢ M : A & M →→ N ⇒ ⊢ N : A (type checking only at compile time)

——————————————————————————————————–
HB Computability Theory Fall 2014

Curry: combinators, correspondence with logic 17/24
——————————————————————————————————–

I , λx.x : A→A

K , λxy.x : A→B→A

S , λxyz.xz(yz) : (A→B→C)→(A→B)→A→C

From these all closed lambda terms can be defined applicatively

Also with types

Curry: “Hey, these are tautologies” 7→ Curry-Howard correspondence

——————————————————————————————————–
HB Computability Theory Fall 2014

Genzten’s Natural Deduction 18/24
——————————————————————————————————–

Introduction Rules Elimination Rules

Γ, x:A ⊢ M : B

Γ ⊢ (λx:A.M) : (A→B)

Γ ⊢ F : (A→B) Γ ⊢ p:A

Γ ⊢ (Fp) : B

Γ ⊢ p : A Γ ⊢ q : B

Γ ⊢ 〈p, q〉 : (A & B)

Γ ⊢ z : (A & B)

Γ ⊢ z.1 : A

Γ ⊢ z : (A & B)

Γ ⊢ z.2 : B

Γ ⊢ p : A

Γ ⊢ (in1 p) : (A ∨ B)

Γ ⊢ p : B

Γ ⊢ (in2 p) : (A ∨ B)

Γ ⊢ p : (A ∨ B) Γ, x : A ⊢ q : C Γ, y : B ⊢ r : C

Γ ⊢ ([λx:A.q, λy:B.r]p) : C

Absurdum Rule Classical Negation

Γ ⊢ p : ⊥

Γ ⊢ (absA p) : A

Γ,¬A ⊢ ⊥

Γ ⊢ A

here ¬A:=(A→⊥)

Intuitionistic/Classical Propositional Logic Natural Deduction Style

Red proofs as λ-terms

For example
⊢ λxy.xyy : (A→A→B)→(A→B)

——————————————————————————————————–
HB Computability Theory Fall 2014

The Curry-Howard-de Bruijn correspondence 19/24
——————————————————————————————————–

Proposition (Curry-Howard-de Bruijn)

∃M ⊢λ →M : A ⇐⇒ ⊢ML A,

where ⊢ML denotes probability in minimal propositional logic

The λ-term M is seen as formalized proof

Can be extended to systems (λ-cube) capturing most mathematics

Proof-checking becomes type-checking (Coq)

——————————————————————————————————–
HB Computability Theory Fall 2014

Curry: linguistics 20/24
——————————————————————————————————–

Inspired by Ajdukiewicz (and indirectly by Leśniewski)

Curry gave types to syntactic categories

n noun/subject s sentence

n→n ‘red hat’ (adjective) (n→s)→(n→s) adverbs
(n→n)→n ‘redness’ (n→s)→s quantifiers
n→(n→n) ‘(John and Henry) are brothers’
n→s ‘Mary sleeps’

n→n→s ‘Mary kisses John’
s→s ‘not(Mary kisses John)’
More complex cases
(n→n)→(n→n)→(n→n) ‘slightly large’

((n→n)→(n→n))→(n→n)→(n→n) ‘slightly too large’

Do not know whether Montague had seen this

——————————————————————————————————–
HB Computability Theory Fall 2014

20th and 21st century mathematics 21/24
——————————————————————————————————–

1900-2000

The computing and deduction traditions again diverged:

Computer Algebra systems versus Proof Checking systems

2000-2100

Certified Mathematics/Computer Science, will unify the two

Interface computation—deduction: two styles

Γ ⊢ p : A(t)
, t = s

Γ ⊢ p : A(s)

Γ ⊢ p : A(t) Γ ⊢ C : t = s

Γ ⊢ f(p, C) : A(s)

Poincaré Principle (Coq) Ephemeral proof-objects (HOL)

2 + 2 = 4 doesn’t need a proof looong proofs are checked but not stored

——————————————————————————————————–
HB Computability Theory Fall 2014

The triangle collapses 22/24
——————————————————————————————————–

.
Computing

.
Proving

.
Modeling

.

.
λ−term

.
λ−term

.
type

.

Γ ⊢ M : A

⊢ λΓ.M : ΠΓ.A

——————————————————————————————————–
HB Computability Theory Fall 2014

Case Studies 23/24
——————————————————————————————————–

Certifications

Fundamental Theorem of Algebra Geuvers, Wiedijk, Zwanenburg,
Pollack and Niqui Coq

Fundamental Theorem of Calculus Cruz-Filipe Coq
Correctness Buchberger’s algorithm Person, Théry Coq
Primality of Oostdijk, Caprotti Coq
9026258083384996860449366072142307801963
Correctness of Fast Fourier Transform Capretta Coq
Book “Continuous lattices” (in part) Bancerek et al. Mizar
Impossibility of trisecting angles Harrison HOL-light
∑

∞

k=1

1

k2 = π
2

6
Harrison HOL-light

Prime Number Theorem Avigad, Harrison Isabelle-HOL
Four Colour Theorem Gonthier Coq
Jordan Curve Theorem Hales HOL
Primality of >100 digit numbers Grégoire, Théry, Werner Coq
λβηSP conservative over λβη Stoevring Twelve
Proof of the Kepler conjecture Hales [2014] HOL-light

ARM6 processor Fox [2003] HOL
seL4 Operating system Klein et al [2009]
C-compiler Leroy et al [2009] Coq

——————————————————————————————————–
HB Computability Theory Fall 2014

Book: Lambda Calculi with Types 24/24
——————————————————————————————————–

Cambridge University Press, June 2013

Summary in ≤ 20 words of 698 pages

This handbook with exercises reveals in formalisms

hitherto mainly used for designing and verifying software and hardware

unexpected mathematical beauty

——————————————————————————————————–
HB Computability Theory Fall 2014

Exercises
——————————————————————————————————–

1. Let g, h be λ-definable functions Define

f(0, ~x) = g(~x)

f(n+ 1, ~x) = h(n, ~x, f(n, ~x))

Show that f is λ-definable. [Hint. First find a term P such that

Pcnc~m = [cf(n,~m), cn].]

2. Let g be λ-definable, such that ∀~m∃n.g(n, ~m) = 0. Define

f(~m) = µx.g(x, ~m) = 0.

Show that f is λ-definable. [Hint. Use the fixed point theorem.]

3. Sketch a proof that all λ-definable functions are computable.

4. Conclude that the computable and λ-definable functions form the same class.

